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Abstract

The fields of human speech recognition (HSR) and automatic speech recognition (ASR) both investigate parts of the speech recog-
nition process and have word recognition as their central issue. Although the research fields appear closely related, their aims and
research methods are quite different. Despite these differences there is, however, lately a growing interest in possible cross-fertilisation.
Researchers from both ASR and HSR are realising the potential benefit of looking at the research field on the other side of the ‘gap’. In
this paper, we provide an overview of past and present efforts to link human and automatic speech recognition research and present an
overview of the literature describing the performance difference between machines and human listeners. The focus of the paper is on the
mutual benefits to be derived from establishing closer collaborations and knowledge interchange between ASR and HSR. The paper ends
with an argument for more and closer collaborations between researchers of ASR and HSR to further improve research in both fields.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Both the research fields of human speech recognition
(HSR) and automatic speech recognition (ASR) investigate
(parts of) the speech recognition process. The two research
areas are closely related since they both study the speech
recognition process and the central issue of both is word
recognition. However, their research objectives, their
research approaches, and the way HSR and ASR systems
deal with different aspects of the word recognition process
differ considerably (see Section 2). In short, in HSR
research, the goal is to understand how we, as listeners,
recognise spoken utterances. This is often done by building
computational models of HSR, which can be used for the
simulation and explanation of behavioural data related to
the human speech recognition process. The aim of ASR
0167-6393/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.specom.2007.01.009

* Tel.: +44 114 222 1907; fax: +44 114 222 1810.
E-mail address: O.Scharenborg@dcs.shef.ac.uk
research is to build algorithms that are able to recognise
the words in a speech utterance automatically, under a
variety of conditions, with the least possible number of rec-
ognition errors. Much research effort in ASR has therefore
been put into the improvement of, amongst others, signal
representations, search methods, and the robustness of
ASR systems in adverse conditions.

One might expect that in the past this common goal
would have resulted in close collaborations between the
two disciplines, but in reality, the opposite is true. This lack
of communication is most likely to be attributed to another
difference between ASR and HSR. Although both ASR
and HSR claim to investigate the whole recognition
process from the acoustic signal to the recognised units,
an automatic speech recogniser necessarily is an end-to-
end system – it must be able to recognise words from the
acoustic signal – while most models of HSR only cover
parts of the human speech recognition process (Nearey,
2001; Moore and Cutler, 2001). Furthermore, in ASR,
the algorithms and the way to train the ASR systems are

mailto:O.Scharenborg@dcs.shef.ac.uk


O. Scharenborg / Speech Communication 49 (2007) 336–347 337
completely understood from a mathematical point of view,
but in practice it has so far proved impossible to get the
details sufficiently right to achieve a recognition perfor-
mance that is even close to human performance. Human
listeners, on the other hand, achieve superior performance,
but many of the details of the internal processes are
unknown.

Despite this gap that separates the two research fields,
there is a growing interest in possible cross-fertilisation
(Furui, 2001; Hermansky, 2001; Huckvale, 1998; Kirchhoff
and Schimmel, 2005; Moore, 1995; Moore and Cutler,
2001; Pols, 1999; Scharenborg, 2005a,b; Scharenborg
et al., 2005; ten Bosch, 2001). (For a historical background
on the emergence of this gap, see Huckvale (1998).) This is,
for instance, clearly illustrated by the organisation of the
workshop on Speech recognition as pattern classification

(July 11–13, 2001, Nijmegen, The Netherlands), the organi-
sation of the special session Bridging the gap between

human and automatic speech processing at Interspeech

2005 (September 6, 2005, Lisbon, Portugal) and of course
with the coming about of this ‘Speech Communication’
special issue on Bridging the gap between human and auto-
matic speech processing.

It is generally acknowledged within the ASR community
that the improvement in ASR performance observed in the
last few years can to a large extent be attributed to an
increase in computing power and the availability of more
speech material to train the ASR systems (e.g., Bourlard
et al., 1996; Moore and Cutler, 2001). However, the incre-
mental performance is asymptoting to a level that falls
short of human performance. It is to be expected that
further increasing the amount of training data for ASR sys-
tems will not result in recognition performances that are
even approaching the level of human performance (Moore,
2001, 2003; Moore and Cutler, 2001). What seems to be
needed is a change in approach – even if this means an ini-
tial worsening of the recognition performance (Bourlard
et al., 1996). As pointed out by Moore and Cutler (2001):
‘‘true ASR progress is not only dependent on the analysis
of ever more data, but on the development of more struc-
tured models which better exploit the information available
in existing data’’. ASR engineers hope to get clues about
those ‘‘structured models’’ from the results of research in
HSR. Thus, from the point of view of ASR, there is hope
of improving ASR performance by incorporating essential
knowledge about HSR into current ASR systems (Carpen-
ter, 1999; Dusan and Rabiner, 2005; Furui, 2001; Herman-
sky, 1998; Maier and Moore, 2005; Moore, 2003; Moore
and Cutler, 2001; Pols, 1999; Scharenborg et al., 2007;
Strik, 2003, 2006; Wright, 2006).

With respect to the field of HSR, specific strands in HSR
research hope to deploy ASR approaches to integrate par-
tial modules into a convincing end-to-end model (Nearey,
2001). As pointed out above, computational models of
HSR only model parts of the human speech recognition
process; an integral model covering all stages of the human
speech recognition process does not yet exist. The most
conspicuous part of the recognition process that, until
recently, virtually all models of human speech recognition
took for granted is a module that converts the acoustic
signal into some kind of symbolic segmental representation.
So, unlike ASR systems, most existing HSR models cannot
recognise real speech, because they do not take the acoustic
signal as their starting point. In 2001, Nearey pointed out
that the only working models of lexical access that take
an acoustic signal as input were ASR systems. Mainstream
ASR systems however are usually implementations of a
specific computational paradigm and their representations
and processes need not be psychologically plausible. In
their computational analysis of the HSR and ASR speech
recognition process, Scharenborg et al. (2005) showed that
some ASR algorithms serve the same functions as analo-
gous HSR mechanisms. Thus despite first appearances, this
makes it possible to use certain ASR algorithms and tech-
niques in order to build and test more complete computa-
tional models of HSR (Roy and Pentland, 2002;
Scharenborg, 2005b; Scharenborg et al., 2003, 2005; Wade
et al., 2002; Yu et al., 2005).

Furthermore, within the field of ASR there are many
(automatically or hand-annotated) speech and language
corpora. These corpora can easily and quickly be analysed
using ASR systems, since ASR systems and tools are able
to process large amounts of data in a (relatively) short
time. This makes ASR techniques valuable tools for the
analysis and selection of speech samples for behavioural
experiments and the modelling of human speech recogni-
tion (de Boer and Kuhl, 2003; Kirchhoff and Schimmel,
2005; Pols, 1999).

Researchers from both ASR and HSR are thus realising
the potential benefit of looking at the research field on the
other side of the gap. This paper intends to give a compre-
hensive overview of past and present efforts to link human
and automatic speech recognition research. The focus of
the paper is on the mutual benefits to be derived from
establishing closer collaborations and knowledge inter-
change between ASR and HSR. First a brief overview of
the goals and research approaches in HSR and ASR is
given in Section 2. In Section 3, we discuss the performance
difference between machines and human listeners for
various recognition tasks and what can be learned from
comparing those recognition performances. Section 4 dis-
cusses approaches for improving the computational model-
ling of HSR by using ASR techniques. Section 5 presents
an overview of the research efforts aimed at using knowl-
edge from HSR to improve ASR recognition performance.
The paper ends with a discussion and concluding remarks.

2. Human and automatic speech recognition

In this section, the research fields and approaches of
human speech recognition (Section 2.1) and automatic
speech recognition (Section 2.2) will be discussed briefly.
A more detailed explanation of the two research fields
would be beyond the scope of this article; the reader is
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referred to textbook accounts such as Harley (2001) for an
in-depth coverage of the research field of human speech
recognition, and to textbook accounts such as Rabiner
and Juang (1993) or Holmes and Holmes (2002), for an
explanation of the principles of automatic speech recogni-
tion. Comprehensive comparisons of the research goals
and approaches of the two fields (Huckvale, 1998; Moore
and Cutler, 2001; Scharenborg et al., 2005), as well as com-
parisons of the computational functioning and architec-
tures (Scharenborg et al., 2005) of the speech recognition
process in automatic recognition systems and human lis-
teners can also be found in the literature. Furthermore,
Dusan and Rabiner (2005) provide an extensive compari-
son between human and automatic speech recognition
along six key dimensions (including the architecture of
the speech recognition system) of ASR.

2.1. Human speech recognition

To investigate the properties underlying the human
speech recognition process, HSR experiments with human
subjects are usually carried out in a laboratory environ-
ment. Subjects are asked to carry out various tasks, such
as:

• Auditory lexical decision: Spoken words and non-words
are presented in random order to a listener, who is asked
to identify the presented items as a word or a non-word.

• Phonetic categorisation: Identification of unambiguous
and ambiguous speech sounds on a continuum between
two phonemes.

• Sequence monitoring: Detection of a target sequence
(larger than a phoneme, smaller than a word), which
may be embedded in a sentence or list of words/non-
words, or in a single word or non-word.

• Gating: A word is presented in segments of increasing
duration and subjects are asked to identify the word
being presented and to give a confidence rating after
each segment.

In these experiments, various measurements are taken,
such as reaction time, error rates, identification rates, and
phoneme response probabilities. Based on these measure-
ments, theories about specific parts of the human speech
recognition system are developed. To put the theories to
further test, they are implemented in the form of computa-
tional models. Being implementations of a theory, compu-
tational models are regarded as proof of principle of a
theory (Norris, 2005). However, to actually implement a
computational model, several assumptions have to be
made, for instance about the nature of the input. It is of
the utmost importance that these assumptions are chosen
appropriately, such that the resulting computational model
is able to model the observed human data, on the one
hand, and is psychologically (and biologically) plausible,
on the other (Norris, 2005; Tuller, 2003). The chosen
implementation of the computational model should pro-
vide an affirmative answer to the question whether speech
recognition can really work like this. Additionally, a good
computational model should also be able to make accurate
predictions of aspects of the phenomenon under investiga-
tion that do not directly follow from the observed data or
the literature (Norris, 2005; Tuller, 2003). These predic-
tions can then be used for the definition of new behavioural
studies and subsequently, if necessary, a redefinition or
adaptation of the original theory on which the computa-
tional model was based. Various models of HSR (e.g., Luce
et al., 2000; Marslen-Wilson, 1987; McClelland and Elman,
1986; Norris, 1994) have been developed that are capable
of simulating data from behavioural experiments.

Most data on human word recognition involve measures
of how quickly or accurately words can be identified. A
central requirement of any model of human word recogni-
tion is therefore that it should be able to provide a contin-
uous measure (usually referred to as ‘activation’ or ‘word
activation’) associated with the strength of different lexical
hypotheses over time. During the human speech recogni-
tion process word hypotheses that overlap in time compete
with each other. This process is referred to as (lexical) com-
petition. Virtually all existing models of HSR assume that
the activation of a word hypothesis at a certain point in
time is based on its initial activation (due to the informa-
tion in the acoustic signal and prior probability) and the
inhibition caused by other activated words. The word acti-
vation score, then, can be compared to the performance of
listeners in experiments where they are required to make
word-based decisions (such as the above-described audi-
tory lexical decision experiments).

The investigation into how human listeners recognise
speech sounds and words from an acoustic signal has a
long history. Miller and Nicely’s famous 1954 paper has
led to many investigations into the processing of speech
by the auditory system analysing sound confusions made
by human listeners as a function of signal-to-noise ratios
(see Allen, 2004, and references therein). A detailed
account of how listeners recognise spoken words is
provided by McQueen (2004). In short, there are two major
theories of human speech recognition, which are presented
here as extreme standpoints. The first theory, referred to as
‘episodic’ or ‘sub-symbolic’ theory, assumes that each
lexical unit is associated with a large number of stored
acoustic representations (e.g., Goldinger, 1998; Klatt, 1979,
1989). During the speech recognition process, the incoming
speech signal is compared with the stored acoustic repre-
sentation. The competition process will decide which repre-
sentation (and thus word) is recognised. On the other hand,
‘symbolic’ theories of human speech recognition hold that
human listeners first map the incoming acoustic signal onto
prelexical representations, e.g., in the form of phonemes,
after which the prelexical representations are mapped onto
the lexical representations stored in the form of a sequence
of prelexical units (e.g., Gaskell and Marslen-Wilson, 1997;
Luce et al., 2000; McClelland and Elman, 1986; Norris,
1994). The speech recognition process in symbolic theories



O. Scharenborg / Speech Communication 49 (2007) 336–347 339
thus consists of two levels: the prelexical level and the lex-
ical level, at which the competition process takes place.

2.2. Automatic speech recognition

The development of an ASR system consists of four
essential steps: feature extraction, the acoustic modelling,
the construction of a language model, and the search. First,
in the so-called front-end, numerical representations of
speech information, or features, are extracted from the
raw speech signal. These features provide a relatively
robust and compact description of the speech signal, ide-
ally, preserving all information that is relevant for the auto-
matic recognition of speech. These features describe
spectral characteristics such as the component frequencies
found in the acoustic input and their energy levels. Second,
in the acoustic modelling stage, an acoustic model is cre-
ated for each recognition unit (also known as sub-word
units, e.g., phones). In most current state-of-the-art ASR
systems, the acoustic models are based on the hidden Mar-
kov Model (HMM) paradigm (see for an introduction,
Rabiner and Juang (1993)). HMMs model the expected
variation in the signal statistically. Probability density
functions for each sub-word HMM are estimated over all
acoustic tokens of the recognition unit in the training
material.

ASR systems use language models to guide the search
for the correct word (sequence). Most ASR systems use
statistical N-gram language models which predict the
likelihood of a word given the N preceding words. The a
priori probabilities are learned from the occurrences and
co-occurrences of words in a training corpus. An ASR
system can only recognise those words which are present
in its lexicon. Each word in the lexicon is built from a
limited number of sub-word units. The type of unit used
to describe the words in the lexicon is identical to the type
of unit represented by the acoustic models. So, if the acous-
tic models represent phonemes, the units used to describe
the words in the lexicon are also phonemes.

During word recognition, then, the features representing
the acoustic signal are matched with the succession of
acoustic models associated with the words in the internal
lexicon. Most ASR systems use an integrated search: all
information (from the acoustic model set, lexicon, and lan-
guage model) is used at the same time. However, lately,
also multi-stage ASR systems are developed, in which a
first stage recogniser converts the acoustic signal into an
intermediate probabilistic representation (of, for instance,
phones) after which the second stage recogniser maps the
intermediate representation onto lexical representations.
The advantage of such multi-stage recognition systems is
that in a second (or subsequent) recognition step more
detailed information can be used, for instance by integrat-
ing more powerful language models into the system.
During recognition, the likelihood of a number of
hypothesised word sequences (paths) through the complete
search space is computed (using Bayes’ Rule), and then a
trace back is performed to identify the words that were
recognised on the basis of the hypothesis with the highest
score at the end of the utterance (or the hypothesis with
the highest score after a number of recognised words,
depending on the length of the influence of the language
model). In addition to the best-scoring word (sequence),
a word graph can be constructed, which is a compact
and efficient representation for storing an N-best list. It
contains those path hypotheses whose scores are closest
to the best scoring path.

It is important to point out that a standard ASR system
is not capable of deciding that a stream of feature vectors
belongs to a non-word: an ASR system will always come
up with a solution in terms of the items that are available
in the lexicon. (It is possible to configure an ASR system
such that it rejects inputs if the quality of the match with
the words in the vocabulary is below a certain minimum.
However, this is not the same as detecting that the input
speech contains non-words.) Furthermore, an ASR system
can only recognise what it has observed in the training
material. This means that an ASR system is able to recog-
nise words that are not present in the training material as
long as the new word’s sub-word units are known to the
ASR system and the new word has been added to the rec-
ogniser’s lexicon; once the new word contains a sub-word
unit not observed in the training material, the ASR system
will not be able to recognise it. Lastly, ASR systems are
usually evaluated in terms of accuracy, the percentage of
the input utterances that is recognised correctly, or in terms
of word error rate (WER): the number of word insertions,
word deletions, and word substitutions divided by the total
number of words.

3. The difference in human and machine

speech recognition performance

Over the past decades the recognition performance of
ASR systems has drastically increased. The question now
is how close the performance of ASR systems is to the best
possible recognition performance on a given task. It is
generally assumed that human listeners outperform ASR
systems on most tasks (e.g., Cutler and Robinson, 1992;
Moore and Cutler, 2001); therefore, several studies have
been carried out in which machine recognition perfor-
mance is compared to human performance to investigate
the size of the performance difference. Secondly, compara-
tive studies have been carried out to investigate what it is
that makes human speech recognition so superior to
machine speech recognition, and what can be learned from
human speech recognition to improve ASR performance.

A problem that arises when one wants to make a com-
parison between human and machine recognition perfor-
mance is that the performance of ASR systems is usually
measured in terms of (word) accuracy, while HSR
researchers are not only interested in the number of correct
and incorrect responses of a subject but also, for instance,
in the (relative) speed (or ‘reaction time’, which gives an
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indication of the relative difficulty of the recognition task: a
slower reaction time indicates that it takes more time for a
word’s activation to become high enough to be recognised)
with which a subject fulfils a certain task. Reaction time as
measured in HSR experiments is hardly an issue in ASR
applications, the latter requires adding (perhaps complex)
features to existing ASR systems to make it possible to
assess reaction times for machines; therefore, most compar-
ative studies of human–machine performance describe the
performances in terms of word accuracy or error rates.
An exception is a feasibility study by Cutler and Robinson
(1992) who compared human and machine recognition
performance by using reaction time as a metric, showing
a significant positive correlation between human and
machine reaction times for consonants, but not for vowels.
Such a comparison of the performance of human listen-
ers and machines using reaction times can highlight differ-
ences in the processing of, for instance, phonemes and
vowels.

The recognition performances in terms of accuracy or
error rates of human listeners and machines have been
compared at several levels: words (Carey and Quang,
2005; Lippmann, 1997; van Leeuwen et al., 1995), pho-
nemes (Cutler and Robinson, 1992; Meyer et al., 2006;
Sroka and Braida, 2005), and (articulatory) features
(Cooke, 2006; Meyer et al., 2006; Sroka and Braida,
2005); for different listening conditions (clean speech: Cut-
ler and Robinson, 1992; Lippmann, 1997; Meyer et al.,
2006; van Leeuwen et al., 1995; noisy speech: Carey and
Quang, 2005; Cooke, 2006; Lippmann, 1997; Meyer
et al., 2006; Sroka and Braida, 2005; degraded speech:
Sroka and Braida, 2005); and with respect to amount of
training material (Moore, 2001, 2003; Moore and Cutler,
2001). In his comprehensive – often cited – study, Lipp-
mann (1997) compared the performance of human listeners
and the best performing ASR system (for each speech cor-
pus) on six word recognition tasks comprising varying
speaking styles and lexicon sizes. The recognition tasks var-
ied from relatively easy, such as the recognition of digits
spoken in isolation and in short sequences (the TI-digits
corpus; Leonard, 1984) and the recognition of letters pro-
nounced in isolation (the alphabet letters corpus; Cole
et al., 1990) to far more difficult tasks, such as the recogni-
tion of read sentences from the Wall Street Journal (the
North American Business News corpus; Paul and Baker,
1992) and the recognition of spontaneous telephone con-
versations (the NIST Switchboard corpus; LDC, 1995).
Except for two speech recognition tasks, the human and
machine performances were measured on materials from
the same corpora. van Leeuwen et al. (1995) performed a
study, in which they compared the performance of 20
native speakers of English, 10 non-native speakers of Eng-
lish, and 3 ASR systems on 80 sentences from the Wall
Street Journal database. Both studies showed that the word
error rates obtained by ASR systems are significantly
higher than those obtained by human listeners – often
one or more orders of magnitude (for instance, human
listeners obtained an error rate of 4% on data taken from
Switchboard, while the best ASR systems obtained an error
rate of 43% (Lippmann, 1997)); even non-native speakers
significantly outperformed ASR systems. At the phoneme
level, the recognition results are in line with those found
at the word level: machine error rates were significantly
higher than human error rates (Cutler and Robinson,
1992; Meyer et al., 2006). The type of errors made by the
machine, however, are more or less similar (but higher)
to the errors made by the human listeners, suggesting that
the human listeners and the machine had similar type of
recognition difficulties (Cutler and Robinson, 1992).

A more detailed analysis of the errors made by human
listeners and ASR systems revealed that although human
listeners and ASR both find content words more difficult
to recognise correctly than function words, the types of
substitutions made in content word errors are different:
human listeners make fewer inflection errors than
machines. One can suspect that inflection errors are less
severe than the substitution of a word with any given
(acoustically similar) other word, because it will not impair
the understanding of an utterance (van Leeuwen et al.,
1995). This is a point where ASR systems need to be
improved, perhaps at the level of language modelling.

In adverse listening conditions (such as situations where
the signal to noise ratio is very low), the difference in
human–machine recognition performance increases even
further (Carey and Quang, 2005; Cooke, 2006; Lippmann,
1997; Meyer et al., 2006; Sroka and Braida, 2005). It is not
just that humans are better able than machines to recognise
speech in adverse listening conditions, but they are also
better at recognising speech when the background noise
is non-stationary (e.g., noise with a speech-like spectrum
and modulation spectrum; Carey and Quang, 2005). How-
ever, one needs to take into account that human listeners
have multiple sources of information available that are
unavailable to the ASR system. A human listener is able
to use knowledge about the world, the environment, the
topic of discourse, etc. This ‘higher-level’ knowledge is
not incorporated in the statistical language models used
in ASR systems. When comparing human and machine
recognition performance on a task where the higher-level
information flows are removed, i.e., the recognition of non-
sense words and sentences, human recognition perfor-
mance is however still much better than machine
recognition performance (Lippmann, 1997; Meyer et al.,
2006). One speech recognition corpus that has specifically
been designed in order to perform unbiased tests between
human and machine performance and which satisfies
requirements for both ASR and HSR tests is the OLden-
burg LOgatome (OLLO) speech corpus (Wesker et al.,
2005): a corpus consisting of phonemes embedded in loga-
tomes, i.e., three-phoneme sequences (CVC and VCV) with
no semantic information.

These differences in machine and human performance,
even in tasks where there is no higher-level information
to help human speech recognition, suggest that human
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listeners and ASR systems use different acoustic cues dur-
ing speech recognition. This is further backed-up by
‘lower-level’ differences between human listeners and
ASR systems: human listeners are able to use all informa-
tion that is present in the acoustic signal to differentiate
between phones and thus words, while ASR systems can
only use the information that is encoded in the acoustic fea-
tures (e.g., Mel-frequency cepstral coefficients or percep-
tual linear prediction features); ASR systems thus do not
have available all information that is available to human
listeners. Knowledge about which cues are present in the
speech signal and are most robustly detected by human lis-
teners (usually tested in adverse listening conditions; e.g.,
Cooke, 2006; Sroka and Braida, 2005) can be used to
improve machine recognition performance, more specifi-
cally the feature extraction in the front-end of an automatic
speech recogniser. Furthermore, it will help to direct one’s
recognition improvement efforts only to those phonemes
that are often misrecognised, instead of trying to improve
the complete phoneme set, and thus trying to improve pho-
nemes that are already recognised quite well. Phonological
feature analyses carried out on the human and machine
speech recognition results can help identify those features
(and phonemes) that are frequently recognised correctly
and incorrectly, and thus which cues are being used by
human listeners and not by ASR systems and vice versa.
Automatic recognition systems outperform human listen-
ers in the identification of plosives and non-sibilant fric-

atives (Cooke, 2006), while the recognition of articulation
of place is similar for humans and machines (Cooke,
2006; Sroka and Braida, 2005 (although Meyer et al.
(2006) report a poorer performance for the ASR system)).
It is thus needless to try to improve the distinction, for
instance, between different plosive consonants. On the
other hand, voicing information (Cooke, 2006; Meyer
et al., 2006; Sroka and Braida, 2005) is recognised much
more poorly by machines than by human listeners. In order
to improve the ASR’s recognition performance, it is thus
useful, even necessary, to improve the ‘recognition’ of
voicing.

4. HSR: using knowledge from ASR

4.1. Computational modelling of human

speech recognition

Computational models of HSR deal only with particular
components of the speech recognition system, and many
parts of the speech recognition system remain unspecified.
This makes it difficult to assess whether the assumptions
underlying the computational model are actually consistent
with an effective complete recognition system. One impor-
tant contribution of the ASR community to the field of
HSR is to provide the techniques to implement more com-
plete computational models, for instance, models that can
recognise real speech instead of using hand-made segmen-
tal transcriptions or other artificial forms of input (Roy
and Pentland, 2002; Scharenborg, 2005b; Scharenborg
et al., 2003, 2005; Wade et al., 2002; Yu et al., 2005). For
instance, removing the need for hand-made transcriptions
will make it possible to test the computational model on
the same speech material as was used for the behavioural
studies, thus removing any dissimilarity between the input
data of the computational model and the human listener.
Additionally, HSR modelling has tended to avoid detailed
analysis of the problems of robust speech recognition given
real speech input (Scharenborg et al., 2005). ASR on the
other hand has to deal with those problems in order to
get a system recognising speech at a reasonable perfor-
mance level. Thus, if the speech-driven computational
model is able to correctly simulate the observed human
behaviour, this will strengthen the theory and the assump-
tions on which the model is based, since some of its under-
lying assumptions (e.g., the one referring to the input
representation) have been removed. It will, however, not
prove that the theory is correct; though, if a computational
implementation of a certain theory is not able to correctly
model the data, this will seriously diminish the likelihood
of the correctness of the theory on which the model is
based. ASR techniques can thus be used to build more
complete computational models of HSR. In doing so, the
simulation and explanation power of those computational
models will increase.

Computational models of lexical access operating on
real speech have been developed that have proven to be
able to simulate data found in behavioural studies. Wade
et al. (2002) successfully used the MINERVA2 memory
model (Hintzman, 1984, based on the principles underlying
the episodic theory (see Section 2.1)) to replicate effects of
word category frequency on the recognition of related and
unrelated words observed in human word recognition.
Scharenborg et al. (2003, 2005) built a computational
model on the basis of the (symbolic) theory underlying
the Shortlist model (Norris, 1994) using techniques from
ASR, which was able to simulate well-known phenomena
from three psycholinguistic studies on human word recog-
nition. Like computational models of lexical access, com-
putational models of word acquisition by infants have
benefited from the use of ASR techniques. Recently, com-
putational models have been developed that explore issues
of early language learning using methods of computer
vision and ASR (Roy and Pentland, 2002; Yu et al.,
2005). On the basis of raw (infant-directed) speech material
and video material (consisting of video images of single
objects), the computational models simulate parts of the
process of language learning in infants: speech segmenta-
tion, word discovery, and visual categorisation. The mod-
els proved to be reasonably successful in segmenting the
speech, finding the words, and making pairs of audio-stim-
uli and visual-stimuli; i.e., associating visual objects with
the correct input speech fragments.

Given that these computational models of lexical access
(Scharenborg, 2005b; Scharenborg et al., 2003, 2005; Wade
et al., 2002) and word acquisition (Roy and Pentland, 2002;
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Yu et al., 2005) operate on acoustic signals, it is to be
expected that their recognition performance is degraded
compared to computational models which process
human-generated representations of the speech signal
(which have recognition performances close to 100% cor-
rect). Scharenborg et al. (2005) used their computational
model of lexical access for the automatic recognition of
words produced in isolation. The SpeM model was able
to correctly recognise 72.1% of the words. However,
despite the degraded recognition results, SpeM was able
to correctly simulate human speech recognition data. It is
to be expected that this gap in recognition performance
between speech-driven computational models and compu-
tational models which process human-generated represen-
tation of the speech signal will diminish in the future,
since it is likely that the recognition performance of the
speech-driven computational models will improve, for
instance, by using more robust signal representations.
Speech-driven computational models are thus useful tools
that will lead to an improved understanding of the human
speech recognition process and better theories. Further-
more, since speech-driven computational models can be
tested using the same stimuli as human listeners and
perform at reasonable levels (with the expectation that
the performance will further improve), these computational
models can also be used to investigate the effect of changing
specific variables instead of having to carry out expensive
and time-consuming behavioural studies.

Automatic speech processing techniques have also been
used to investigate the properties underlying infant-direc-
ted and adult-directed speech (de Boer and Kuhl, 2003;
Kirchhoff and Schimmel, 2005). Infant-directed speech is
characterised by greater distances between the means of
vowel classes measured in formant space and greater vari-
ances than adult-directed speech (e.g., de Boer and Kuhl,
2003). The question that arises is why speech produced
by parents while talking to their infants differs so much
from their speech when talking to another adult. Using
ASR techniques, the hypothesis that infant-directed speech
is easier to learn has been investigated (de Boer and Kuhl,
2003) and proven to be correct: they showed that their
learning algorithm learned the positions of vowels in the
acoustic space more accurately on the basis of infant-direc-
ted speech than on the basis of adult-directed speech.
Besides their role in building computational models of
human speech recognition, ASR techniques thus also
play an important role in the analysis and answering of
developmental and cognitive questions (de Boer and Kuhl,
2003).

A third contribution of ASR techniques for the compu-
tational modelling of human speech recognition is in the
context of speech recognition in ‘noisy’ listening condi-
tions. In everyday listening conditions, the speech signal
that reaches our ears is hardly ever ‘clean’. Usually, the
speech signal is embedded in a mixture of other sound
sources, frequently alongside additional energy reflected
from reverberant surfaces. The listener (whether human
or machine) is thus faced with the task of separating out
the acoustic input into individual sources. This process is
known as auditory scene analysis (Bregman, 1990) and
has been investigated for several decades. In this research
field, there has been a steady growth in computational
models trying to model human recognition, for instance,
in listening conditions where a stronger signal masks a
weaker one within a critical band or with a low signal-to-
noise ratio (Cooke, 2006). For the modelling of human rec-
ognition behaviour in such degraded listening conditions,
ASR systems that make use of a missing data strategy
(e.g., Cooke et al., 2001) have been successfully applied.
Cooke and Ellis (2001) and Wang and Brown (2006) pro-
vide a comprehensive explanation of the field of auditory
scene analysis and present an overview of the existing
computational models of human recognition in noisy
environments.

4.2. Fine-phonetic detail and computational modelling

of human speech recognition

There is now considerable evidence from psycholinguis-
tic and phonetic research that sub-segmental (i.e., subtle,
fine-grained, acoustic–phonetic) and supra-segmental (i.e.,
prosodic) detail in the speech signal modulates human
speech recognition, and helps the listener segment a speech
signal into syllables and words (e.g., Davis et al., 2002;
Kemps et al., 2005; Salverda et al., 2003). It is this kind
of information that appears to help the human perceptual
system distinguish short words (like ham) from the longer
words in which they are embedded (like hamster). How-
ever, currently no computational models of HSR exist that
are able to model the contributions of this fine-phonetic
detail (Hawkins, 2003).

Scharenborg et al. (2006) present a preliminary study of
the effectiveness of using articulatory features (AFs) to
capture and use fine-grained acoustic–phonetic variation
during speech recognition in an existing computational
model of human word recognition. Many more studies into
the automatic recognition of AFs have been carried out
(e.g., King and Taylor, 2000; Kirchhoff, 1999; Livescu
et al., 2003; Wester, 2003; Wester et al., 2001). AFs describe
properties of speech production and can be used to repre-
sent the acoustic signal in a compact manner. AFs are
abstract classes which characterise the most essential
aspects of articulatory properties of speech sounds in a
quantised form leading to an intermediate representation
between the signal and the lexical units (Kirchhoff, 1999).
The AFs often used in AF-based ASR systems are based
on features proposed by Chomsky and Halle (1968), e.g.,
voice, nasality, roundedness, etc. In the field of ASR,
AFs are often put forward as a more flexible alternative
(Kirchhoff, 1999; Wester, 2003; Wester et al., 2001) to
modelling the variation in speech using the standard
‘beads-on-a-string’ paradigm (Ostendorf, 1999), in which
the acoustic signal is described in terms of (linear sequences
of) phones, and words as phone sequences.
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5. ASR: using knowledge from HSR

There are several areas in the field of human speech rec-
ognition that might benefit ASR research, such as experi-
mental and neuroimaging studies of human speech
perception. In this section, we will discuss approaches
and techniques based on knowledge derived from HSR
research that have been applied for the improvement of
ASR systems. Some approaches and techniques are well-
established, while others are new and the future will show
whether they will bring the desired improvements.

Some of the properties of human speech recognition
that are well accepted and have proven useful in ASR come
from the field of human auditory recognition. The acoustic
features extracted from the speech signal by the acoustic
pre-processor usually take into account the fact that in
human hearing the spectral resolution is better at low fre-
quencies than at high ones. Dominant ASR feature extrac-
tion techniques, then, are based on frequency warped
short-term spectra of speech where the spectral resolution
is better at low frequencies than at high ones (e.g., Mel Fre-
quency Cepstral Coefficients (Davis and Mermelstein,
1980), Perceptual Linear Predictive (Hermansky, 1998,
2001)).

Although these acoustic features have proven to be
rather successful, the difference between human and
machine performance suggests that there is still informa-
tion in the speech signal not being extracted or at least
not being used for speech recognition by ASR systems.
For instance, phase spectrum information is discarded in
the extraction of the acoustic features; while of course
human listeners do have this information available. In a
series of experiments over a range of signal to noise ratios
Alsteris and Paliwal (2006) have shown that when human
listeners are presented with re-constructed speech that does
not contain phase information, the intelligibility is far
worse than when the original signal is presented (thus
including the phase information). This suggests that there
might be important – maybe even essential – information
in the phase spectrum for the recognition of speech. Thus,
an acoustic feature set that also represents information
from the phase spectrum may result in improved ASR per-
formance. An additional source of information on missing
or unused information in acoustic features comes from a
different, but related, research area: studies of simulations
of cochlear implant speech processing (e.g., Shannon
et al., 1995; Qin and Oxenham, 2003; and references
therein) and studies of the intelligibility of different types
of speech for hearing-impaired and normal-hearing listen-
ers under a variety of listening conditions (Krause and Bra-
ida, 2002, and references therein) can be used to find the
acoustic information in the speech signal that is important
for human speech recognition but which is currently not
extracted from the speech signal or not being used during
the automatic recognition of speech.

As pointed out above, human listeners greatly outper-
form machines in all speech recognition tasks. Several
researchers (Cooke et al., 2001; Hermansky, 1998; Lipp-
mann, 1997) have, therefore, argued that the search for
ASR systems that perform robustly in adverse conditions
have much to gain by examining the basis for speech recog-
nition in listeners. Human listeners are capable of dealing
with missing (because of the presence of noise, of errors
or bandlimiting in the transmission channel) speech infor-
mation. ASR systems have been built that acknowledge
the fact that some parts of the speech signal are masked
by noise. ‘Noisy’ speech fragments are not simply thrown
away; instead, information in noisy regions is used by these
systems to define an upper bound on the energy present in
any of the constituent sources at the time–frequency loca-
tion. For instance, if one was hypothesising a /s/ but the
energy in a high frequency but unreliable region was too
low, that hypothesis would be (probabilistically) weighted
against (Barker et al., 2005; Cooke, 2006; Cooke et al.,
1994, 2001; Raj et al., 2004; Seltzer et al., 2004; Srinivasan
and Wang, 2005).

Although HMMs have proven to be powerful tools for
the automatic recognition of speech, the asymptoting
recognition accuracies and the fact that HMMs have
short-comings (e.g., the first-order Markov assumption,
that the probability of a certain observation at time t only
depends on the observation at time t � 1, is incorrect for
natural speech) brought suggestions for a new research
approach that moves (partly) away from HMM-based
approaches in the direction of template-based approaches
(Axelrod and Mason, 2004; De Wachter et al., 2003; Maier
and Moore, 2005; Strik, 2003, 2006; Wade et al., 2002),
which is very similar to the episodic theory of human
speech recognition (Goldinger, 1998). Template-based
speech recognition relies on the storage of multiple tem-
plates. During speech recognition, the incoming speech
signal is compared with the stored templates, and the
template with the smallest distance to the input serves as
the recognition output. Several methods have been used
for matching the incoming speech with the stored tem-
plates, such as the memory model MINERVA2 (Maier
and Moore, 2005; Wade et al., 2002) and techniques such
as dynamic time-warping (Axelrod and Mason, 2004; De
Wachter et al., 2003). On small tasks, such as digit recog-
nition, these methods proved successful. The future will
show whether these approaches can be extended such
that they will be useful for large vocabulary recognition
tasks.

Another approach for dealing with the fact that more
training data will not provide higher levels of recognition
performance is by using ‘better’ training data (Kirchhoff
and Schimmel, 2005). Studies into child language acquisi-
tion have shown that so-called ‘motherese’ or ‘parentese’
speech (i.e., speech produced by an adult when talking to
an infant or child) helps the infant in language acquisition
(de Boer and Kuhl, 2003). Studies have shown that the
greater distance between the means of the vowel classes
in infant-directed speech might facilitate phonetic category
learning. However, when infant-directed speech was used
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to train an ASR system, the performance on adult-directed
speech was lower than when the system was trained on
adult-directed speech (Kirchhoff and Schimmel, 2005). In
a way, this was to be expected, because of the problem with
training-test mismatch in all tasks involving probabilistic
pattern recognition. This can be taken as a hint that
HSR is not just probabilistic pattern recognition, and that
we must search for different solutions of the pervasive
problem that the input signals that we must recognise
always differ to some extent from everything perceived in
the past. One possible approach is the memory-prediction
theory (Hawkins, 2004).

In addition to the training data for the acoustic models,
a second important data source for the training of ASR
systems is the data to train the language model. As pointed
out above, a huge difference between human and machine
speech recognition is that humans are able to use contex-
tual (higher-order) information to ‘guide’ the recognition
process, while ASR systems use paradigms based on statis-
tics without higher-order information. This contextual
information for human listeners is not just restricted to
word frequency and/or the probability of co-occurrence
of the current and the previous word (e.g., Marslen-
Wilson, 1987). To improve the language modelling of
ASR systems, contextual information should be incorpo-
rated (Carpenter, 1999; Scharenborg, 2005a; ten Bosch,
2001). Contextual information could, for instance, be inte-
grated into ASR systems using priming-like processes, in
which the recognition of a word boosts the a priori proba-
bility of another word, as is found for humans.

Human listeners are able to recognise a word before its
acoustic realisation is complete. Contemporary ASR sys-
tems, however, compute the likelihood of a number of
hypothesised word sequences, and identify the words that
were recognised on the basis of a trace back of the hypoth-
esis with the highest eventual score, in order to maximise
efficiency and performance. The fact that ASR systems
are not able to recognise words before their acoustic offset
(or actually, do not ‘want’ to because of performance
issues) prolongs the response time in a dialogue system.
In order to build a dialogue system that is capable of
responding in a ‘natural’ way (thus within the time a
human being would make a response), it is necessary that
the automatic recognition process is speeded up. A sugges-
tion is to build an ASR system that is able to recognise a
word before its acoustic offset (Carpenter, 1999; Dusan
and Rabiner, 2005; Scharenborg et al., 2007). Scharenborg
et al. (2007), actually implemented such a system on the
basis of a computational model of human speech recogni-
tion. The first results are promising. However, it is also
possible that the absence of between-turn latencies in
human–human dialogues is due to the capability of predict-
ing what the interlocutor is going to say and when (s)he will
finish speaking (Tanaka, 2000). If this turns out to be the
case, it would be ill-advised to try and tackle the issue on
the level of the ASR module, rather than on the dialogue
management level, in human–system interaction.
6. Discussion and concluding remarks

Research has shown that the difference between human
and machine recognition performance is an undeniable fact
of present day life: human listeners outperform ASR sys-
tems by one or more orders of magnitude on various recog-
nition tasks. Human listeners are far better at dealing with
accents, noisy environments, differences in speaking style,
speaking rate, etc. In short, they are much more flexible
than ASR systems (Pols, 1999). ASR systems are generally
trained for a specific task and listening environment; thus,
for one accent (usually the standard accent/pronunciation),
telephone speech, one speaking rate, one speaking style, a
certain lexicon, in a noisy or noiseless environment. And
they tend to perform rather well on these tasks. However,
once, for instance, the speech style or type or listening envi-
ronment changes (e.g., different accent or speaking rate,
different kind of background noise), the performance of
the ASR system will typically deteriorate dramatically.
To accommodate for these changes, an ASR system usually
needs to be retrained. Despite the fact that there are mech-
anisms to adapt ASR systems dynamically (see for an over-
view, Moore and Cunningham, 2005), human listeners
adapt remarkably faster and better to any change than
current ASR systems. It is for this superior flexibility and
recognition performance that researchers from the field of
ASR are looking at the research field on the other side of
the gap: they are looking for knowledge about human
speech recognition that they can use to improve machine
recognition performance. Likewise, researchers on human
speech recognition are looking at the research field on the
other side of the gap in order to find the tools and tech-
niques they can use to analyse their data, test their hypoth-
eses, and build improved and more complete end-to-end
computational models of human speech recognition.

However, integrating knowledge from human speech
recognition into ASR systems is not a trivial enterprise.
First of all, there is still little known about the details of
human speech recognition. Secondly, of the details of
human speech recognition that are understood, it is unclear
which properties are relevant for the improvement of ASR
systems. Using the wrong knowledge might actually be
counterproductive. After deciding which properties of
human speech recognition could be beneficial, a new prob-
lem arises: how should this knowledge be integrated into an
ASR system? It is far from straightforward to implement
properties or knowledge about (partial) theories of human
speech recognition into an ASR system. This explains the
limited progress that has been made in integrating knowl-
edge from HSR into ASR systems. From the side of
HSR, first attempts to integrate ASR techniques with com-
putational models have proven to be successful, but the
recognition performance of the computational models still
falls short of human recognition performance. For these
computational models to become really useful for the
simulation and prediction of human behaviour, the
recognition performance has to go up. This means that
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computational models that operate on speech should be
including more advanced ASR techniques than they have
been using so far.

Communication between researchers from the field of
ASR, generally engineers, and researchers from the field
of HSR, generally psycholinguists, is not easy. Although
they use the same concepts, they use a different vocabulary:
ASR uses terminology such as dynamic programming and
pre-processing, whereas HSR is described in terms of lexical
competition and auditory recognition. Furthermore, identi-
cal words sometimes have (slightly) different meanings in
the two fields. These difficulties not only exist between
researchers from ASR and HSR, they exist everywhere
where people from different research backgrounds start
working together (see Voskuhl (2004) for a case-study
between ASR engineers and auditory modelling research-
ers). Nevertheless, these difficulties should not stop us. If
both fields want to continue to make progress, a multi-dis-
ciplinary dialogue is mandatory; there is still a lot to learn
from the research field on the ‘other side of the gap’. For
ASR systems to be able to make use of knowledge on
human speech recognition, ASR researchers need a better
understanding of the theories of human speech recognition;
this can only be achieved by communicating with research-
ers from the field of HSR. Furthermore, ASR researchers
should explain to HSR researchers what they would like
to know about human speech recognition in order to make
their ASR systems more robust to the variability in speaker,
speaking style, environment, etc. Likewise, a multi-disci-
plinary dialogue is of great importance to advance the cre-
ation of computational models that move beyond the
implementation of partial theories of human speech recog-
nition. HSR researchers should explain to ASR researchers
which parts in their (partial) theories they have trouble
implementing or dealing with. In short, both research fields
will benefit tremendously if researchers of human and auto-
matic speech recognition work together at defining the
research questions (in both fields). More experimental work
with human listeners to understand how humans adapt to
talker and environmental variability is definitely needed.

As is reviewed in Section 3, already a fair number of
human–machine performance comparisons have been car-
ried out. Nevertheless, there is still much to be learned from
comparing human and machine performance; for instance,
to identify which parts of human speech recognition
knowledge can be used for the improvement of ASR sys-
tem, and where improvement for the ASR system is still
to be gained. Research into the differences in availability
of acoustic cues has already shown that not all phonemes
are equally difficult to recognise for machines. More
detailed analyses showed that, for instance, voicing infor-
mation is difficult for machines to ‘recognise’, while plosives

are relatively easy. This suggests that some important
acoustic cues, used by human listeners, are not present in
the acoustic features created by the front-end of the ASR
system. Further research is needed to identify which cues
are used by human listeners and are not present in the
acoustic features. Subsequently, the acoustic features
should be adapted such that they do contain those impor-
tant acoustic cues.

How do infants learn speech? How do they learn to seg-
ment the speech? How do they learn what these segments
should be? How do they learn new words? And how do they
learn how to distinguish between non-speech background
sounds and the actual speech? These are issues that are so
easy for a child to resolve, but as yet there is no complete
understanding (and thus no computational model) of this
process. Since infants acquire language so incredibly
quickly and well, it is important to keep exploring the
potential benefit of using knowledge about language acqui-
sition for the improvement of ASR systems and computa-
tional models of HSR (current computational models of
human speech recognition are like ASR systems in that they
also use a predefined lexicon with predefined sub-word units
to represent the lexical items). How then can this knowledge
about child language acquisition be used to improve ASR
systems and computational models of HSR? It is well
possible that once it is understood how infants acquire lan-
guage this will lead to the need of totally new architectures
for the automatic recognition of speech (even beyond the
probabilistic pattern recognition techniques currently in
use). For instance, when a child acquires language, the units
into which the acoustic signal will be segmented are not
pre-specified as is currently the case for ASR systems and
computational models of HSR. This necessitates the
development of a new architecture for ASR systems and
computational models that makes use of emergent units of
recognition – not necessarily in terms of the linguistically
based recognition units used in current ASR systems and
computational models. In order to provide answers to the
above questions and issues, it is necessary that researchers
from both fields start to collaborate (more); cognitively
plausible computational models of human speech recogni-
tion such as CELL (Roy and Pentland, 2002) and SpeM
(Scharenborg et al., 2005) provide an excellent and useful
starting point. We have just started to get to know one
another, now it is time to make things work. There is a
bright future for research in-between the fields of human
and automatic speech recognition.
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