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Abstract

Recent publications have examined the topic of calibration of
confidence scores in the field of (binary-hypothesis) speaker de-
tection. We extend this topic to the case of multiple-hypothesis
language recognition. We analyze the structure of multiple-
hypothesis recognition problems to show that any such problem
subsumes a multitude of derived sub-problems and that there-
fore the calibration of all of these problems are interrelated. We
propose a simple global calibration metric that can be generally
applied to a multiple-hypothesis problem and then demonstrate
experimentally on some NIST-LRE-’05 data how this relates to
the calibration of some of the derived binary-hypotheses sub-
problems.

1. Introduction: What is calibration?

There has been much recent interest in the topic of calibration
of speaker detection confidence measures [1, 2, 8, 9, 10, 6].
This paper extends this topic to the case of language recogni-
tion. Calibration in language recognition is qualitatively differ-
ent, because in language recognition there are multiple instead
of just two hypotheses.

The issue of calibration of language recognition scores has
been addressed in the NIST Language Recognition Evalua-
tions (LRE’s) [5], via the pooling (over all target languages) of
one-against-the-rest detection scores. The calibration of these
pooled scores were then analyzed with the same tools (DET-
curves, EER and ‘min CDET’) that are familiar in the NIST
Speaker Recognition Evaluations (SREs) [6]. However in dis-
cussions and presentations at the December 2005 LRE Work-
shop, it became clear that there are some problems associated
with the analysis of pooled scores. Briefly, all of these analy-
sis methods assume the use of a single decision threshold, but
there cannot be a single threshold that is valid for the pooled
scores. This paper is intended to be a constructive response to
this analysis problem. In summary, we propose two alternate
calibration analyses. One is simply to keep scores for differ-
ent targets separate and to analyze them separately. The other
involves a global calibration transformation of the relative like-
lihoods of all the languages.

We introduce the topic by giving an intuitive definition of
calibration. The purpose of speech processing technology is
to extract relevant information from speech. If the technology
is good, then this information should enable the user to derive
benefit from employing it. In general, the ‘better’ the quality of
this information, the more benefit can be derived.

There are many different ways to measure quality of in-
formation. Indirect measurements judge the benefit derived

from using information in specific applications. The most well-
known indirect measure of information is to employ the infor-
mation to make recognition decisions (such as who is speaking,
what is being said, in what language) and then to estimate error-
rates.

It is also possible to directly measure the empirical amount
of information, in bits of Shannon entropy, that a given speech
technology delivers to the user in a set of supervised recognition
trials. In fact, as we have pointed out in previous work, there is
a very direct relationship between error-rates and information.
The information delivered to the user can be expressed as a total
error-rate, obtained when integrating the average error-rate of a
recognizer over a wide range of operating points [2].

In this paper, we shall perform an analysis of the informa-
tion flow through a language recognition system. Most impor-
tantly, we want to be able to measure the amount of information
that is delivered to the user by the recognizer. This measure-
ment is not so difficult — all you need is a supervised NIST
Evaluation database and equation 17.

But having achieved this, we want to further our analysis
to help us to improve the information delivery. We want to de-
compose our information measure into two components. These
components address two important issues:

Content: The information must be there1. The result delivered
to the user must actually contain the information that we
are interested in. In [2] we used the term discrimination
for a (direct) measure of the information contents. Other
authors use the term refinement [3, 8, 4]. Well-known
indirect measures of information contents include error-
rate measures such as equal-error-rate (EER) and cost-
based measures such as ‘min CDET’ as used in the NIST
Speaker Recognition Evaluations [6].

Form: The information must be in a standard form that is eas-
ily interpretable by the user. The user should be able to
directly employ the information in standard ways, with-
out needing further knowledge specific to the properties
of the recognizer. Even if the information is present, if
the user misunderstands the information, the information
cannot be employed to the user’s benefit. This quality of
form of the result delivered to the user is termed calibra-
tion [3, 2, 8, 4].

In summary, the decomposition we want to perform is: infor-
mation delivered to user = information present − information
lost via misinterpretation.

1If it is not there in the first place, no further interpretation of the
result can extract more information. This can be formally expressed via
the data processing inequality.
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As noted above, the left-hand side is easily computed.
Given this, we need only compute one of the two terms on the
right-hand side. The second term on the right-hand side is what
we call calibration loss. If a recognizer is badly calibrated the
loss is high. If it is well-calibrated the loss is close to zero.

As demonstrated in [2], this decomposition can be per-
formed in a well-defined way for the case of a binary-hypothesis
recognizer (such as a speaker detector). This decomposition
of [2] has been recently adopted as a confidence score analysis
tool in the NIST Speaker Recognition Evaluations [6].

But in the case of a language recognizer, where decisions
must be made between multiple hypotheses, it becomes much
more difficult to define exactly what we mean by the informa-
tion being ‘present’ in a way that allows practical measurement.
This is the main question addressed in this paper. Much of the
difficulty lies in the considerable complexity that arises when
generalizing from two to multiple recognition hypotheses. Be-
fore specifically addressing the question of calibration, we need
to analyze in the next few sections the structure of multiple-
hypothesis recognition problems.

2. Language recognition decision theory

We analyze how to make language recognition decisions, based
on the assumption that decisions are made to minimize the ex-
pected cost of decisions. Such decisions are known as Bayes
decisions. In order to simplify our exposition, we assume that
all types of errors have a cost of one and all correct decisions
have costs of zero. In this case, minimum-expected-cost de-
cisions are also minimum-probability-of-error decisions, which
are also equivalent to maximum-a-posteriori (MAP) decisions.

We work within the following framework that is intended
to subsume various fl avours of recognition problems, which in-
clude open-set versus closed-set and also detection versus iden-
tification.

2.1. What is given

The input to a language recognition trial is:

• A speech segment x.

• A set of N mutually exclusive and exhaustive hypothe-
ses, HN = {H1, H2, . . . , HN}, about the language of
segment x.

• A prior probability distribution ΠN =
(π1, π2, . . . , πN ), which quantifies the uncertainty
about which hypothesis is true of the language of x.

Note well, that we take the prior as given. The information con-
veyed by the prior cannot be extracted by the recognizer from
the speech x, nor can it be learned from databases of develop-
ment data. The prior cannot be supplied by the technology —
it is dependent on the application where the recognizer is to be
employed.

If it is a closed-set problem, then each hypothesis will cor-
respond to a single explicitly specified language. If it is an
open-set problem, then N − 1 of the hypotheses each corre-
spond to a single specified language, but the N th hypothesis
allows for the possibility that x can be in any other (unspeci-
fied) language. This open/closed distinction is very important
in the design of some of the sub-stages of a language recog-
nition system. But in what follows we shall work only with
designs of recognizer where the final decision stages are inde-
pendent of this distinction. In other words, in what follows, we

shall concentrate on how to make decisions in the face of uncer-
tainty about N hypotheses and we are not interested anymore in
exactly what these hypotheses are.

2.2. What is asked

Asking which of the N hypotheses in HN is true is just one
way of employing a language recognizer. In order to explore
other uses of a recognizer, we have to consider compound hy-
potheses which can be derived from the original hypotheses via
disjunction and negation. For example we can form the two new
hypotheses:

H1∨2 = H1 or H2 (1)

¬H1∨2 = H3 or H4 or · · · or HN (2)

where ∨ denotes logical or and ¬ denotes logical not. Now
we can form recognition questions:

A recognition question is defined by a derived set,
HM|N , of M hypotheses which are disjunctions
of the elements of the original set HN ; and where
the members of HM|N are also exhaustive and
mutually exclusive2. The question is now simply:
“ Which one of the M hypotheses is true?” .

According to this definition3, 2 ≤ M ≤ N . Further discussion
and examples follow below.

2.3. Problem definition

When we combine what is given and what is asked, this defines
a recognition problem. In what follows, we shall work with
a given fixed HN , but we will allow the prior and the set of
derived hypotheses to vary.

We therefore define4 a recognition problem via
the pair (HM|N , ΠN ).

Since one or more components of the prior can be zero, this
description allows us to express all of the recognition problems
defined on all of the non-empty subsets of HN .

2.3.1. Taxonomy

The form of HM|N and ΠN allows us to define a taxonomy of
problem-types:

• When HM|N = {Ht,¬Ht}, we call it a detection ques-
tion, where Ht ∈ HN is the designated target hypoth-
esis. In this case we are detecting the target language
against all the other languages allowed by HN . Both the
open and closed-set tasks in the NIST-LRE are detection
tasks.

• When all but two of the components of ΠN are zero,
so that say πi = 1 − πj , we effectively get HM|N =
{Hi, Hj} which is a pair-wise binary classification
problem.

• When, more generally, M = 2, and when both of the
derived hypotheses can be disjunctions of more than one
of the original hypotheses, then we call it a binary classi-
fication problem. Example: HM|N = {H1∨2,¬H1∨2}.

2The disjunction (or-ing together) of all the hypotheses is always
true, while the conjunction (and) of any two different hypotheses is al-
ways false.

3The case M = 1 is vacuous, HM|N = {true}.
4A richer class of problem can be defined if costs other than one are

allowed for different kinds of errors. But for simplicity here, we weight
all errors equally.
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• In the special case where M = N , and therefore
HM|N = HN , then we call it an identification problem.

• More generally, when 2 < M ≤ N , then we have a
multi-class classification problem. Example: HM|N =
{H1∨2, H3∨4∨5, H6∨7∨...∨N}.

Note that in the case of N = 2, the whole taxonomy degener-
ates, so that there is only one type of problem, namely a binary
decision between two simple hypotheses.

2.4. Bayes decisions

All of the different kinds of language recognition problems that
can be expressed in this framework, can in theory be optimally
addressed via Bayes decisions. We shall assume that in a first
step, the recognizer maps the speech segment x to a score-
vector, ~s, of low dimensionality. Then we ask, given ~s (and
ignoring the original speech x), what is the optimal way to make
decisions?

We need to compute the posterior probability of each of
the M hypotheses and make a maximum-a-posteriori (MAP)
decision. To do this, we assume the language recognizer has
the means to compute the vector of N relative log-likelihoods:

~λ =

����
�

λ1

λ2

...
λN

� ���
� =

����
�

log p(~s|H1)
log p(~s|H2)

...
log p(~s|HN )

� ���
� + β

����
�
1
1
...
1

� ���
� (3)

where the likelihoods can be scaled by an arbitrary common
positive scale factor eβ . Combining likelihoods and the given
prior via Bayes’ rule, we get the posterior probabilities for the
original hypotheses:

Pi = P (Hi|~s) =
πie

λi

N�
j=1

πje
λj

, i = 1, 2, . . . , N (4)

where λi is the ith component of ~λ. Next, we need to compute
the posteriors for the derived hypotheses. We simply need to
sum probabilities when there are disjunctions and to comple-
ment when there are negations. For example:

P1∨2 = P (H1∨2|~s) = P1 + P2 (5)

1 − P1∨2 = P (¬H1∨2|~s) =

N�
i=3

Pi (6)

In summary, there are four steps: (i) compute the likelihoods;
(ii) compute the posteriors for all the elements of HN ; (iii) com-
pute the derived posteriors for all the elements of HM ; (iv)
choose the maximum derived posterior and output the corre-
sponding hypothesis. Some notes are in order:

• The last three steps are trivial. The whole difficulty lies
in computing the scores ~s and the relative likelihoods ~λ.

• These likelihoods are an application-independent repre-
sentation of the language information extracted by the
speech technology from the speech input. Once we have
these likelihoods, we can address any of the above class
of recognition problems.

• We need only relative values for the likelihoods. This
means that the information extracted from the speech
by this first recognizer stage is (N − 1)-dimensional.

This is most easily appreciated if we choose β such that�
λi = 0. Now ~λ lives in R

N , but this constraint con-
fines ~λ to an (N − 1)-dimensional subspace5 of R

N ,
which we denote LN−1. This is just one form in which
this information can be represented, there are very many
different equivalent (N −1)-dimensional ways of repre-
senting this information.

We next give detail of how to make MAP decisions in three
special cases of interest.

2.4.1. Pair-wise classification

Let the hypothesis prior have zero components for all but two of
the N hypotheses, for example, ΠN = (0, 0, p, 0, 1 − p, 0, 0).
In this case, we can form the log-likelihood-ratio λ3

5 = λ3 −λ5

and the threshold θ3
5 = − log(p) + log(1 − p). Then the MAP

decision rule is:

λ3
5 ≥ θ3

5 7→ recognize H3

λ3
5 ≤ θ3

5 7→ recognize H5
(7)

2.4.2. Identification

Here HM|N = HN and all πi are non-zero. For any t, i =
1, 2, . . . , N , we can form the log-likelihood-ratio λt

i = λt −λi

and the threshold θt
i = − log(πt) + log(πi). This then gives

the MAP decision rule:

∀i 6= t : λt
i ≥ θt

i 7→ recognize Ht (8)

That is, we make the decision to recognize Ht, if and only if
all of the N − 1 log-likelihood-ratios, λt

i , which compare Ht

against the other hypotheses exceed their corresponding thresh-
olds. Notice that the identification rule is expressed in terms of
the same pair-wise log-likelihood-ratios as used above in pair-
wise classifications.

2.4.3. Detection

For a designated target hypotheses Ht, we have HM|N =
{Ht,¬Ht} and all πi are non-zero. We form the detection log-
likelihood-ratio:

λt
¬t(~λ) = − log

�
i 6=t

πi

1 − πt

e−λt
i (9)

and the threshold θt
¬t = − log(πt) + log(1 − πt), which give

the decision rule:

λt
¬t(~λ) ≥ θt

¬t 7→ recognize Ht

λt
¬t(~λ) ≤ θt

¬t 7→ recognize ¬Ht

(10)

Some observations are in order. First, notice that we can still ex-
press the detection rule in terms of the pair-wise log-likelihood-
ratios. Next, notice that unlike in the above cases, we cannot
separate the information provided by the technology (~λ) and the
information provided by the application (ΠN ) neatly on both
sides of the comparisons. To form λt

¬t, the log-likelihood-ratio
that compares the target class against the rest, we need to know
at least the relative priors between the non-target hypotheses.

Finally, although the detection rule appears very different
from the identification rule, they are actually closely related. It
can be shown that if this detection rule is applied, then Ht is
detected only if :

∀i 6= t : λt
i ≥ θt

i (11)

Exceeding all thresholds is both necessary and sufficient for
identifying Ht, but exceeding these same thresholds is merely
necessary for detecting Ht.

5This subspace, LN−1, is the hyperplane through the origin which
is normal to the vector [1, 1, . . . , 1].

2006 IEEE Odyssey – The Speaker and Language Recognition Workshop 3
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3. Measuring quality of ~λ

Suppose we have a language recognition sub-system, S(·;HN )
which maps every speech segment x to a log-likelihood-vector:
~λ = S(x;HN ), where ~λ ∈ LN−1. This sub-system S(·;HN )
is application independent, because it can be used for any of
the different types of recognition problem defined by a pair
(HM|N , ΠN ).

The question that we address in this paper is how do we
measure the quality of S(·;HN )? Moreover, can we decom-
pose this measurement into separate components that judge the
content and form of the output ~λ? In previous work [2], we have
addressed this problem in depth for the case N = 2. Specifi-
cally it was shown that:

• The total information can be measured via a logarithmic
proper scoring rule.

• The content/form decomposition6 can be achieved via
the pair-adjacent-violators (PAV) algorithm.

Here we generalize this work to the case N > 2. First, we pro-
pose that it is still appropriate to use a more general logarithmic
scoring rule for measuring the total information. As is shown in
the next sub-section, this presents no difficulty. Thereafter we
discuss why it is unfortunately not so straight-forward to form
a content/form decomposition when N > 2.

3.1. Proper scoring rules

Given a probability distribution ~P = (P1, P2, . . . , PN ) for the
elements of HN , a proper scoring rule R(~P , Ht), assigns a
scalar cost to ~P , depending on the hypothesis Ht which is really
true. A proper scoring rule R satisfies:

N�

i=1

Qi R( ~Q, h) ≤

N�

i=1

Qi R(~P , h) (12)

where ~P and ~Q = (Q1, Q2, . . . , QN ) are any probability dis-
tributions for HN . That is, the expectation of the proper scoring
rule with respect to ~Q is minimized if ~P = ~Q. If the inequality
is strict, the expected cost is minimized if and only if ~P = ~Q
and then R is a strictly proper scoring rule.

We mention two well-known strictly proper scoring rules:

3.1.1. Quadratic rule

RB(~P , Ht) = 1 − 2Pt +

N�

i=1

P 2
i (13)

This is a generalization of the Brier rule. See [12].

3.1.2. Logarithmic rule

RL(~P , Ht) = − log2 Pt (14)

Note that both RB and RL strictly satisfy condition (12), and
that both give non-negative values. But there are important
qualitative differences between these rules:

• The range of RB is upper-bounded at 2, while that of RL

is unbounded above. The latter is an essential property
to have when evaluating the quality of probability dis-
tributions that are intended to be generally applied. A
probability distribution that asserts Pt = 0 when Ht is
really true, can lead to arbitrarily expensive decisions.
This fact should be refl ected by the scoring rule.

6That is, a refinement/calibration or discrimination/calibration de-
composition.

• The value of RL(~P , Ht) is dependent only on the rele-
vant component Pt and not on the relative values of the
other components of ~P . Logarithmic scoring rules are
unique in this regard [11].

The logarithmic scoring rule has the following appealing inter-
pretation when employed to evaluate the quality of an N -ary
probability distribution ~P . Any probability for a hypothesis in
HN can be decomposed into a product of two or more proba-
bilities involving disjunctions of hypotheses. The logarithmic
scoring rule applied to this product is then the sum of logarith-
mic rules applied to each of the factors. Therefore, when we
evaluate the probability which was given for the true hypothe-
ses, we are also at the same time similarly evaluating the prob-
abilities for all the derived hypotheses which are also true. For
example, when N = 3, we can write:

P (H1) = P (H1|¬H2)P (¬H2)

= P (H1|¬H3)P (¬H3)
(15)

Then, if H1 is true, then we apply the logarithmic scoring rule
to P (H1):

− log2 P (H1) = − log2 P (H1|¬H2) − log2 P (¬H2)

= − log2 P (H1|¬H3) − log2 P (¬H3)
(16)

which hows us that in effect we are also applying the loga-
rithmic rule to the two pair-wise classifications {H1, H2} and
{H1, H3}. The rule that evaluates P (H1) can assign low cost
only if the probability distributions involving the implied sub-
problems also have low cost.

3.2. Evaluation via Cllr

Proper scoring rules evaluate probability distributions. But we
want to evaluate the relative likelihoods ~λ. The posterior and
the likelihoods are related via Bayes’ rule (equation 4). When
the prior is given this establishes a bijection between these two
representations. The problem is that the evaluation by proper
scoring rule is dependent on what prior we use. For reasons
similar to those in [2], we choose for our purposes a fl at prior,
namely π1 = π2 = · · · = πN = 1

N
. The evaluation criterium

is now assembled thus:
We are given a set of T supervised evaluation trials, indexed

by t = 1, 2, . . . , T . For each trial t, we have the relative log-
likelihoods ~λ(t) = S(xt;HN ) as calculated by recognizer for
speech segment xt. We also have the true hypothesis Ht for
every trial, from which we obtain I(Hi), denoting the subset of
indices t for which Ht = Hi. Then:

Cllr =
1

N

N�

i=1

1

‖I(Hi)‖

�

t∈I(Hi)

− log2 Pi(t)

=
1

N

N�

i=1

1

‖I(Hi)‖

�

t∈I(Hi)

log2

N�

j=1

e−λi
j(t)

(17)

where λi
j(t) is the difference between components i and j of

~λ(t), Pi(t) is the posterior (equation 4), derived from ~λ(t) and
the fl at prior, and ‖ · ‖ denotes set cardinality.

Cllr forms an average over trials of the logarithmic scoring
rule, where trials have been weighted to synthetically change
the prior to be fl at. Cllr is an empirical measure of information
expressed in terms of bits of Shannon entropy. Cllr has the
following properties:

4 2006 IEEE Odyssey – The Speaker and Language Recognition Workshop
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• 0 ≤ Cllr ≤ ∞

• Cllr represents information loss. A perfect recognizer
(that makes no errors) will have zero loss, while all oth-
ers have positive loss.

• There is a reference level at Cllr = log2 N . This cor-
responds to a useless recognizer that outputs λi

j(t) = 0,
for every i and j. This recognizer gives us no informa-
tion about the language, but it is still well-calibrated be-
cause it acknowledges this lack of information by its zero
outputs.

• A badly calibrated recognizer can have Cllr > log2 N .
This is an indication that on average, it would be better
to make decisions based only on the prior and to not use
the recognizer.

• A value of Cllr < log2 N means the recognizer is useful
and ~λ(t) can be expected to give Bayes decisions that are
better on average than those based on the prior alone.

4. Judging calibration
Cllr gives a measure of the total quality of the information de-
livered to the user (after the calibration loss). How do we now
isolate the calibration loss?

In the case of N = 2, there is a well-defined way of do-
ing this [2]. We ask by how much the quality of the information
can be improved by re-calibrating ~λ (which is one-dimensional)
via an information-preserving calibration transformation. An
information-preserving transformation in this case is simply an
invertible one. For a well-behaved continuous transformation
from R to R to be invertible, it has to be either strictly monoton-
ically rising or falling. To preserve the sense of ~λ, we choose the
former. This monotonicity constraint can now be applied to the
non-parametric (PAV) optimization of a calibration mapping,
where the evaluator7 uses knowledge of the true hypothesis for
each trial. After the optimum calibration transformation is ap-
plied, Cllr can be computed again. This optimized value is de-
noted as min Cllr . The calibration loss is then Cllr −min Cllr .

In the case N > 2 we would like to use the same strat-
egy. We can again consider the optimization of an information-
preserving calibration transformation. This transformation
must certainly be invertible. However, we are now consider-
ing a multi-variate transformation from LN−1 to LN−1. In this
case, things like monotonicity and ‘sense’ are not so easy to de-
fine, let alone to enforce such constraints on a non-parametric
optimization procedure. Also keep in mind that the information
in ~λ is an interrelated mixture of information streams about the
relative likelihoods of all of the possible hypotheses that can be
derived from HN . One could consider restricting the calibra-
tion transformation such that these streams remain independent
in the calibration transformation. But again, these streams are
interrelated and cannot be kept independent easily. Below we
derive and employ one such class of transformation which at
least keeps the information that discriminates between pairs of
simple hypotheses (elements of HN ) independent.

4.1. Direction-preserving calibration

It is possible to find an invertible calibration transformation
TL : LN−1 7→ LN−1, such that ~λ′ = TL(~λ) has the following
properties: Let λ′

i and λ′
j be any two components of ~λ′; and let

λi and λj be the corresponding components of ~λ, then:

7The evaluator is the party measuring the calibration.

• λ′
i − λ′

j is dependent (via TL) only on λi − λj and not

on any of the other components of ~λ,

• the transformation from λi − λj to λ′
i − λ′

j is strictly
monotonic rising.

The difficulty here is that there are (N2 −N)/2 non-trivial sets
of requirements, but LN−1 is only (N − 1)-dimensional. The
most general form of this transformation is:

TL(~λ) = α~λ + ~γ (18)

where α is a positive scalar and ~γ ∈ LN−1. This transformation
allows only scaling and translation. These operations8 preserve
the direction of ~λ. The calibration transformation has a total of
N independent scalar parameters.

This solution is very different from the monotonicity con-
straint in the case N = 2 and it lacks many of the pleasing
properties of the non-parametric PAV solution [2]. In order to
choose parameters for this transformation, we propose optimiz-
ing the objective Cllr of equation 17. This optimization can be
performed with logistic regression, such as described in [7].

This, therefore is a first answer to finding a measure of cal-
ibration:

1. Calculate Cllr on the original data, ~λ(t). This repre-
sents9 the total quality of the information delivered to
the user.

2. Optimize the parameters α and ~γ of TL over the evalua-
tion data, then re-calculate Cllr on the transformed data
TL(~λ(t)). This new value is called CT

llr . This is an esti-
mate of information content10 in ~λ(t).

3. Cllr−CT
llr is the calibration loss, or the information lost

to misinterpretation.

This provides us with a single scalar measurement of calibra-
tion. However, it is also very instructive to specifically examine
the individual calibrations of derived sub-problems. In the next
two sections we discuss calibration analyses of pair-wise and
one-against-the-rest recognition.

4.2. Pair-wise calibration analysis

The following strategy does not result in a single scalar mea-
sure of calibration, nor of a single measure of the informa-
tion content. Rather, it analyzes separately all of the � N

2 � =

(N2 − N)/2 pair-wise binary classifications that can be per-
formed with ~λ. Detection scores are formed by differences of
the components of ~λ and then subject to the methods of [2].
Specifically, for each such pair, we calculate (binary) Cllr and
min Cllr , where the latter is computed via PAV.

In our experiments below, we perform this analysis on both
raw data ~λ and transformed data TL(~λ). This is a demonstra-
tion of the effects that the TL calibration has on smaller sub-
problems.

Note that by design, the calibration transformation TL

leaves the information content of all pair-wise log-likelihood-
ratios unchanged. (We verified this by calculating the PAV-
optimized min Cllr values for each pair, which indeed remain
unchanged.)

8Since LN−1 is a vector-space, it is closed under the operations of
addition and scalar multiplication.

9Recall Cllr represents information loss.
10a.k.a. refinement or discrimination
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4.3. Detection calibration analysis

Again this strategy does not result in scalar measures. We
choose a set of recognition problems from the other end of
the complexity scale11, namely detection problems. Of course,
this is also the application chosen by the NIST LREs. We em-
ploy the same prior as in NIST LRE-05, namely a prior that
is fl at over all non-target hypotheses [5]. The detection log-
likelihood-ratios λt

¬t of equation 9 act as binary classification
scores, so we can again employ the binary techniques of [2] to
calculate Cllr and min Cllr and to plot APE-curves.

Note that unlike with the simple case of pair-wise classifi-
cations, the information content of the detection log-likelihood-
ratios are changed somewhat by the calibration TL. This is be-
cause the TL-calibrated detection log-likelihood-ratios are not
functions of the pre-calibrated ones. That is, in general, there is
no function f(·) : R 7→ R, so that:

λt
¬t(TL(~λ)) = f(λt

¬t(~λ)) (19)

However, we see in our experiments below that the change in
information content is very little and that in fact equation 19 is
(for this data) closely approximated.

5. Experiments

We performed all experiments on the scores produced on the
full 30-second test-set of the NIST LRE-05, by the language
recognition system TNO-SDV-1 as described in [7]. The hy-
pothesis set HN was a closed set of 7-languages, namely Eng-
lish, Hindi, Japanese, Mandarin, Korean, Spanish and Tamil.
There were 3578 trials in total. The TNO-SDV-1 system pro-
duced a score-vector ~s of dimensionality 149, which was mod-
eled with a Gaussian-back-end to produce a 6-dimensional rel-
ative log-likelihood-vector, ~λ ∈ L6. These scores were subject
to the evaluation methods described in this paper.

5.1. Calibration analysis with TL

The system TNO-SDV-1 obtained a CDET = 8.93% (which is
an average detection error-rate, see [5] ). Our analysis12 (with
equation 17) gave Cllr = 0.46 log2 7, and after optimizing TL,
we obtained CT

llr = 0.23 log2 7. This is indicative of a large
calibration problem. Had our likelihoods been better calibrated,
we could have halved Cllr .

This same calibration also has a significant effect on CDET

for which the value was reduced to 7.03%. However, this effect
is not as dramatic as the effect on Cllr . Our detection APE-
curves (see figure 2, discussed below) show why — Cllr av-
erages accross all target priors, while NIST’s CDET measures
only at the specific prior of 0.5. The APE-curves show that
for most languages, the error-rate component due to calibration
mismatch at 0.5 (logit prior = 0) is not so bad.

The salient feature of the parameters of TL is a scaling
factor of 0.38, indicating that our log-likelihood-ratios where
somewhat over-confident.

11An N -ary probability distribution lives in an (N − 1)-dimensional
simplex. Pair-wise problems live along the � N

2 � edges of the simplex. A
one-against-the-rest detection problem lives along an interior line seg-
ment connecting the target vertex and the opposite face.

12Recall that log2 N is the reference value for a useless detector.

5.2. Pair-wise calibration analysis

We present this analysis via the bar-graph matrix in figure 3
(on a separate page after the references). There are � 7

2 � = 21
pair-wise comparisons. Note that these comparisons are sym-
metric13. These are values for Cllr and min Cllr as obtained
when pairs of languages are recognized against each other. For
each comparison there are three values depicted by three adja-
cent bars, as follows:

left bar This is Cllr as obtained by the unmodified data ~λ. This
refl ects the actual performance of the likelihoods. (Note
that in the case of English against Hindi, a value of more
than 1.0 was obtained.)

middle bar This is CT
llr as obtained after the general calibra-

tion of ~λ via TL. Note that the improvement in all cases
is dramatic.

right bar This is min Cllr as individually optimized via non-
parametric PAV optimization, for each language pair. As
noted above, min Cllr is valid for both ~λ and TL(~λ). It
would seem that this is an optimization with much more
scope for improvement. But we see that the differences
between CT

llr and min Cllr are not so large. This sug-
gests that TL has already fixed most of the calibration
mismatch and is therefore a reasonable way to judge cal-
ibration.

From this analysis we can also see that English and Hindi were
the problem languages, as compared against all the others.
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Figure 1: Scatter-plot of original vs optimized scores for detect-
ing Japanese against the rest.

5.3. Detection calibration analysis

Refer to figures 2 (a) through (d). These are APE-plots for
each14 of the target languages. There are two APE-plots for
each target language. The left plot for each language is for the
original detection log-likelihood-ratio, λt

¬t and the right plot
(denoted e.g. En(opt)) is for the TL-optimized case. Note

13These are not confusion error-rates, which are in general not sym-
metric.

14There is no pair-wise recognition here. Each language is detected
against all the others. The languages are merely grouped for conve-
nience.
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that the scales in different figures are not the same (English and
Hindi are still the problem languages).

For a full description of applied-probability-of-error (APE)
curves15, see [2]. Briefl y, there are two (solid16) curves on an
APE-plot, the upper one being the actual error-rate of the de-
tector at a given prior. The lower curve is the error-rate af-
ter PAV-optimization. The maximum of the lower curve is the
well-known equal-error-rate (EER). The horizontal axis is the
prior (in log-odds format). The values of the integrals under
the curves are shown as bar-graphs. The integral under the
top curve is Cllr , and is represented by the total height of the
bar below the curves. The integral under the bottom curve is
min Cllr and is represented by the height of the lower portion
of each bar. The area between the two curves is calibration loss,
Cllr − min Cllr and is represented by the height of the upper
portion of each bar. The APE-curve gives a visual appreciation
of calibration, but is also a demonstration of the relationship
between information and error-rates.

As can be seen from the APE-curves, the pleasing result of
this experiment is that the detection calibration, for all seven
languages has been much improved. The pre-TL detection cal-
ibration loss for most of the languages is comparable in mag-
nitude to Cllr . It is sad to lose so much of the hard-earned
information to ‘misinterpretation’. But TL calibration improves
calibration loss for all seven targets to a small fraction of Cllr .

It is important to note that this experiment does not prove
that we can fix the calibration of our language recognition sys-
tem. The calibration transformation TL was optimized over the
supervised evaluation data itself. We have merely performed
a measurement of the extent of the calibration problem of our
recognition system.

Finally, refer to figure 1. This is a scatter-plot to examine
the relationship between pre-calibrated scores, λt

¬t(~λ), on the
x-axis and post-calibrated scores, λt

¬t(TL(~λ)) on the y-axis.
This example is for Japanese, the others are very similar. Note
that the scatter plot indicates that indeed the y-axis is strictly
speaking not a function (solely) of the x-axis. But there is a
very strong linear trend, having the a slope of about 0.4, which
corresponds to the scaling factor of TL. This shows equation 19
is indeed approximated in this case.

This observation and the good improvements in detection
calibration give more support to the case that TL is useful for
measuring calibration.

6. Conclusion

A language recognizer that is designed to recognize N exhaus-
tive and mutually exclusive language hypotheses via the compu-
tation of N relative likelihoods, is also capable of recognizing
a wealth of derived hypotheses formed by disjunctions of the
original hypotheses. We have examined in detail two of these
derived problems, namely pair-wise binary language classifica-
tion and one-against-the-rest language detection.

We propose an information-theoretic measure, Cllr formed
by a logarithmic proper scoring rule, for evaluating the quality
of these likelihoods. Cllr forms an evaluation that is simultane-
ously applicable to all of the implied sub-problems.

15MATLAB tools to plot APE-curves are available here: www.dsp.
sun.ac.za/∼nbrummer/focal.

16The dashed curve is a reference curve for a useless system having
EER=50%.

We propose a simple N -parameter, information- and
direction-preserving, calibration transformation, TL, the para-
meters of which can be optimized over supervised evaluation
data. This forms a decomposition of Cllr that simultaneously
gives (i) an estimate of the information content of the un-
calibrated likelihoods and (ii) an estimate of the calibration loss
incurred because of poor calibration of this information.

We show that auxiliary calibration analyses can be per-
formed with the methods of [2], on sub-problems involving bi-
nary decisions between derived hypotheses. We perform these
auxiliary analyses on some NIST LRE-05 data to show that the
calibration mismatch expressed by TL indeed represents a sig-
nificant part of the calibration loss that is measurable in the bi-
nary sub-problems of pair-wise classification and detection.

In summary, we have established an experimentally proven
methodology, that provides a practical way of analyzing infor-
mation fl ow in N -hypothesis recognition problems.
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[1] N.Brümmer, “Application-independent evaluation of
speaker detection” , Odyssey 2004.
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(a) English and Hindi
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(b) Japanese and Korean
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(c) Mandarin and Spanish
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Figure 2: Detection Calibration Analysis: Actual vs. TL-optimized
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Figure 3: Pair-wise Calibration Analysis: Actual vs. TL-optimized
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