
IEEE SIGNAL PROCESSING LETTERS 1

Discovering Phone Patterns in Spoken

Utterances by Non-negative Matrix

Factorisation
Veronique Stouten∗, Member, IEEE, Kris Demuynck, Hugo Van hamme,Member, IEEE

Katholieke Universiteit Leuven – Dept. ESAT, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

Email : {veronique.stouten,kris.demuynck,hugo.vanhamme}@esat.kuleuven.be

Tel : {+32-16-321827} {+32-16-321860} {+32-16-321842} Fax : {+32-16-321723}

Abstract

We present a technique to automatically discover the (word-sized) phone patterns that are present

in speech utterances. These patterns are learnt from a set ofphone lattices generated from the utter-

ances. Just like children acquiring language, our system does not have prior information on what the

meaningful patterns are. By applying the non-negative matrix factorisation algorithm to a fixed-length

high-dimensional vector representation of the speech utterances, a decomposition in terms of additive

units is obtained. We illustrate that these units correspond to words in case of a small vocabulary task.

Our result also raises questions about whether explicit segmentation and clustering are needed in an

unsupervised learning context.

Index Terms

matrix factorisation, word segmentation, phone lattices,language acquisition.

EDICS Category: SPE-RECO

I. INTRODUCTION

It is remarkable that infants are able to automatically learn the acoustic, lexical and grammatical

patterns of a language. Indeed, human learners appear to synthesise units out of large and apparently
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unsegmented streams, using the statistical structure embedded within this stream [1], [2]. Moreover, they

can do this significantly better than current automatic speech recognition (ASR) systems. Nevertheless,

ASR systems make use of expert knowledge that arises from audiology, phonology and linguistics. In the

resulting beads-on-a-string approach [3], the speech is represented as a sequence of elementary sounds

that are combined to sentences in a hierarchical way (sub-phones are combined to phones, which are

linked together to words, and finally to sentences). The automatic discovery of the structure of speech -

a task in which billions of infants have succeeded - is out of the question.

Conventional pattern recognition systems rely on supervised learning, which requires that the patterns

to be recognised as well as the primitive elements from whichcomplex patterns can be formed, are

defined a priori. This is a necessary prerequisite for training statistical models of the primitive elements

and the patterns. In speech recognition, the patterns to be recognised are almost invariably words, while

the primitives are related to the phonemes of the language. By deciding beforehand what the words are,

and how the words are composed of sub-word units, essential constraints are imposed onto the learning

system. This is undoubtedly advantageous from the point of view of a meta-level description of how

speech is organised. However, children gradually learn newwords and the corresponding sequences of

speech sounds during the language acquisition process. In humans these are emergent properties, formed

on the basis of speech input in a meaningful semantic/pragmatic context.

We intend to build a system that retrieves the phone patternswithin the speech input without prior

knowledge of a pre-defined set of patterns linked to a fixed andpre-defined set of concepts. The core of

our system consists of an unsupervised algorithm, namely non-negative matrix factorisation (NMF) [4].

Thanks to the non-negativity constraints, NMF decomposes amatrix in additive (not subtractive) com-

ponents. Moreover, the result can be given a probabilistic interpretation, which is not the case for the

result of latent semantic analysis (LSA) or principal component analysis (PCA). In [5], the equivalence

(down to almost identical update rules) is shown between probabilistic LSA (pLSA) and NMF with

a Kullback-Leibler divergence criterion. Compared to the multigram model [6], our approach is more

elegant in that it is less complex. Namely, NMF does not need athreshold on the maximal length of the

units, nor does it require a heuristic that determines whichunits to keep. Instead of using a clustering

technique as in [7], a mathematical factorisation is applied.

In the next section, we briefly review the basics of NMF. To construct the input matrix, a fixed-length

high-dimensional vector representation must be obtained from the speech utterances. In this step, we do

not start from scratch, but apply phonetic knowledge sources as explained in section III. In section IV,

we describe how the phone patterns are automatically discovered from this matrix. Hence, the lexical
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information is extracted in an unsupervised way. We also show that these lexical units can be found

back in previously unseen test data. We illustrate our findings with experiments on a small vocabulary

database. Conclusions can be found in section V.

II. THE NMF ALGORITHM

Let us consider an(n × t) input matrix V that contains only elements that are positive or zero (e.g.

probabilities, counts,. . . ). An approximate factorisation of the input matrix into an(n× r) matrix W and

an (r × t) matrix H is obtained by optimising an objective function under the constraint that all matrix

elements should be non-negative.

V ≈W H (1)

Usually the value ofr is chosen such thatr(n + t) < nt, which results in a reconstructed matrixV

with reduced dimensionality. Several forms of the objective function (such as divergence, mean-squared

error, Frobenius norm, . . . ) have been proposed in literature. In this paper, the divergence criterion seems

appropriate sinceW andH have a probabilistic interpretation :

D(V||W H) =
∑

i, j

(

[V]i j log
[V]i j

[W H]i j
− [V]i j + [W H]i j

)

(2)

The notation [A]i j denotes the element in thei th row and j th column of matrixA. It can be shown [4]

that the algorithm converges to a local optimum of this objective function by iterating the following

update rules forW andH :

[H]kℓ ← [H]kℓ

∑

i [W]ik [V]iℓ/[W H]iℓ
∑

j [W] j k
(3)

[W]ik ← [W]ik

∑

ℓ[H]kℓ [V]iℓ/[W H]iℓ
∑

m [H]km
(4)

Because these update rules are multiplicative and do not change the sign ofW or H, it is sufficient to

initialise the matrix elements ofW andH to strictly positive values in order to satisfy the non-negativity

constraints. Eq. (1) indicates that each data vector [V]: j is written as a linear combination of the columns

of W weighted by the coefficients [H]: j . Since relatively few basis vectors [W]:k are used (r ≪ t), a

high quality approximation can only be achieved if the basisvectors discover structure that is latent in

the data. An interesting property of NMF is that it usually produces sparse representations, such that the

input can be interpreted in terms of a few components.
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III. SPEECHUTTERANCE REPRESENTATION

One of the key issues in applying latent variable methods such as NMF in an ASR context, is to find

a fixed-length vector representation of an utterance such that the model underlying the latent variable

method applies. In this paper, we explore the use of (weighted) phone lattice transition probabilities to

represent a speech utterance (or a part thereof).

For each speech utterance (that typically contains severalwords), a dense phone network is constructed

using the first layer of the FLaVoR architecture [8], which performs an acoustic-phonetic decoding. In

this decoding step, a search algorithm determines the network of most probable phone stringsF , given

the acoustic featuresZ of the incoming signal. The employed knowledge sources are an acoustic model

p(Z |F) and a phone transition modelp(F). The phone network contains the set of matching (context-

dependent) phones with their start and end times. In this acyclic directed graph, the arcs correspond

to phones and the nodes impose time and context-dependency constraints. The acoustic score that is

associated with each arc is transformed to a posterior probability. The ratio of the acoustic model

likelihood and the phone transition model likelihood is adjusted on an independent development set

as to optimise the mutual information between the arc probabilities and the true phone identity.

The NMF input matrixV is then obtained as follows. The information that is contained in each phone

network of an utterance is summarised into one column ofV . Thereto, the probability of every two

consecutive phonesφ andψ is accumulated over the network :

c(φ,ψ) =
∑

{α: h(α)=φ}

∑

{β: h(β)=ψ}

p(α) p(β)1αβ (5)

in which h(α) and h(β) return the phone identity, andp(α) and p(β) the posterior probability of the

arcsα andβ, respectively. If the start node ofβ is equal to the end node ofα, then1αβ is the inverse

of the probability of the common node, else it is 0. This node probability is given by the sum of the

posterior probabilities of the incoming (or outgoing) arcsof the corresponding node.

The valuesc(φ,ψ) form the entries of the(n × t) matrix V, in which n is equal to the square of the

number of phone identities andt is given by the number of utterances in the database. Since the elements

of V represent weighted co-occurrence counts, they will never become negative.

IV. SYSTEM SETUP

In this section, we illustrate the performance of the systemon a speaker independent database. The

speech data are taken from TI-Digits [9] which contains recordings of US-American adults, downsampled

to 16 kHz. The training set consists of 6159 connected digit sequences of length 1 through 7.
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Because of the small vocabulary of the task, the phone lattices are generated without too much prior

information. A set of 43 different phone identities is used,including the phone ‘SIL’ (= silence). The

acoustic-phonetic decoding makes use of a state-of-the-art acoustic modelp(Z |F) that consists of a

HMM with cross-word context-dependent tied states (GMMs).This model is trained on the Wall Street

Journal (WSJ0 plus WSJ1) database such that it is general enough. For the phone transition modelp(F),

a bigram is estimated on the same data (but a unigram proved tobe just as good).

A. Discovering phone patterns

First, the input matrixV is constructed for the TI-Digits training set as we explained in section III.

Then, the NMF algorithm is applied. The columns ofW represent recurring units in the data, while

the columns ofH indicate which units are active in each utterance. When matrix V is obtained from

real phone networks, the algorithm has to cope with several difficulties, which can be divided into two

categories:

1. uncertainties in the phone lattice, e.g. paths that deviate from the canonical transcription, errors

induced by the acoustic-phonetic decoder, pronunciation variants,. . .

2. cross-model effects, e.g. non-negligible probabilities for transitions between the phones of two

consecutive words (without silence in between), co-articulation effects, etc.

Due to these distortions, the model that is imposed by NMF is not fully satisfied. Namely, the input is

not an exact linear combination of basis vectors. To investigate their effect on the performance of our

algorithm, we consider 3 cases. The first one is the idealisedcase in which the lattice consists only of the

path corresponding to the canonical phonetic transcription of the utterance and all words are embedded

in silence. In the second case, cross-model effects are included in a worst case scenario by removing

all silence between words and by applying the most typical co-articulation rules (degemination, voice

assimilation). In the third case, the real lattice is used such that both distortion effects are to some extent

present.

In figure 1, the value of the NMF objective function is shown versus the number of basis vectors [W]:k

that are extracted for each of the above mentioned cases. Thematrix factorsW and H were initialised

with positive random values. The NMF update rules were applied for 2000 iterations. Local optima were

avoided through a ‘simulated annealing’ technique: an additive distortion (≥ 0) of which the magnitude

decreases with the iteration number according to a sigmoid function, was applied toW and H. From

figure 1, it can be observed that the slope of the curves changes at r = 11, which corresponds to the

number of words present in the database. Hence, as long as theextra basis vector can be used to model a
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Fig. 1. Value of the NMF objective function versus the numberof basis vectors that are extracted. Idealised case (x), idealised

lattice but cross-model effects (o), real case (+). TI-Digits training set.

new word from the database (r < 11), the divergence criterion decreases fast in all three cases. When the

number of basis vectors gets larger than the number of words (r ≥ 11), the cost function still decreases

in case 2 and case 3 but at a slower rate, while it asymptotically converges to zero w.r.t. the number of

iterations in the idealised case. Finally, it can be observed that the uncertainties in the lattices cause a

larger increase of the cost function than the cross-model effects whenr = 11. This conclusion is validated

by the fact that in case 2 more silence between words was removed than in case 3 (‘worst case’ vs. ‘real

case’ cross-model effects). Also, the ‘knee’ tends to become weaker in the case of real lattices.

We will now investigate how the basis vectors are related to phone patterns. In table I, we show an

extract from matrixW when the input matrixV is obtained from real phone networks andr = 11. The

matrix factorsW and H are normalised such that the columns ofW have unit L1-norm. The values

in each column are sorted in descending order and only the upper part is shown. For each value, the

corresponding phone transition (related to the index inW) is also given. The obtained basis vectors [W]:k

indicate which phone pairs frequently occur together in so-calledphone patterns. No explicit timing (or

even exact ordering) information is present in [W]:k . Yet, the corresponding sequence of phones can be

deduced from the phone pair values. It is striking that the dominant phone pairs in each [W]:k form

a connected sequence, although this ‘temporal smoothness’ was not imposed. However, determining its

start or end phone is out of the scope of this letter. This result questions the need for explicit segmentation

and clustering as is done in [6]. Due to the normalisation, the weights in the rows [H]k: give an indication

of the length of the sequence.
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From table I, it can be seen that the phone transitions that actually occur in the digit are dominant.

Often, the ‘deviant’ transitions that have a reasonably large weight can be linked to the first or the last

phone of one of the (other) digits. E.g. in the first column ‘N W’ could have been obtained from the digit

sequences 1-1, 7-1 or 9-1. On the other hand, ‘AA N ’ in the same column arose from a pronunciation

variant of the word ‘one’. The same applies for ‘Z IY ’ in the basis vector of ‘zero’. We can conclude

that NMF is able to extract the phone patterns that are present in the TI-Digits database, although the

basis vectors contain some distortion (e.g. non-zero weights for inter-word transitions) because the NMF

model assumptions are not fully satisfied in a real phone network.

It is interesting to analyse the behaviour of the algorithm w.r.t. r . When e.g.r = 20, all 11 digits are

still discovered, while the remaining 9 basis vectors are used to model the following effects: frequently

occurring recognition errors in the phone lattice (such as ‘SIL B AY ’) are modelled [4 vectors], already

modelled words are added with different dominant inter-word transitions [3 vectors], and alternative

pronunciations of a word are disunited (e.g. a separate [W]:k for ‘Z IH R OW’ and ‘Z IY R OW’) [2

vectors].

B. Labelling the phone patterns

In this section, a labelling algorithm is described toautomatically link each basis vector to a sequence

of phones. Let us consider the set of labels that represents all possible speech units. In our case, this set

contains the lexicon of the Resource Management (RM) database, augmented with all sub-sequences of

phones. E.g. the word ‘any’ gives rise to the following labels: {‘SIL EH N IY SIL’, ‘ SIL EH N IY’, ‘ SIL

EH N’, ‘ SIL EH’, ‘ EH N IY SIL’, ‘ EH N IY’, ‘ EH N’, ‘ N IY SIL ’, ‘ N IY ’, ‘ IY SIL ’}. For each labelb the

(n × 1) vector c:b is constructed that contains the number of occurrences of every phone transition in

this label. Bothc:b and [W]:k are given unit L1-norm. The labelling algorithm then assigns to each basis

vector [W]:k a labelb for which the Kullback-Leibler divergence betweenc:b and [W]:k ,

D(c:b||[W]:k) =
∑

{i: cib 6=0}

(

cib log

(

cib

[W]ik + ǫ

))

(6)

is minimal. Here,ǫ (= 10−50) is a small number. Since RM contains not only the 11 digits but also more

than 900 other words, the quality of the basis vector must be high in order to obtain a correct label.

Although the dominance of the correct phone transitions is not always very pronounced in [W]:k , this

method resulted in the automatic assignment of the correct digit label to each basis vector of table I. This

illustrates thatW contains word-sized phone patterns. The basis vectors [W]:k also provide a flexible way
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TABLE I

EXTRACT FROM BASIS VECTORS[W]:k FOR REAL PHONE LATTICE.

basis vectors

one two three four

AH N 0.2094 T UW 0.3210 R IY 0.2033 AO R 0.2617

W AH 0.1978 SIL T 0.1224 TH R 0.1735 F AO 0.2326

SIL W 0.0836 UW SIL 0.1051 IY SIL 0.0700 SIL F 0.0868

N SIL 0.0708 N T 0.0456 SIL TH 0.0572 R SIL 0.0861

AA N 0.0513 UW S 0.0439 IY S 0.0386 N F 0.0484

N W 0.0504 UW F 0.0435 N TH 0.0370 R S 0.0386

W AA 0.0403 OW T 0.0390 IY F 0.0367 R F 0.0331

five six seven eight

F AY 0.2200 K S 0.1745 S EH 0.1669 EY T 0.2717

AY V 0.1709 S IH 0.1303 AH N 0.1539 SIL EY 0.1333

SIL F 0.0633 IH K 0.1138 EH V 0.1415 T SIL 0.1227

V SIL 0.0567 S SIL 0.0611 V AH 0.1363 N EY 0.0560

N F 0.0433 SIL S 0.0601 SIL S 0.0546 EY D 0.0478

AY D 0.0369 S T 0.0378 N SIL 0.0473 T EY 0.0375

D SIL 0.0263 IH K 0.0322 N S 0.0388 T S 0.0288

nine oh zero

AY N 0.2655 SIL OW 0.0697 R OW 0.1472

N AY 0.2567 OW SIL 0.0442 IH R 0.1200

SIL N 0.0909 AH L 0.0335 Z IH 0.1018

N SIL 0.0819 L SIL 0.0323 OW SIL 0.0492

N D 0.0348 AE N 0.0297 N Z 0.0366

AH N 0.0286 OW L 0.0237 IY R 0.0365

N T 0.0239 AE T 0.0228 Z IY 0.0296

of describing pronunciation variants of the words, as illustrated in table I. In other words, each [W]:k

can be seen as a phone-level statistical pronunciation model.

C. Activation of speech units in unseen data

We will now show how the obtained phone patterns can be found back in previously unseen data.

To this end, NMF is applied to the TI-Digits test utterances to calculate the optimal coefficients (matrix

H), while keeping the set of phone patterns that has been discovered automatically in the training data

(matrix W) fixed. In this case, the information that is contained in each phone network (utterance) is
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Fig. 2. Graphical representation of the rows of matrixH. For each basis vector (ordinate), the value in [H]k: is related to the

evidence that the word is present at a certain time instant.

summarised into multiple columns ofV by using a sliding window. The entries inV (eq. (5)) are then a

summation over the time instants within this sliding windowonly. We choose a window length of 600 ms

with a shift of 300 ms. Note that some ‘artifacts’ are introduced when a word or syllable is only partly

contained in the sliding window. However, the algorithm didnot have to cope with this kind of artifacts

when learningW since one utterance was summarised into one column ofV in the training phase. This

results in basis vectors of higher quality.

Figure 2 shows the rows of matrixH for the utterance ‘27o6571’. The ordinate represents the (fixed)

basis vectors [W]:k , while the abscissa represents the time index. As a reference, the true word boundaries

are shown as vertical dotted lines. As can be seen, all digitsare ‘recognised’. Often, evidence is found

for the presence of more than one word (or a part thereof). Some words (e.g. ‘five’, ‘seven’) get a high

weight for quite a long time w.r.t. the segmentation file. In this respect it should be noted that the use of

a sliding window causes a smoothing over time. Hence, the information becomes available (up to half a

window length) before the event actually takes place.

V. CONCLUSION

We have presented a technique to automatically discover thephone patterns that are present in speech

utterances. First, a dense phone network is constructed from each utterance, given the set of basis units

(phones). Then, the non-negative matrix factorisation (NMF) algorithm is applied to find the recurring

patterns in the data in an unsupervised way. An advantage is that no tuning of parameters is required.

We have illustrated that the obtained basis vectors correspond to words in case of a small vocabulary

task. Pronunciation variants of the words are also automatically discovered. This novel approach to

unsupervised word discovery and pronunciation modelling does not require explicit segmentation or
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clustering operations. These promising results open up perspectives to deviate from the conventional

beads-on-a-string approach to model speech.
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