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Abstract

We present a self-learning algorithm using a bottom-up based approach to automatically discover, acquire and recognize the words of
a language. First, an unsupervised technique using non-negative matrix factorization (NMF) discovers phone-sized time–frequency
patches into which speech can be decomposed. The input matrix for the NMF is constructed for static and dynamic speech features using
a spectral representation of both short and long acoustic events. By describing speech in terms of the discovered time–frequency patches,
patch activations are obtained which express to what extent each patch is present across time. We then show that speaker-independent
patterns appear to recur in these patch activations and how they can be discovered by applying a second NMF-based algorithm on the
co-occurrence counts of activation events. By providing information about the word identity to the learning algorithm, the retrieved pat-
terns can be associated with meaningful objects of the language. In case of a small vocabulary task, the system is able to learn patterns
corresponding to words and subsequently detects the presence of these words in speech utterances. Without the prior requirement of
expert knowledge about the speech as is the case in conventional automatic speech recognition, we illustrate that the learning algorithm
achieves a promising accuracy and noise robustness.
� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

It is remarkable how babies exposed to a language
acquire it naturally without deliberate efforts of teaching
or learning. Before they can even speak, infants gather
immense amounts of information while listening to human
voices in their surroundings. During this stage, their brains
are being tuned to a specific language. With only a surpris-
ingly small amount of supervision, they succeed in learning
new words from a spoken language. Most words are not
being explained to them, but are learned from their signif-
icance in the world they live in. Although these streams of
language data are large and appear to be unsegmented,
infants show the ability to distinguish the different units
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of the language and to acquire how these units are linked
in meaningful patterns, such as words.

Evidence exists (Chomsky, 2000) that the basic ability to
acquire language is innate to the child, e.g. the basics of
human speech is built into babies’ brains. However, no spe-
cific structural property of language has yet been proven to
be innate and any infant seems equally capable of acquiring
any language. Future research still has to reveal what in
human language is inborn into the infant’s brain and
how they succeed in learning the language through experi-
ence and exposure to a specific speech community. More-
over, during their lifespan, humans are exposed to
variations of what is being uttered. These variations can
be acoustical (such as different speaking styles, accents or
speech distortions caused by e.g. background noises) as
well as on the level of interpretation in the context used.
Nevertheless, humans have the ability to continuously
learn and adapt to these new situations.
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Although current systems for automatic speech recogni-
tion (ASR) show to be successful in some aspects, their per-
formance can only be guaranteed if these systems are task-
specifically programmed and adjusted to the (predicted)
acoustic challenges in which they will operate. This way,
ASR-systems are unable to adapt to situations different
from the one seen during training and are mostly unreliable
in real life situations.

Our work is motivated by the idea that engineering
approaches have fallen short in the design of ASR-systems
and that inspiration has to come from human language
learning and speech perception, an idea that was also postu-
lated in other research work (Baker et al., 2006; Scharenborg
et al., 2005). This paper does not claim to explain human
language learning, neither does it have the intention to
learn grammar, world knowledge or pragmatics. However,
we will show that a small vocabulary can be learned from
scratch using a bottom-up approach from a spectral
analysis of speech signals. To this end, we intend to build
a system that automatically discovers the structure in the
data, learns the patterns, links them with the words of a
vocabulary and finally recognizes them in unseen (noisy)
speech data. Our work is related to previously reported
approaches of unsupervised language learning (Scharen-
borg et al., 2007; Qiao et al., 2008; Brugnara et al., 1993;
Aversano et al., 2001; Siivola et al., 2003). However, in
these approaches the units are phones, phonemes or sub-
word items, while in this work we search for recurring
acoustic patterns in the time–frequency plane. Moreover,
instead of acquiring the words of the language by concate-
nating these units, we assume that words can be repre-
sented by a sparse combination of these patterns and can
be learned by discovering similarities in the activations of
these patterns.

A first step in language acquisition is to build represen-
tations of speech that are to a great extent speaker-inde-
pendent and robust to noise. The first part of the paper
explains how recurring acoustic patterns are discovered in
speech data without supervision, a problem that was also
addressed in a variety of other research work, see e.g. (Park
and Glass, 2005; Stouten et al., 2008; Smaragdis, 2007;
Meyer and Kollmeier, 2008). The learning algorithm
involved makes use of non-negative matrix factorization
(NMF) introduced by Lee and Seung (2001). Thanks to
the non-negativity constraints, NMF decomposes a matrix
in additive (not subtractive) components, resulting in a
parts-based representation of the data. NMF can therefore
be seen as a learning algorithm that, when applied to an
appropriate feature space, finds the parts or objects that
the training data are built of.

We will apply NMF to magnitude spectrograms in order
to discover typical patterns in the time–frequency plane
(the parts) that can be combined additively to form spec-
trograms of speech. We will consider spectral analyses over
longer time windows than the centisecond scale usually
considered in automatic speech recognition. Instead, the
spectral patterns that are found have a duration in the
order of hundreds of milliseconds. Other researchers have
also observed that speech features spanning a longer time
interval such as TRAPs (Hermansky and Sharma, 1998)
and its variants show improved robustness to noise
(Hermansky and Sharma, 1997). Other examples of long-
span features are MRASTA filtering (Hermansky and
Fousek, 2005) or modulation spectra (Kingsbury et al.,
1998; Tyagi et al., 2003). Some work also explicitly looks
at time–frequency representations (Meyer and Kollmeier,
2008; Kleinschmidt, 2003; Ezzat et al., 2007). An important
difference with the current work is that our time–frequency
representation results from a parts-based representation
that is learned without supervision. Other authors have
used NMF for this purpose. Our approach is most closely
related to that of Virtanen (2007), who additionally
imposes temporal continuity. Convolutional NMF by
Smaragdis (2007) or the variant by O’Grady and Pearlmut-
ter (2008) can also be used to find speech patterns in the
time–frequency plane. The discovered speech units seem
to be best described as phones, while our units are best
described as ‘‘acoustic events”, such as bursts or formant
trajectories. The current work differs in other respects.
Firstly, the patterns are discovered from a combination
of two complementary feature representations that either
reveal timing or frequency structure and which are derived
from a time–frequency reassignment spectrogram. Subse-
quently, these spectral features are segmented into two-
dimensional overlapping time-slices which are stacked into
column vectors. Recurring time–frequency dependent pat-
terns and bases are then found by applying NMF on these
vectors. By enforcing sparsity constraints in NMF, both
timing and frequency information are modeled by the
obtained bases. Secondly, we use conventional NMF
instead of convolutive NMF (cNMF). Although the con-
volutive variant is appealing from a theoretical point of
view, we have found from analyses of parts based on
cNMF that it is less resistant to noise. Also, the computa-
tional requirements are significantly higher for cNMF.
Thirdly, we also add a pattern recognition step to show
speech recognition based on the discovered time–frequency
patterns and demonstrate the robustness to noise thus
obtained.

The bases are acoustic patterns and they will also be
referred to as time–frequency patches of speech. From a
neuroscience point of view, we could relate the process of
discovering and acquiring these patches with the learning
and/or evolutionary process by which humans have devel-
oped an auditory system that is exceedingly sensitive to
speech sounds, though we do not claim that what we pres-
ent here is a validated model of the neurophysiological
mechanism. By describing speech in terms of these patches,
we show how meaningful objects of the language such as
words are linked to patch activation patterns. These pat-
terns appear to be unrelated to speaker-specific properties
and remain clearly visible when noise is added to the speech
signals. Similarly to our auditory system, the proposed
model seems to be skilled in easily distinguishing speech
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from other environmental sounds, without the use of noise
models or noise reduction techniques.

In the second part of this paper, our aim is to let a com-
puter system acquire the vocabulary of a language by
detecting, segmenting and learning the recurring activation
patterns from the continuous stream of speech. To this end,
the above mentioned speech model will be exploited in a
language learning system. Similar to human speech recog-
nition, the proposed system is able to acquire a language
on clean training speech using weak supervision without
knowing the words until after the acquisition process is
completed. Key to the success of the system is the ability
to discover recurring patterns in the activations of the
time–frequency patches in speech across time. Therefore,
the speech data is transformed into a high-dimensional
vector representation, called ‘‘histograms of acoustic co-
occurrence” (HAC) which are computed by accumulating
the co-occurrence counts of acoustic events (Van hamme,
2008b). For this work, these events are quantized patch
activation vectors. Subsequently, a learning algorithm with
weak supervision and which is again based on non-negative
matrix factorization (NMF) is proposed to discover recur-
ring patterns through the use of HAC-features and link
them with the lexical items of a language. Hence, in con-
trast to hidden Markov model (HMM) based speech recog-
nition systems, no expert knowledge from audiology or
phonology is incorporated in our system, neither do we
need any a-priori information about what the words are
and how they are composed. After the learning process,
the system shows a remarkably good performance in
detecting the words of the language in both clean and noisy
speech data. Hence, the learning system could form the
basis of an alternative framework for robust speech
recognition.

Fig. 1 shows the structure of the proposed system. In the
learning stage, the NMF in the first layer is performed on
the time–frequency representation to acquire time–frequency
patches in clean training speech. From these learned patches,
the patch activations along the time axis are then computed.
In the second layer of the system, the patch activation vectors
Fig. 1. Structural representation of
are quantized and transformed to the HAC representation.
On these HAC-features, another NMF is performed to learn
the HAC of the vocabulary words. During testing, the first
NMF computes the patch activations from the learned
time–frequency patches and the second NMF computes the
word activations from the learned HAC-models to detect
the words in the utterance. To assess the efficacy of the lan-
guage learning, a third layer was added to the system to detect
the words from the word activations on unseen speech data.

The outline of the paper is as follows: Section 2 explains
how the time–frequency patches of the first layer are
learned from speech and how their activations along the
time axis are computed. In Section 3, the concept of
HAC-models is restated from which the HAC of the words
are learned in the second layer. Section 4 describes how this
learning system can be applied to detect words in speech
utterances. A small vocabulary word discovery experiment
was conducted on the Aurora2 digit database and experi-
mental results are given in Section 5. Finally, conclusions
can be found in Section 6.
2. Layer 1: Time–frequency patch discovery

The production of human speech can be regarded as a
process of combining a small number of spectral patterns
into many more different sequences. In this section, our
goal is to find a set of patterns by analyzing continuous
speech recordings. Moreover, we would like that (i) these
patterns accurately represent a wide variety of acoustic
speech events with well-localized energy regions to model
e.g. formant tracks or energy bursts due to plosives, and
in a later stage (ii) that they can be robustly detected in
unseen noisy speech. To this end, we transform the speech
data into a time–frequency reassignment spectrogram
(Auger and Flandrin, 1995) which is subsequently
smoothed in time and frequency domain. The reassignment
method (briefly restated in Section 2.1) produces sharpened
time and frequency estimates for each spectral component
from partial derivatives of the short-time phase spectrum.
the proposed learning system.
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Instead of locating the spectral density value at the geomet-
rical center of the analysis window, as in traditional short-
time spectral analysis (e.g. STFT), the components are
reassigned to the center of gravity of the energy distribu-
tion. In a next step, we perform a non-negative matrix fac-
torization (NMF) on a data matrix containing consecutive
spectral slices of this speech representation. By imposing
non-negativity constraints, NMF generates parts that are
additive, unlike factorization techniques such as PCA or
SVD. Furthermore, NMF was chosen among other unsu-
pervised learning method such as hierarchical clustering,
self-organizing maps or neural networks, since (i) it is a
recent and promising technique that has shown it merits
in other research questions; (ii) it provides a more stable,
intuitive and meaningful decomposition of non-negative
data. By combining two complementary time–frequency
reassignment representations that either reveal timing or
frequency structure, the discovered speech patterns are
acoustic patches of correlated energy that are well-localized
in both time and frequency. The involved smoothing pro-
cess allows to make these patches speaker-independent.
Besides the fact that the reassignment method produces
highly detailed patterns, another motivation to use RTFR
is the impact it has on the higher level of word learning
(Section 3). This will be illustrated in the experiments of
Section 5 by comparing the approach of RTFR with the
approach where the patches are derived from the short time
Fourier transform (STFT) of the speech.

2.1. Time–frequency reassignment

Time–frequency reassignment (Auger and Flandrin,
1995; Plante et al., 1998; Hainsworth and Macleod, 2003)
allows perfect localization of (well-separated) impulses,
cosines and chirps, which constitute a reasonable model
for speech. The corresponding reassigned time–frequency
representation (RTFR) has an increased sharpness of local-
ization of the signal components without sacrificing the fre-
quency resolution.

In this paper, the reassignment principle is applied to the
short time Fourier transform (STFT) although it can be
applied to different time–frequency representations each
characterized by a different analysis kernel. The STFT is
often used as the basis for a time–frequency representation
of speech signals and is written as

STFTfxðtÞg ¼
Z þ1

�1
xðuÞh�ðt � uÞe�jxudu ð1Þ

where xðtÞ is the analyzed signal and hðtÞ is the analysis
kernel function. The spectrogram is then defined as the
magnitude of the STFT and can also be expressed as a
two-dimensional smoothing of the Wigner–Ville distribu-
tion (Auger and Flandrin, 1995)

jSTFTfxðtÞgj2 ¼ 1

2p

Z Z þ1

�1
W xðu; mÞW hðt � u;x� mÞdudm

ð2Þ
with

W xðt; f Þ ¼
Z þ1

�1
x t þ 1

s

� �
x� t � 1

s

� �
e�jxsds: ð3Þ

From expression (2) it can be seen that the spectral density
value of each time–frequency component is the weighted
sum of all the Wigner–Ville distribution values at the
points ðt � u;x� mÞ and thus located at the geometrical
center ðt;xÞ of the spectral analysis kernel function. The
principle of the reassignment method is then to reallocated
the energy from the geometric center of the kernel function
to the center of gravity of the energy distribution. There-
fore, the RTFR takes into account the phase of the STFT,
which is omitted in the classical spectrogram, but contains
important temporal information and this results in an im-
proved localization of the energy in the time–frequency
plane.

The reassignment points can be computed from the par-
tial derivatives of the phase of the STFT using the principle
of stationary phase (Kodera et al., 1978). According to this
principle, the maximal contribution to the values of (2)
occurs at the points where the phase is changing most
slowly with respect to time and frequency. If /ðt;xÞ
denotes the short-time phase spectrum, then these points
are computed as (Plante et al., 1998)

t̂; x̂ð Þ ¼ t � 1

2p
o

ox
/ðt;xÞ;xþ 1

2p
o

ot
/ðt;xÞ

� �
ð4Þ

which represents the group delay and instantaneous fre-
quency of the windowed signal. It has been shown in
(Auger and Flandrin, 1995), that a more efficient
implementation is possible using two additional STFTs
rather than using the derivatives of the phase. Let
Hðt;xÞ, Dðt;xÞ and T ðt;xÞ denote the STFT of the signal
obtained with the window of choice hðtÞ, the derivative of
hðtÞ and the time weighted thðtÞ respectively and let RðX Þ
and IðX Þ be the real and imaginary part of X, then the en-
ergy at ðt;xÞ is reassigned to the center of gravity (Auger
and Flandrin, 1995):

t̂; x̂ð Þ ¼ t �R
T ðt;xÞ
Hðt;xÞ

� �
;xþ I

Dðt;xÞ
Hðt;xÞ

� �� �
ð5Þ

where the time and frequency offsets are now computed
from the ratios of the three STFTs.

To improve the visibility of acoustic events with short
duration, we further enhance the localization of the energy
along the time axis. Therefore, we first search for zero-
crossing points in the time offsets of (5) and only those of
them that are connected in the vertical direction (i.e. along
the frequency axis) are retained. Finally, the corresponding
energy of the RTFR is assigned to the retained points.
When applied to speech with a sufficiently short analysis
window, the enhanced RTFR clearly shows the vertical
(i.e. well-localized in time) lines that are related to the burst
of plosives and affricatives and energy releases by the vocal
folds. By repeating the same procedure using the frequency
offsets of (5), the tracks of time-varying spectral features
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such as pitch and formants can be clearly localized in fre-
quency. We have found that formant structure is more
apparent if we use shorter windows in the RTFR.

The different steps of the enhanced reassignment proce-
dure are shown Fig. 2 for the word ‘‘two”. Firstly, a time–
frequency representation is computed using a 128-point
STFT. Subsequently, a RTFR is produced by reallocating
the spectral energy to the gravity centers according to (5).
The above mentioned enhancement steps are then applied
to the RTFR to reveal either the timing or the frequency
structure. Experiments have shown that an optimal choice
for the window length is respectively 11 ms and 7 ms for
male speakers and 6 ms and 4 ms for female speakers.
The analysis window is shifted by 1 ms. To prevent ambi-
guity in later formulations, we will use the word subframe

to denote a frame of the enhanced RTFR.
2.2. Constructing the input matrix

In this section, we explain how the input matrix is cre-
ated to which we will apply NMF for finding acoustic
time–frequency patterns in speech signals. These patterns
are discovered on clean training data. After pre-emphasiz-
ing the speech signals, we compute the enhanced RTFRs
by the approach described in Section 2.1. Both representa-
tions are used to exploit the spectral information that is
more apparent in either the vertical or the horizontal
direction.

Two additional steps are also performed; a smoothing in
time and frequency followed by a cube root compression. If
these steps are not be applied, speaker dependent ‘‘bases”

will be learned to model the different pitch characteristics
of training speakers. For reasons that become clear in the
kH
er

tz

50 100 150 200 250 300 350 400

1

2

3

4

kH
er

tz

50 100 150 200 250 300 350 400

1

2

3

4

time [ms]

kH
er

tz

50 100 150 200 250 300 350 400

1

2

3

4

Fig. 2. STFT representation (top), RTFR (middle) and enhanced RTFR (bot
structure. In the bottom left panel, vertical lines correspond to plosive burst an
the horizontal structure in the word, e.g. pitch and formant contours.
next section, however, we want to prevent overfitting to
the training set, e.g. we want the resulting time–frequency
patches not to be speaker dependent. Time smoothing is
performed by reframing the enhanced RTFR by a sliding
triangular window with a length of 30 subframes and a
frameshift of 10 subframes. After conversion of the fre-
quency axis from the Hertz scale to the Mel scale followed
by a frequency smoothing using N ¼ 128 triangular over-
lapping windows with a window size of 3 frequency bins
using a weight of 1 for the center bin and 0.5 for the adja-
cent bins, we obtain the final N-dimensional feature vec-
tors. Subsequently, spectral changes are emphasized by
adding first and second order derivatives resulting in a sta-
tic (S), a velocity (V) and an acceleration (A) stream. For
these feature representations we use the word frames and
these are shown in Fig. 3a for the same uttered ‘‘two” as
was used in Fig. 2. Note that the vertical lines correspond-
ing to pitch bursts are dissolved by the smoothing process,
but the overall energy bursts and releases are retained. In
Fig. 3b we also show the feature vectors derived by apply-
ing the STFT using the same time window parameters as in
the enhanced and smoothed RTFR. Note that, despite the
smoothing process, formant contours still remain clear in
Fig. 3a and are not confused with pitch harmonics as is
the case in conventional Fourier transform. In Section 5,
we will compare the final accuracy results obtained by
the STFT features with those of the enhanced and
smoothed RTFR features.

The feature representations corresponding to the timing
and frequency structure contain complementary informa-
tion and therefore both will be used in the discovery of
the speech patches. Let us now define the spectral vector
at a certain frame t for a feature stream q (q ¼ S, V or
time [ms]
50 100 150 200 250 300 350 400

1

2

3

4

50 100 150 200 250 300 350 400

1

2

3

4

50 100 150 200 250 300 350 400

1

2

3

4

tom) for the word ‘‘two” with focus on timing (left) and frequency (right)
d vocal fold bursts, while the enhanced RTFR at the bottom right reveals



20 40

32

64

96

128

frames
20 40

32

64

96

128

Fr
eq

. B
in

s

frames
20 40

32

64

96

128

Fr
eq

. B
in

s

20 40

32

64

96

128

20 40

32

64

96

128

frames
20 40

32

64

96

128

Fr
eq

. B
in

s

20 40

32

64

96

128

Fr
eq

. B
in

s

frames
20 40

32

64

96

128

Fig. 3. (a) Static and velocity feature vectors derived from the enhanced RTFRs that reveal timing (top) and frequency (bottom) structure for the word
‘‘two”. (b) The corresponding STFT feature vectors using the same time window parameters.
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A) as vq;t and hq;t, corresponding to the feature representa-
tion that reveals respectively the timing (vertical) and fre-
quency (horizontal) structure. Since NMF requires the
data to be comprised of non-negative values only, we split
these vectors into a positive (vþ and hþ) and a negative
(v� and h�) stream by zeroing out those values that are
respectively <0 and >0 and taking absolute value of the
negative stream. Finally, we stack all these vectors in one
real and non-negative column vector of dimension 4N :

cq;t ¼

vþq;t
j v�q;t j
hþq;t
j h�q;t j

266664
377775 ð6Þ

For static features, v�q;t and h�q;t are all-zero vectors and their
rows can be removed from (6). Note that the above men-
tioned procedure to handle input data with mixed sign in
NMF, can also be seen as an alternative for the semi-
NMF as was proposed by Ding et al. (2006).

At each frame step t, we take k consecutive frames of cq;t

representing the spectro-temporal structure of a short-time
speech segment (i.e. of length 10k ms). These k frames are
then reshaped into a column vector C k;q

t of dimension 4kN
as schematically illustrated in Fig. 4. From these column
vectors, we construct a data matrix:

Ck ¼
Ck;S

1 � � � Ck;S
t � � � Ck;S

T

Ck;V
1 � � � Ck;V

t � � � Ck;V
T

Ck;A
1 � � � Ck;A

t � � � Ck;A
T

264
375 ð7Þ

with T the total number of frames used from the clean
training set.

2.3. Matrix factorization for unsupervised learning

By applying non-negative matrix factorization to the
matrix C (dropping index k for notational convenience),
it is approximated by the product of factors B and A which
are of size 4kN � P and P � T :

C � BA ð8Þ

subject to the constraint that all matrices are non-negative
and where the common dimension P of B and A is much
smaller than T and 4kN . Hence, Eq. (8) contains only addi-
tive linear combinations such that the factorization leads to
a parts-based representation, where P parts are found in
the columns of B and their activation across time are given
by the corresponding rows of A.

In order to capture all feature streams in each basic vec-
tor, namely the timing and frequency spectral structure and
their corresponding positive and negative part, additional
sparsity constraints must be enforced on A. Otherwise,
NMF tends to model all these parts in multiple columns
of B. Therefore, we use sparse NMF (Hoyer, 2004) where
the factorization is approximated by minimizing the objec-
tive function:

GðCkBA; kÞ ¼ DðCkBAÞ þ k
X

i;j

Aij ð9Þ

The first term in (9) is a generalized version of the Kull-
back–Leibler divergence (Lee and Seung, 2001), defined as:

DðCkBAÞ ¼
X

ij

Cij log
Cij

ðBAÞij
� Cij þ ðBAÞij

 !
ð10Þ

The second term in Eq. (9) enforces sparsity on A by min-
imizing the L1-norm of its columns. The trade off between
reconstruction accuracy and sparseness is controlled by the
parameter k.

An algorithm for finding B and A given C based on mul-
tiplicative updates and with the additional sparseness con-
straint can be found in (O’Grady and Pearlmutter, 2008).
To address scaling, the constraint that each column of B
sums to unity is imposed. Experiments have shown that



Fig. 4. Schematic representation of the construction of data matrix Ck;q from feature vectors cq;t which contain the feature representations that contain
timing (vq;t) and frequency (hq;t) structure.
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with the settings used in this paper, a good choice for k is
1000.

2.4. Interpreting the time–frequency patches and their

activation in time

The columns of matrix B correspond to spectral patches
which describe the recurrent time-varying spectra of
speech. A selection of these patches are shown in Figs. 5
and 6. Just for visualization, the rows of each feature
stream were extracted from B and were reshaped back into
N � k matrices, then the positive and negative parts were
recombined and the feature representations corresponding
to the timing and frequency structure were plotted onto
each other by means of the max-operator. These figures
illustrate the patches found for the static and velocity fea-
tures. The parameter k of Section 2.2 is set to 10 (Fig. 5)
and 20 (Fig. 6) corresponding to a patch length of resp.
100 and 200 ms. Most patches describe formant move-
ments over the duration of about a phone. A smaller set
of time–frequency patches resemble wideband sounds and
short-time energy bursts. Others are modeling the begin-
ning or ending of phones and phone-pair transitions. Since
we have discovered the acoustic patterns from recordings
1 2 3 4 5 6 7 8
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Fig. 5. A collection of the discovered time–frequency patches for static (top r
patches show formant patterns, wideband spectra and bursts; others model in
composed of a sufficiently large set of different speakers,
the patches are assumed to be speaker-independent (will
be confirmed in Section 5).

To discover the patches that are present in test utter-
ances of the Aurora2 database, the same procedure as in
training is used except that we compute A in Eq. (8) by
holding B fixed to the one obtained from training. As an
example, Fig. 7 shows the time–frequency representations
(a) and their corresponding patch activation matrices (b)
of three examples of the word ‘‘four” each uttered by differ-
ent male speakers in clean conditions (left column) and
noisy conditions (right column). A set of D ¼ 100 time–
frequency patches were discovered from the training set
as described above with a patch length of 100 ms. As can
be seen from the clean speech examples in Fig. 7b (left
pane), only few patches are highly active (black) at a cer-
tain time and sparse patterns can be discovered in the acti-
vation data. Despite variations in speaking style and
speaker characteristics, the figure also suggest that each
word corresponds to similar, speaker-independent activa-
tion patterns and that different words can be discriminated
by comparing these patterns.

For the noisy speech examples, the babble noise type of
the aurora2 database were added at different levels of
9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

cy patch index

ow) and velocity features (bottom row) with a duration of 100 ms. Some
ter-phone or silence-phone transitions.
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Fig. 7. (a) Time–frequency representations of the word ‘‘four” uttered by three different speakers in clean conditions (left) and noisy conditions (right) and
their corresponding patch activation matrix A for patches derived from the procedure with (b) NMF (Section 2.3) and (c) cNMF (Section 2.5).
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signal-to-noise ratio (SNR) to the clean word utterances of
Fig. 7a, namely at 15, 10 and 5 dB SNR. In these noisy
conditions, the activation patterns of the words remain
similar and are hardly distorted by the different noise
types. The noise robustness properties of the proposed
speech model will be investigated in more detail later on
(Section 5).

Finally, Fig. 8 displays ten time–frequency patches for
the word ‘‘four”. The selected patches have a patch length
of 100 ms and are those with the highest activation values
in the utterance. The patches are ordered chronologically,
e.g. patch 1 is activated from frames 31 to 33, patch 10
from frames 61 to 65.

2.5. Comparison with convolutive NMF

Alternatively, convolutive NMF (cNMF) could be used
to obtain a parts-based representation of the data (O’Grady
and Pearlmutter, 2008). Therefore, cNMF can be applied
onto the sequence of feature vectors cq;t of Eq. (6).
However, experiments show two major drawbacks in disfa-
vor of cNMF. Firstly, the computational requirements for
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cNMF are higher than those of the NMF procedure as
described in Section 2.3. The training of the time–fre-
quency patches with cNMF involves more computational
time than NMF for the same number of iteration steps.
During testing, the processing time spent per iteration is
similar for both factorization techniques, but cNMF
requires more iterations to convergence. Secondly,
although cNMF also produces speaker-independent activa-
tion patterns, it turned out that these patterns are less
robust to additional noise sources. From Fig. 7c it can be
seen that the activations patterns of cNMF are more dis-
torted in noisy speech than the patterns of NMF. These
observations will be confirmed in Section 5 by discussing
and comparing the final results.
3. Layer 2: Acquiring activation patterns of time–frequency

patches

Our bottom-up approach for language learning is driven
by the assumption that a particular language is characterized
by similarities in the activation patterns of time–frequency
patches, as was illustrated by Fig. 7. If we assume that the
patches correspond with (groups of) auditory neurons, each
sensitive to a specific time–frequency pattern, then a ‘‘snap-
shot” of their firing rate at a certain time is represented by a
column of A. Hence, if recurring acoustic patterns in speech
correspond to recurring neural firing patterns, one can
hypothesize that the meaningful objects in a language (e.g.
words) are characterized by similar activation patterns of
time–frequency patches.

In this section, a learning algorithm is proposed that is
able to acquire the objects of a language. The objects that
are found are words, but could also be phone-like units in
a different setting. The algorithm will discover the latent
structures in patch activations by using ‘‘histograms of
acoustic co-occurrence” (HAC) which are described by
Van hamme (2008a) and will be restated next. HAC-features
can represent a given segment of speech in a unique high-
dimensional vector without requiring a segmentation of
the segment, time warping or a constraint of its duration.
Moreover, each word in the utterance contributes additively
to the HAC of the utterance which motivates to apply the
HAC representation in association with NMF. Word identi-
ties are being provided to the algorithm to bring the discov-
ered activation patterns in relation with the words in the
vocabulary.
3.1. Histograms of acoustic co-occurrences

HAC-models can describe speech by the co-occurrence
statistics of acoustic events. In this work, these models
are used to recover recurring patterns in patch activation
events which are here the occurrence of quantized vectors
in the activation matrix A.

The activation data of the time–frequency patches will
be characterized by its similarity to examples. Therefore,
the columns of the activation matrix A are clustered into
R centroids using the K-means algorithm. Given the
Euclidean distance metric used in clustering, each centroid
can be represented by a Gaussian with spherical covari-
ance. As a consequence, the posterior probabilities P i;n of
all centroids n characterize any frame i of A in terms of
its similarity to each of the centroids. For each frame i,
the posterior probabilities satisfy:XR

n¼1

P i;n ¼ 1 ð11Þ

A special case is obtained in a ‘‘winner takes all” setting,
where all posteriors are zero except for the centroid closest
to the observation, which is assigned the value 1. This set-
ting is related to a vector quantization (VQ) approach
where the centroids are the codebook entries labeled from
1 to R. After decoding, each frame of the activation matrix
A is then replaced by the best matching centroid of the
codebook, which allows to reduce the activation matrix
to a single row vector of VQ-labels.

The HAC-representation is then the number of times all
VQ-label pairs ðm; nÞ 2 R� R are observed s frames apart.
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In other words, a histogram of lag-s co-occurrences is con-
structed where each co-occurrence signifies that the input
of activation frames is encoded into a VQ-label m at time
i, while encoded into VQ-label n at time iþ s. For a given
utterance u, the lag-s co-occurrence is weighted with the
(approximated) probability of the event

V s
u

� �
mn
¼
XIu�s

i¼1

P i;mP iþs;n with m; n ¼ 1; . . . ;R ð12Þ

where Iu is the number of frames in the utterance. Also
note that ½V s

u�mn–½V s
u�nm, such that these co-occurrences

are directed.
By stacking all ðm; nÞ-combinations, each utterance can

be represented by a single column vector V s
u where the ele-

ments express the sum of all R2 possible lag-s co-occur-
rences. We will refer to this vector as a HAC (histogram
of acoustic co-occurrence).

This procedure can be performed for different s-values
and for a given set of time–frequency patches with a patch
length of k frames. For a set of U utterances, the data
matrix for a choice of k and s is then formed by

V k;s ¼ V k;s
1 � � � V k;s

u � � � V k;s
U :

� �
ð13Þ

Note that thanks to the vector quantization approach, ma-
trix V k;s has a high sparsity. Furthermore, all its entries are
non-negative such that NMF-methods can be applied.

3.2. Semi-supervised learning with NMF

Suppose that the utterances are composed of R recur-
ring acoustic events such as words, each constructed from
the set of time–frequency patches. Since (13) is a sum over
time of activations, the words will contribute additively to
the corresponding column of V k;s. As each word is charac-
terized by a HAC, the HAC of each utterance will be a
(integer) linear combination of these histograms.

If the HAC of the words are placed in separate columns
of a matrix W , and if the corresponding rows of H would
contain the presence of each word in each utterance, one
would have (leaving out indices k and s):

V � WH ð14Þ

Given their interpretation, all entries of W and H are con-
strained to be positive or zero. Because of these constraints
and given the fact that Eq. (14) will not hold exactly since
the observed symbols are subject to variability and uncer-
tainty, W and H are estimated by NMF. Factorization of
V is performed using the approach of Section 2.3 without
enforcing sparsity constraints, e.g. we set k to 0.

Once W is estimated on a training set, new utterances
can be analyzed with factorization (14) by estimating H .
The degree to which each discovered activation pattern is
present in each new utterance is then found by examining
the columns of H .

In this work, the words are unknown and NMF is used
to separate them out from the utterances. However, since
utterances can be seen as a sequence of words, but also
as, for instance, a sequence of phones, constraints have
to be imposed on (14) by exploiting grounding informa-
tion. If it is known which words occur in each utterance,
this information can be exploited to associate a word iden-
tity to each column of W . Therefore, the L� U grounding
matrix G is formed, which holds in its lth row and uth col-
umn the number of times the lth word occurs in the uth
utterance. Here, L is the number of word identities and
U is the number of training utterances. Subsequently, we
compute:

G

V

� �
¼

W g

W v

� �
H ð15Þ

which expresses that word identities need to be explained
jointly with the acoustic data by common model activa-
tions H . Given the properties of multiplicative updates
(Lee and Seung, 2001), grounding forces the NMF decom-
position to associate word models in Wv also to the utter-
ances containing those words. Without augmenting V
with the grounding matrix, NMF tends to spend columns
of Wv preferably on the more frequent acoustic patterns
since this has the most impact on minimizing the modeling
error. Experiments have shown that the common
dimension R is better overestimated, hence R P L. This
allows to model acoustic events that have no relevance to
grounding such as silence or filler words.

3.3. Improving learning by modeling multiple streams

As explained in Section 3.1, the data matrix V k;s con-
tains lag-s co-occurrences in the activation data of time–
frequency patches with a duration of k frames. For each
individual configuration ðk; sÞ, patterns can be learned
using the approach of Section 3.2 by connecting acoustic
information and by assigning a meaning to these patterns.
We may assume that the performance of the learning
algorithm will increase if multiple configurations are com-
bined in the input matrix. This idea has already been
exploited by jointly capturing static, velocity and acceler-
ation feature information in each time–frequency patch.
On the activation level, the data matrix of (14) can be fur-
ther extended by incorporating different sets of patches
and including co-occurrence data at different time lags.
By allowing the use of patches with different durations,
we could also compensate for the time differences of
phones. For instance, one can expect that plosives cause
more neural activation at neurons modeling time–fre-
quency patches with a duration around 50 ms, while neu-
rons corresponding to patches of 100 ms better represent
diphthongs and vowels. Units with even longer duration
(e.g. 200 ms) can be used to model intra- and inter-pho-
neme transitions. Therefore P sets of time–frequency
patches are included in the model, each exploiting Q
values of s, augmented with grounding information that
relates to the spoken words:
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G

V k1;h

..

.

V kP ;h

266664
377775 ¼ Wg

Wv

� �
H with V ki;h ¼

V ki;s1

..

.

V ki ;sQ

264
375 ð16Þ

For these joint streams, the generative parts-based model
still holds: the joint stream co-occurrences of utterances
can be written as an additive combination of parts. As
we will show in the experiments of Section 5, it is indeed
advantageous to exploit multiple combination of k and s
in the HAC-model.

4. Layer 3: Detecting words in activation patterns

After the semi-supervised training procedure, Wg and Wv

is known. Recognition on unseen test utterances (from
which grounding information G is unknown), is achieved
by first computing the histograms of co-occurrence V and
then estimating the matrix factor bH in V � Wv

bH by hold-
ing Wv fixed. This matrix bH reveals to which extent the
internal representations of the trained words are present
in the new test utterance. By estimating the grounding
information as:bG ¼ Wg

bH ð17Þ

we obtain estimates for the presence of the words in the test
utterances. Hence, for a word that is present, the corre-
sponding element of bG tends to 1 and to 0 if it is absent.
This way, a word detection system can be build from the
content of matrix bG by comparing bG with a threshold n.
Two types of errors are involved in the system: missed
detections (bGij < n while utterance j contains word i) and
false alarms (bGij P n while utterance j does not contain
word i). The trade-off of both error types can be visualized
by means of a Detection Error Trade-off (DET) curve
(Martin et al., 1997). In Fig. 9, the DET-curve is shown
for the word detection task where the model is trained on
lag-10 co-occurrence counts ðs ¼ 10Þ computed on a set
of time–frequency patches with a length of 100 ms
ðk ¼ 10Þ. The performance of the system in clean speech
conditions is compared with a noisy test case where the
speech is distorted by babble noise at 10 dB SNR. The esti-
mated grounding matrix bG of five different utterances for
both test cases are shown in Fig. 10 where high values
(black) indicate that the corresponding words have a high
probability to be present in the utterance.

In the experimental evaluation of Section 5, we will not
apply this ‘‘per word detection” paradigm, which is rele-
vant for tasks such as keyword spotting. Instead we will
measure correct word recognition per utterance. Assuming
that the number Du of different digits occurring in the uth
test utterance is given, the Du candidates with highest acti-
vation according to Eq. (17) are selected. Notice that the
recognition result is unordered, a problem that is addressed
in (Van hamme, 2008a) by a sliding window decoder that
estimates at which time each word occurs in the utterance.
Word error rate is thus defined as the sum of the number of
incorrect digits that end up in the top Du, divided by the
sum of Du over the complete test set.
5. Experiments

The speech data are taken from Aurora2, a small vocab-
ulary, speaker-independent database for connected digit
recognition as defined by Hirsch and Pearce (2000). All
utterances are derived from the TI-Digits database that
contains recordings of male and female US-American
adults, downsampled to 8 kHz sampling frequency. The
database contains isolated digits and sequences of up to
seven digits. The Aurora2 clean-condition training set con-
sists of 8440 utterances that are used for the discovering the
time–frequency patches and their activation patterns from
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which the HAC-models are derived. The test experiments
are conducted on test set A consisting of 4004 utterances
from the TI-Digits test data, split into 4 subsets of 1001
utterances each and to which 4 different noises are added
at different SNR-levels: noise recorded in a subway (N1),
babble noise (N2), car noise (N3) and noise recorded in
an exhibition hall (N4).

5.1. Reference experiment

Baseline recognition results are produced by a conven-
tional HMM-based recognition system using the complex
back-end configuration as defined by the ETSI Aurora
group (ETSI Standard Document, 2000b). Whole word
digit models were trained on the clean speech training data-
base using the HTK software package version 2.2 from
Entropic (Young et al., 1999). The digit models have 16
emitting states with 20 Gaussians per state. The optional
inter-word silence is modeled by 1 or 3 states with 36 Gaus-
sians per state, while leading and trailing silence have 3
states. The total number of Gaussians is 3628. Feature were
extracted by the Aurora WI007 front-end (ETSI Standard
Document, 2000a), a cepstral analysis scheme where 12
Mel-scaled cepstral coefficients and c0 (no log-energy) are
determined for a speech frame of 25 ms length using a
frame shift of 10 ms. These features are combined with
their dynamic coefficients to yield in 39-dimensional feature
vectors for recognition, as explained in (Macho et al.,
2002).

Here, we assume that for each test utterance u the num-
ber Nu of digit sequences is known. This information is
then used in the language model by forcing the decoder
to recognize exactly Nu digits. From the recognition result,
only the different digits are retained to obtain an unordered
string result of at most Nu digits. Similarly as in Section 4, a
detection error is accounted for each digit from the set of
Du different and correct digits in the utterance that is not
present in the unordered recognition result. The error rate
of this HMM-based word detection system is shown in
Table 1. Results were averaged over the four noise types
of Aurora2.

5.2. Training procedure

In the experiments, multiple sets of time–frequency
patches, modeling acoustic patterns of different durations,
were trained on the clean training set of Aurora2. The
patches are learned from a data matrix constructed from
static, velocity and acceleration features as explained in
Section 2, while using the following values for k: 5, 10,
Table 1
Unordered word error rate of an HMM-based word detection system on
the Aurora2 database averaged over the four noise types.

Clean 15 dB 10 dB 5 dB

0.16 2.98 11.92 34.88
15, 20. For each set, the number of patches P to be discov-
ered is 100. Experiments, not reported in this paper, have
shown that this number suffices to model the different spec-
tral patterns of the small vocabulary task of Aurora2. The
obtained patches are modeled by the columns of the four
matrices Bk which are stored for the recognition task on
test data.

For each set of time–frequency patches, the patch acti-
vation vectors in Ak are quantized using a codebook of
250 entries, resulting in 4 sequences of VQ-labels. Subse-
quently, the VQ-label co-occurrence histograms are com-
puted for all utterances using different lag-s values: 5, 10,
15, 20. The VQ histogram counts are divided by a fixed
constant (100) such that the acoustic and grounding infor-
mation have roughly the same weight in the data matrix
V k;s. Experiments have shown that the value of this con-
stant is not critical: it can be changed over several orders
of magnitude without significant impact. To acquire all ele-
ven words of Aurora2, namely the digits ‘‘one” to ‘‘nine”,
‘‘zero” and ‘‘oh”, the training procedure as described in
Section 3 was performed with R ¼ 12 using the utterances
of the clean training set. After factorization (15), W g and
W v are stored for recognition.

5.3. Evaluating the results

To discover the digits that are present in the test utter-
ances, the same procedure as in training is used except that
we compute the patch activation matrix A in (8) by holding
B fixed to the one obtained from training. Similarly, the
word activation matrix H is found by holding W fixed in
(14) to the one estimated from the training set.

Table 2 shows the unordered word error rate on the
Aurora2 test set averaged over the four noise types, using
different stream configurations ðk; sÞ. For clean speech,
the self-learning algorithm performs worse than the
HMM-based system that makes use of expert speech
knowledge that arises from audiology and linguistics.
However, our system performs comparably to the HMM-
based recognizer at 15 dB SNR and has a remarkably
higher accuracy for noisy speech at lower SNRs without
using any noise compensation techniques. From the Table
2, we can also observe that the robustness can be increased
by exploiting more knowledge sources. The reason for this
noise robustness is three-fold: (i) thanks to the parts-based
representation of speech, the system easily detects, even in
noisy conditions, which time–frequency patches are active;
(ii) these time–frequency patches provide static and
dynamic spectral information over large time windows;
(iii) multi-window time–frequency representations can be
exploited by the joint modeling of different streams.

For comparison, we added the results of the STFT fea-
tures with the same time windows parameters for the tim-
ing and frequency structure (see Table 3) and those
where cNMF are performed onto the feature vectors of
Eq. (6) (see Table 4). As can be seen from both tables, the
word error rates are worse than those shown in Table 2.



Table 2
Unordered word error rate results on the Aurora2 database averaged over the four noise types for the proposed recognition system using a combination of
different sets of time–frequency patches and different lag-s co-occurrence counts. The time–frequency patches are derived from the enhanced and smoothed
RTFR features using the NMF procedure described in Section 2.3. The �-symbol indicates which configurations ðk; sÞ are integrated in the input matrix of
Eq. (16).

k s Clean 15 dB 10 dB 5 dB

5 10 15 20 5 10 15 20

� � 2.10 4.29 7.07 12.54
� � 1.98 3.74 6.37 11.65
� � 2.22 4.02 6.78 11.58
� � 2.67 4.90 7.33 12.64

� � � 2.17 3.80 5.79 10.34
� � � � 1.89 3.58 5.86 10.83
� � � � 1.96 3.74 5.82 10.86
� � � � � 1.93 3.56 5.64 10.67

� � � � � � 1.94 3.41 5.39 9.35
� � � � � � � 1.83 3.26 5.24 9.35

� � � � � � � 2.01 3.36 5.12 8.93
� � � � � � � � 1.87 3.08 4.94 8.67

Table 3
Unordered word error rate results for Aurora2 averaged over the four noise types using time–frequency patches derived from STFT features by the NMF
procedure.

k s Clean 15 dB 10 dB 5 dB

5 10 15 20 5 10 15 20

� � � � � � 2.06 4.27 6.48 11.62
� � � � � � � 1.81 4.23 6.78 12.08

� � � � � � � 2.06 4.20 6.40 11.06

� � � � � � � � 1.91 4.12 6.43 11.56

Table 4
Unordered word error rate results for Aurora2 averaged over the four noise types using time–frequency patches derived from the enhanced and smoothed
RTFR features by the cNMF procedure discussed in Section 2.5.

k s Clean 15 dB 10 dB 5 dB

5 10 15 20 5 10 15 20

� � � � � � 3.45 6.57 10.23 18.16
� � � � � � � 2.76 5.83 9.48 16.36

� � � � � � � 3.18 5.90 9.44 16.49
� � � � � � � � 2.85 5.50 9.08 15.78
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This indicates respectively that the enhanced and smoothed
RTFR features are more robust than STFT features and
that the activation patterns acquired by the proposed
approach using NMF to discover time–frequency patches
deliver a more robust input stream to the word detection
system than those obtained by the cNMF approach.
6. Conclusions

In this paper, we proposed a bottom-up approach for
learning the words of a language. An unsupervised tech-
nique was presented to discover a set of spectral patches
that can describe speech. We exploited the use of two
complementary feature representations derived from
a reassigned time–frequency spectrogram to obtain a
representation that can cope with acoustic events with
short and long durations. The non-negative matrix factor-
ization (NMF) algorithm using sparsity constraints was
applied to discover latent recurring patterns in static and
dynamic features. The obtained basis vectors correspond
to phone-sized spectral patterns which we referred to as
time–frequency patches. Experiments on the Aurora2 data-
base revealed that these patches are activated in speaker-
independent patterns which are related to the words of a
language.

Next, a learning algorithm was built that automatically
discovers and acquires the recurring patterns in the activa-
tion data by applying NMF on the co-occurrence counts of
activation events. The obtained patterns were associated
with the words of a language and finally the system was
able to detect the words in unseen (noisy) speech data.
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Experimental evidence was given for the noise robustness
of the proposed word detection system, based on the
Aurora2 digit recognition task. Although a conventional
HMM-based approach using cepstral features obtained bet-
ter results on clean speech data, the proposed learning algo-
rithm showed a superior performance for speech that is
distorted by the noise down to 5 dB SNR. The NMF learning
algorithm was shown to be sufficiently versatile to apply it at
both levels of speech representations for discovering struc-
ture in the data. NMF has less parameters to be tuned in
comparison to HMM-based systems. The most important
parameters are the number of time–frequency patches P,
the sparsity parameter k in the NMF of the first layer and
the number of VQ-labels R in the second layer. Moreover,
experiments not reported here have shown that for the small
vocabulary task as was considered in this paper, the perfor-
mance of the system is not very sensitive to these parameters.

Inspired by research on the auditory cortex of mam-
mals, researchers have suggested that ASR-systems should
trigger on the presence of spectro-temporal patches. Such
biologically inspired systems might exhibit properties of
human audition such as robustness to noise. In this paper,
we have shown that such an auditory representation with
good robustness can be obtained through unsupervised
learning (the first layer). We have also shown how the acti-
vation patterns can be exploited to build a speech recog-
nizer. Further work involves extending the word
detection system to a speech recognition system that also
provides information related to the order in which the
words occur in the test utterances. Therefore, the
HAC-models in the second layer can be extended by mov-
ing a sliding window over the utterance to detect the time
of occurrence of the different words in the utterance and
hence the word order. In our current implementation, the
noise has been left uncompensated and we would like to
investigate to which extent the performance of the recogni-
tion system can be further improved by exploiting noise
reduction techniques. Though, the layered architecture
offers scalability towards vocabularies in the sense that
the patch set is reusable across words, more research is
required to reveal how well the proposed system is suited
for large vocabulary continuous speech recognition. At
his point, the presented three-layered architecture is not
capable to deal with these vocabularies because of the large
data requirements per word. However, the scalability of the
system can be increased by adding more layers in cascade
to model the words as a combination of sub-word patches
instead of learning all the words from scratch.

To conclude, we believe that the presented system is an
ideal platform for future research as in its baseline implemen-
tation it already yields competitive results and could open
new avenues of research on automatic speech recognition.
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