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Abstract

Hidden Markov Models have been essential in ohtgini
today's successes in speech recognition. Howevemes
limitations of HMMs become clear: for example itdificult

to successfully exploit features that are measatedifferent
time scales than the centisecond scale at whiclspleetral
features are measured. Little success has beedevadhin
integrating utterance level information such as spdy,
segmental information and finer detail such as emnset
times. In this paper, we apply latent semantic yesigl(LSA)
techniques known from the text processing fieltlistograms
of acoustic event co-occurrence (HAC) to proposeoeeh
speech recognition framework. We show that the HAC-
method can deal with correlated information and l@kp
knowledge sources that are asynchronous.

Index Terms. speech recognition, information discovery,
information integration, latent semantic analysisp-
occurrence statistics.

1. Introduction

Today’s state-of-the-art speech recognizers arelynbased
on Hidden Markov Models (HMMs). This model handilles
variation in the speech signal in a statisticaimeavork. The
sequential nature of speech is represented bysstaiti
restricted transitions. In recent years howevestethas been
a growing awareness that some important informaitiotine
speech signal is difficult to model with HMMs. Espaly
when the speech features are measured at diffeirmet
scales, the experience is that they are hard égiate in the
model. Areas where HMMs fall short are e.g. duratamd
prosody modelling, pronunciation variation and eosit
dependency. Dynamic Bayesian networks are an egrteigi
HMMs that offer a framework that has extended céipiais
for integrating multiple knowledge sources [1].

This paper advocates a radically different approach
inspired by latent semantic analysis (LSA) teche&uA
high-dimensional shift-invariant speech represémtatalled
histogram of acoustic co-occurrenc@$AC) is proposed and
algorithms for training and recognition are propbs# is
shown that sources of information at different tisoales are
easily integrated into a joint decision. Thoughstipaper
focuses on (weakly) supervised learning, its unsiged
learning capabilities have also been shown inTBE core of
the method is based on non-negative matrix factbois ([3]
NMF) in a high-dimensional space. NMF has beeniagdph
speech and audio processing for various applicatsuch as
music transcription [4], [5], source separation §id feature
extraction [7]. However, the vector space to whitkF is
applied in these applications differs from the osed in this
paper.

This paper is organised as follows: in section 2 th
histogram of acoustic co-occurrence (HAC) model is

introduced gradually. The experiment of sectiorh8ves the
information stream integration capabilities whichre a
discussed in section 4.

2. Histograms of acoustic co-occurrences

2.1. Input data

We consider symbolic input data that can be reptesein
directed graphQ as illustrated in Figure 1. Each arc in the
graph is labelled with a symbol and an associatesltipe
activation level. The symbols are drawn from a Setith
finite cardinality |S|. The activation levels coldd posterior
probabilities (as will be the case below), the \attons of
neural networks, signal energies or activationghef type
computed in section 2.4. We list a few examples:

¢ S are phones and tlieis a phone lattice with posterior
probabilities, while the nodes are labelled with #tart
and end times of the phones. A method for generatin
phone lattices is described in [9].
S are vector quantisation (VQ) labels of spectedi-(f
band or in subbands) afdlis a chain, i.e. each node is
connected to a single successor. The nodes aredspac
regularly in time at multiples of the spectral ais&
frame shift time. All activations are 1.
With soft vector quantisation, there are multipéegilel
arcs between the nodes, see Figure 2. Soft VQ ean b
applied to spectra, but phone posterior probagsliti
evaluated at regular instants also adhere to dhis.f
The node times will not be used explicitly in tpaper.

E(0.1)

H(0.2) J(0.3)

Figure 1 example of an input graph. The arcs are
labeled with a symbol and an activation (a posterior
probability in this example).

A(0.9) B(0.4) C(1) D(0.7) E(0.6)
’.‘v
F(O1) H(0.2)

Figure 2:vector quantization (VQ) and soft VQ can
be represented as a chain graph.
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2.2. Shift-invariance and linearity

A graph is converted to a histogram vector of largt= |Sf

by accumulating the co-occurrence activations bbalered
symbol pairs (A,B) at a lagover the graph. The lag between
the arc pair ¢,B) is defined as the minimal number of nodes
that need to be visited to travel framto 3. Several options
can be considered for defining the co-occurrentigaton in

a graph. In this paper, we will work in a statiatiramework

in which the activations are posterior probab#iti€onsider
all paths that pass throughand with T nodes in between.
The co-occurrence activation af,p) is the sum of proba-
bilities of all such paths. The symbol co-occureeactivation
of (A,B) is then the sum of arc pair activations oad arc
pairs that carry the symbol A and B respectivelyprActical
expression for = 1 can be found in [2].

The operatoHAC (histogram of acoustic co-occurrences)
transformsQ to anN-dimensional real-valued vectov by
considering allN possible symbol pairs. L&,, ... , Qg be
graphs andv,=HAC(Q,) for r = 1 ... R. First notice that all
w, are points in the sani:-dimensional space, irrespective of
the size of2,. ConsideQ as the concatenation 9f, ... , Qg
(assume graphs a single entry and exit node, saththiey
can be concatenatedflAC(Q) differs only from the sum
(overr) of HAC(Q,) by the contributions of any cross-graph
arc pairs that start more thamodes before the start node of
Q,. In that sense, thelAC-operator is approximately shift-
invariant: it is only affected by very near predes® arcs in
Q. Hence,

w = HAC(Q) = ZR: HACQ,) =Y w, )

r=1 r=1

Let Q now be the graph of an utterance ddbe the
graphs corresponding to individual words. We hawasvn
shown thaHAC(Q) =w =~ W h whereW = [w; ... wg] andh
is anR-dimensional indicator column vector containing i 1
thei-th position if wordi occurs in the utterance. When used
to model speech, we will only dispose of a noisgasiation
of HAC(Q), calledv. However, ifT utterances are available,
we can stack them ag = [v; ... vq] and likewiseH =
[hl hT]v SO

V~WH 2

2.3. Non-negative matrix factorisation

In [2] and [8] it was shown that we can train (with super-
vision) the words a collection df utterances is composed of
by computing the factorization (2). Each discovevextd is
then characterized by a histogram vector or a colimi/.
This mathematical technique is known as non-negatistrix
factorization [3]. Given a matri¥ of sizeN x T of non-
negative real numbers, approximate non-negativerimat
factorization rewrites this matrix as the produtfaztorsW
andH of sizeN x R andR x T respectively and containing
non-negative real numbers. The metric to measue th
(dis)similarity of the left hand side and the rigtand side of
(2) is their divergence:

 logr—— - 3)
= [WH],

Divergence is preferred over e.g. the Frobeniusnnsince
unobserved dataV{=0) will contribute weakly to dissimi-

larity. In this paper, the iterative multiplicatiugodates for
minimizing (3) as outlined in [3] and [10] are usethe
related convergence issues will be discussed tinse8.2.

Notice that in (2)W andH are not unique. For instance,
scaling and permutation of the columnsVéfor the rows of
H lead to equivalent solutions. Therefore, the colsrafW
will be normalized to sum to 1. ConsequenHlywill need to
be scaled accordingly and we will refer to the ealofH as
model activationsThe permutation problem will not hamper
the analysis below.

2.4. Supervised training and recognition

The NMF-method for unsupervised discovery of reogrr
acoustic patterns (words in section 2.2), can henebed to
include supervision. If theth utterance is known to contain
them-th word G, times, form theM x T matrix G with G,,;in
its mrth row and-th column and compute the NMF:

S

which expresses that word identity needs to be adxgdl
jointly with the acoustic data by common model atibns.
In caseR = M we expeciV, to be a diagonal matrix (within a
permutation, see the previous section). We willetM in
this work, such that not all models need to expéamord.

After supervised training, i.e. computing factotisa (4),
recognition on unseen data is achieved by firstpating A
in V = W, H using only the acoustic data and with fiXag.
The presence of words or theactivation in the test
utterances is subsequently estimated as:

G =W,H ®)

Notice an important difference with an HMM-based
speech recogniser: each column of the maGriill reveal to
which extent each trained word is present in therese
ponding utterance. However, it will say nothing abohe
order in which the words occur in the utteranceueTr
decoding still requires further research (see sésion 4).

2.5. Integrating asynchronousinformation streams

If a single utterance can generate multiple grafitesmodel

of section 2.2 will hold for each of them with anomon
indicator vectorh. Hence, if there ar€ streams of acoustic
information that can each be represented in a gp@h
utterance, thé1AC(.)-operator can be applied to each stream
g to yield the histogram matric&g,. Training and recognition
are still described by equations (4) and (5) Witreplaced by

VEIRE: (6)

Since the graph node times are not used, thenéraually no

limitations to the nature and time scale of theustic events
in the different streams. They can for instance fiaene

synchronous, segmental, defined at a fine timessoaleven
at the utterance level like the matex

3. Experiments

To date, the method has been applied to small wbagb
word discovery and recognition tasks only. In théper, we
report on results obtained on the TIDIGITS corpus.
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Admittedly, research on more complex tasks willreguired
to explore the limitations of the method. The imfation
sources that will be integrated are measured asegenental
and at the frame or feature vector level. Theyraspectively
represented by an automatically generated photieelatnd
by vector quantised cepstral features and thest fand
second order time derivatives.

The training speech data are taken from TI-Digitsciv
contains recordings of 55 male and 57 female US+kae
adults, downsampled to 16 kHz, totaling 6159 cotetedigit
sequences of length 1 through 7. The test set icen€214
digit strings of length 1 through 7 uttered by sjaiint set of
56 male and 57 female speakers.

3.1. Stream integration

The phone lattices contain 43 different phone symbuus
the silence symbol. The acoustic-phonetic decodiakes
use of a state-of-the-art acoustic model that steiif an
HMM with cross-word context-dependent tied Gaussian
mixtures, trained on the Wall Street Journal (W$J0s
WSJ1) database. For the phone transition modegrarb is
estimated on the same data. With this constructienensure
that the phone lattices are not biased towardsagieand that
similar performance can be obtained on other voeaies.
For all utterances of the training database, a eHattice is
generated and the acoustic co-occurrence histogitafag
T =1 is computed, resulting in a histogram ma¥ixof size
1936 x 6159 (1936 = 4%

For the frame-synchronous information, 12 MFCC'sspl
log-energy are computed at a 100 Hz frame rateodelbook
of respectively 150, 150 and 100 for static, velpoand
acceleration parameters is trained on the traisigigof the
TIDIGITS corpus using the K-means algorithm. Abitring
utterances are then processed resulting in a h@rtalel for
static, velocity and acceleration features per $Oamalysis
frame. Each of these three streams can be repeesesta
“chain” graph (special case of Figure 2 with onlyeoarc
between two successive nodes). For a givetie resulting
histogram matrices have size 22500 x 6159 for thcsand
the velocity stream and 10000 x 6159 for the acagtn
stream, which are all stacked to yield a (very sppb5000 x
6159 matrix. In the current experiment, we consider
occurrence lags= 2 (/,), T =5 (V3) andt = 10 {/,). Finally,
the VQ histogram counts are divided by a fixed tams
(100) such that alV, have roughly the same weight in the
cost function equation (3).

In the sequel, we will investigate how the segmlenta
information V; and the three sources of frame-synchronous
information V, throughV, complement each other to yield
better recognition results. For each combinationindér-
mation sources, an NMF is computed wigh= 12 (model
order selection was discussed in [2]).

Since the current method is not capable of ordetigy
recognized words in time, we apply a non-standsaeaduation
method. For thé-th test utterance which is known to contain
K; different words, we take th&; largest values of the
corresponding-th column of the estimated word activatién
in equation (5). For instance, for a test utterafriee one
nine”, we will respond with the 2 best scoring waréience,
in terms of difficulty, the resulting task is connphle (but not
equivalent) to length-constrained digit string rgmition. The
number of correct words in the list §f digits is counted over

T
the test corpus and divided E K .

t=1

to form the word error rate (WER) shown in the tighst
column of Table 1. In the columns on the left, theluded
knowledge sources are marked withx& The first few rows
show the effect of including frame-synchronous aticuco-
occurrence information. Short-term acoustic co-oegce
alone § = 2) seems too local to model word-level segments
(WER = 6.09 %). Including longer-span co-occurrence
histograms has a positive impact on the WER, afjhatine
knowledge sources at differemtare obviously correlated.
Using segmental information only, the WER is 4.84 %
Combining the sources which contain related infdaiomabut

at different time scales, reduces the error ra236 %.

Table 1:digit recognition word error rates (WER)
when information sources are combined. Included
sources are marked with X.

segmental frame synchronous
Vi V2 V3 Va4
phone VQ VQ VQ
=1 =2 =5 1=10 | WER (%)

X 6.09

X 4.22

X 4.17

X 5.17

X X 4.99

X X 4.23

X X X 4.88

X 4.84

X X 3.58

X X 3.26

X X 3.29

X X 2.80

X X 2.73

X X X 2.57

X X X X 2.50

3.2. Initialisation and conver gence analysis

NMF algorithms suffer from problematic convergence
behaviour [10]. In the present experiments, we @igd the
supervision knowledge in the initialisation of tmeatrix
factors. Assuming that thd (=11 here) leftmost columns of
W each model a single word, the arguments of se@i@n
also allow to set the entries in the tdp rows of H
corresponding to the unused words in a particuining
utterance to zero. The other entriedHo&nd all entries oV
are initialized to random strictly positive numbensd 200
multiplicative update iterations are performed. the
experiments of section 3.1, this process was redef times
and the factorisation with the smallest divergesaetained.

If the factorisation outcomes are not identical each
trial, this results in a source of stochastic waia in the
observed word error rate, which is now analysedfalet,
HMMs suffer from a similar phenomenon. For the cakere
the data consist 0¥, andVs;, we performed 180 trials and
computed the WER for each outcome. A scatter plahe
observed WER on the test set versus the divergesice at
the last iteration on the training set is giverfFigure 3. None
of the trials leads to a dramatically poor erroteraviost
solutions the algorithm converges to are fairly iealent,
though a considerable variation in WER is observEue
lowest divergence on the training set is not a gtae for the
lowest WER on the test set. Like with HMMs, crosgida-
tion is required. Notice that the estimatiorfbfvith fixed W,
is a convex problem, so that a similar variatioms mot
observed due to the matrix factorisation requirest f
recognition.
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Figure 3:word error rate as a function of the
divergence between data and model during training.

4, Discussion

The presented training and recognition HAC framéwor
possesses some properties that are markedly diffémem
the wide-spread HMM framework. First, it can womk i
supervised (this paper) and unsupervised mode [B],
Second, it can easily integrate correlated infoiomaas well
as asynchronous information streams. Using coeelat
information streams in HMMs typically requires fe
dimension reduction techniques such as linear idigzant
analysis. Third, time and sequence are only weapre-
sented by acoustic event co-occurrence. Much likeoed-
level bigram is only a weak linguistic represeratiof
grammar, the acoustic event co-occurrence doesegepr
order, but many different sequences can lead tcdénee or
similar histograms. Especially, repetitions of attgra or
cyclic permutations lead to very similar histograarsl are
hard to distinguish. Fourth, the high-dimensiondlifts
invariant speech representation does not requigeeaetation
of the audio in words during training or recognitiol his
obviously has a disadvantage, in that it is noedbl locate
and order the recognized words within the analysislow
(an utterance in this paper). Computing the histogrover a
sliding window at least confines the recogniseddsao this
window as was already shown in [2], but this tegheineeds
future research. The absence of a segmentationalgephas
the advantage that related non-contiguous expressiach as
separable verbs in Germanic languages can easitglaied
in one pattern. It also means that no time warpamg
dynamic programming are required, unlike in othattgrn
discovery algorithms [11].

5. Conclusions

In this paper, we have presented an NMF-based meftio
supervised training of word models for speech ratam.
The HAC method is capable of successfully integmti
correlated information as well as information dfedent time
scales, which was illustrated with the integratadrutterance
level information G), segmental informatior\V() and frame-

synchronous spectral informatiov(throughV,). Evidently,
other choices of acoustic events could be made.

Though the initial results of this work are very
encouraging, future research will need to addreagswo
generate segmentations in terms of the learned Imadavell
as to explore the accuracy limits of HAC models ths
vocabulary increases.
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