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Abstract 
Hidden Markov Models have been essential in obtaining 
today’s successes in speech recognition. However, some 
limitations of HMMs become clear: for example it is difficult 
to successfully exploit features that are measured at different 
time scales than the centisecond scale at which the spectral 
features are measured.  Little success has been achieved in 
integrating utterance level information such as prosody, 
segmental information and finer detail such as voice onset 
times. In this paper, we apply latent semantic analysis (LSA) 
techniques known from the text processing field to histograms 
of acoustic event co-occurrence (HAC) to propose a novel 
speech recognition framework. We show that the HAC-
method can deal with correlated information and exploit 
knowledge sources that are asynchronous. 
Index Terms: speech recognition, information discovery, 
information integration, latent semantic analysis, co-
occurrence statistics. 

1. Introduction 
Today’s state-of-the-art speech recognizers are mostly based 
on Hidden Markov Models (HMMs). This model handles the 
variation in the speech signal in a statistical framework. The 
sequential nature of speech is represented by states with 
restricted transitions. In recent years however, there has been 
a growing awareness that some important information in the 
speech signal is difficult to model with HMMs. Especially 
when the speech features are measured at different time 
scales, the experience is that they are hard to integrate in the 
model. Areas where HMMs fall short are e.g. duration and 
prosody modelling, pronunciation variation and context 
dependency. Dynamic Bayesian networks are an extension of 
HMMs that offer a framework that has extended capabilities 
for integrating multiple knowledge sources [1].  

This paper advocates a radically different approach 
inspired by latent semantic analysis (LSA) techniques. A 
high-dimensional shift-invariant speech representation called 
histogram of acoustic co-occurrences (HAC) is proposed and 
algorithms for training and recognition are proposed. It is 
shown that sources of information at different time scales are 
easily integrated into a joint decision. Though this paper 
focuses on (weakly) supervised learning, its unsupervised 
learning capabilities have also been shown in [2]. The core of 
the method is based on non-negative matrix factorisation ([3] 
NMF) in a high-dimensional space. NMF has been applied in 
speech and audio processing for various applications such as 
music transcription [4], [5], source separation [6] and feature 
extraction [7]. However, the vector space to which NMF is 
applied in these applications differs from the one used in this 
paper. 

This paper is organised as follows: in section 2 the 
histogram of acoustic co-occurrence (HAC) model is 

introduced gradually. The experiment of section 3 shows the 
information stream integration capabilities which are 
discussed in section 4. 

2. Histograms of acoustic co-occurrences 

2.1. Input data 

We consider symbolic input data that can be represented in 
directed graph Ω as illustrated in Figure 1. Each arc in the 
graph is labelled with a symbol and an associated positive 
activation level. The symbols are drawn from a set S with 
finite cardinality |S|. The activation levels could be posterior 
probabilities (as will be the case below), the activations of 
neural networks, signal energies or activations of the type 
computed in section 2.4. We list a few examples: 

• S are phones and the Ω is a phone lattice with posterior 
probabilities, while the nodes are labelled with the start 
and end times of the phones. A method for generating 
phone lattices is described in [9]. 

• S are vector quantisation (VQ) labels of spectra (full-
band or in subbands) and Ω is a chain, i.e. each node is 
connected to a single successor. The nodes are spaced 
regularly in time at multiples of the spectral analysis 
frame shift time. All activations are 1. 

• With soft vector quantisation, there are multiple parallel 
arcs between the nodes, see Figure 2. Soft VQ can be 
applied to spectra, but phone posterior probabilities 
evaluated at regular instants also adhere to this form. 

The node times will not be used explicitly in this paper. 

 

Figure 1: example of an input graph. The arcs are 
labeled with a symbol and an activation (a posterior 
probability in this example).  

 

Figure 2: vector quantization (VQ) and soft VQ can 
be represented as a chain graph. 
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2.2. Shift-invariance and linearity 

A graph is converted to a histogram vector of length N = |S|2 
by accumulating the co-occurrence activations of all ordered 
symbol pairs (A,B) at a lag τ over the graph. The lag between 
the arc pair (α,β) is defined as the minimal number of nodes 
that need to be visited to travel from α to β. Several options 
can be considered for defining the co-occurrence activation in 
a graph. In this paper, we will work in a statistical framework 
in which the activations are posterior probabilities. Consider 
all paths that pass through α and β with τ nodes in between. 
The co-occurrence activation of (α,β) is the sum of proba-
bilities of all such paths. The symbol co-occurrence activation 
of (A,B) is then the sum of arc pair activations over all arc 
pairs that carry the symbol A and B respectively. A practical 
expression for τ = 1 can be found in [2].  

The operator HAC (histogram of acoustic co-occurrences) 
transforms Ω to an N-dimensional real-valued vector w by 
considering all N possible symbol pairs. Let Ω1, … , ΩR be 
graphs and wr=HAC(Ωr) for r = 1 … R. First notice that all 
wr are points in the same N-dimensional space, irrespective of 
the size of Ωr. Consider Ω as the concatenation of Ω1, … , ΩR 
(assume graphs a single entry and exit node, such that they 
can be concatenated). HAC(Ω) differs only from the sum 
(over r) of HAC(Ωr) by the contributions of any cross-graph 
arc pairs that start more than τ nodes before the start node of 
Ωr. In that sense, the HAC-operator is approximately shift-
invariant: it is only affected by very near predecessor arcs in 
Ω. Hence, 

 
1 1

( ) ( )
R R

r r
r r

HAC HAC
= =

= Ω ≈ Ω =∑ ∑w w  (1) 

Let Ω now be the graph of an utterance and Ωr be the 
graphs corresponding to individual words. We have now 
shown that HAC(Ω) = w ≈ W h where W = [w1 … wR] and h 
is an R-dimensional indicator column vector containing a 1 in 
the i-th position if word i occurs in the utterance. When used 
to model speech, we will only dispose of a noisy observation 
of HAC(Ω), called v. However, if T utterances are available, 
we can stack them as V = [v1 … vT] and likewise H = 
[h1 … hT], so 

 V ≈ W H (2) 

2.3. Non-negative matrix factorisation 

In [2] and [8] it was shown that we can train (without super-
vision) the words a collection of T utterances is composed of 
by computing the factorization (2). Each discovered word is 
then characterized by a histogram vector or a column in W. 
This mathematical technique is known as non-negative matrix 
factorization [3]. Given a matrix V of size N × T of non-
negative real numbers, approximate non-negative matrix 
factorization rewrites this matrix as the product of factors W 
and H of size N × R and R × T respectively and containing 
non-negative real numbers. The metric to measure the 
(dis)similarity of the left hand side and the right hand side of 
(2) is their divergence: 

( ) [ ] [ ]
,
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ij ij ij
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Divergence is preferred over e.g. the Frobenius norm since 
unobserved data (Vij=0) will contribute weakly to dissimi-

larity. In this paper, the iterative multiplicative updates for 
minimizing (3) as outlined in [3] and [10] are used. The 
related convergence issues will be discussed in section 3.2. 

Notice that in (2), W and H are not unique. For instance, 
scaling and permutation of the columns of W or the rows of 
H lead to equivalent solutions. Therefore, the columns of W 
will be normalized to sum to 1. Consequently, H will need to 
be scaled accordingly and we will refer to the values of H as 
model activations. The permutation problem will not hamper 
the analysis below.  

2.4. Supervised training and recognition 

The NMF-method for unsupervised discovery of recurring 
acoustic patterns (words in section 2.2), can be extended to 
include supervision. If the t-th utterance is known to contain 
the m-th word Gmt times, form the M × T matrix G with Gmt in 
its m-th row and t-th column and compute the NMF: 

 g

v

  
≈   

   

WG
H

WV
 (4) 

which expresses that word identity needs to be explained 
jointly with the acoustic data by common model activations. 
In case R = M we expect Wg to be a diagonal matrix (within a 
permutation, see the previous section). We will set R > M in 
this work, such that not all models need to explain a word. 

After supervised training, i.e. computing factorisation (4), 
recognition on unseen data is achieved by first computing Ĥ 
in V ≈ Wv Ĥ using only the acoustic data and with fixed Wv. 
The presence of words or their activation in the test 
utterances is subsequently estimated as: 

 ˆ ˆ
g=G W H  (5) 

Notice an important difference with an HMM-based 
speech recogniser: each column of the matrix Ĝ will reveal to 
which extent each trained word is present in the corres-
ponding utterance. However, it will say nothing about the 
order in which the words occur in the utterance. True 
decoding still requires further research (see also section 4).  

2.5. Integrating asynchronous information streams 

If a single utterance can generate multiple graphs, the model 
of section 2.2 will hold for each of them with a common 
indicator vector h. Hence, if there are Q streams of acoustic 
information that can each be represented in a graph per 
utterance, the HAC(.)-operator can be applied to each stream 
q to yield the histogram matrices Vq. Training and recognition 
are still described by equations (4) and (5) with V replaced by 

 
1

Q

 
 =  
 
 

V

V

V

⋮  (6) 

Since the graph node times are not used, there are virtually no 
limitations to the nature and time scale of the acoustic events 
in the different streams. They can for instance be frame 
synchronous, segmental, defined at a fine time scale or even 
at the utterance level like the matrix G. 

3. Experiments 
To date, the method has been applied to small vocabulary 
word discovery and recognition tasks only. In this paper, we 
report on results obtained on the TIDIGITS corpus. 
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Admittedly, research on more complex tasks will be required 
to explore the limitations of the method. The information 
sources that will be integrated are measured at the segmental 
and at the frame or feature vector level. They are respectively 
represented by an automatically generated phone lattice and 
by vector quantised cepstral features and their first and 
second order time derivatives.  

The training speech data are taken from TI-Digits which 
contains recordings of 55 male and 57 female US-American 
adults, downsampled to 16 kHz, totaling 6159 connected digit 
sequences of length 1 through 7. The test set contains 6214 
digit strings of length 1 through 7 uttered by a disjoint set of 
56 male and 57 female speakers. 

3.1. Stream integration 

The phone lattices contain 43 different phone symbols, plus 
the silence symbol. The acoustic-phonetic decoding makes 
use of a state-of-the-art acoustic model that consists of an 
HMM with cross-word context-dependent tied Gaussian 
mixtures, trained on the Wall Street Journal (WSJ0 plus 
WSJ1) database. For the phone transition model, a bigram is 
estimated on the same data. With this construction, we ensure 
that the phone lattices are not biased towards the task and that 
similar performance can be obtained on other vocabularies. 
For all utterances of the training database, a phone lattice is 
generated and the acoustic co-occurrence histogram at lag 
τ = 1 is computed, resulting in a histogram matrix V1 of size 
1936 × 6159 (1936 = 442). 

For the frame-synchronous information, 12 MFCC’s plus 
log-energy are computed at a 100 Hz frame rate. A codebook 
of respectively 150, 150 and 100 for static, velocity and 
acceleration parameters is trained on the training set of the 
TIDIGITS corpus using the K-means algorithm. All training 
utterances are then processed resulting in a hard VQ-label for 
static, velocity and acceleration features per 10 ms analysis 
frame. Each of these three streams can be represented as a 
“chain” graph (special case of Figure 2 with only one arc 
between two successive nodes). For a given τ, the resulting 
histogram matrices have size 22500 × 6159 for the static and 
the velocity stream and 10000 × 6159 for the acceleration 
stream, which are all stacked to yield a (very sparse) 55000 × 
6159 matrix. In the current experiment, we consider co-
occurrence lags τ = 2 (V2), τ = 5 (V3) and τ = 10 (V4). Finally, 
the VQ histogram counts are divided by a fixed constant 
(100) such that all Vq have roughly the same weight in the 
cost function equation (3). 

In the sequel, we will investigate how the segmental 
information V1 and the three sources of frame-synchronous 
information V2 through V4 complement each other to yield 
better recognition results. For each combination of infor-
mation sources, an NMF is computed with R = 12 (model 
order selection was discussed in [2]). 

Since the current method is not capable of ordering the 
recognized words in time, we apply a non-standard evaluation 
method. For the t-th test utterance which is known to contain 
Kt different words, we take the Kt largest values of the 
corresponding t-th column of the estimated word activation Ĝ 
in equation (5). For instance, for a test utterance “nine one 
nine”, we will respond with the 2 best scoring words. Hence, 
in terms of difficulty, the resulting task is comparable (but not 
equivalent) to length-constrained digit string recognition. The 
number of correct words in the list of Kt digits is counted over 

the test corpus and divided by
1

T

t

t

K
=
∑ . 

to form the word error rate (WER) shown in the rightmost 
column of Table 1. In the columns on the left, the included 
knowledge sources are marked with a “x”. The first few rows 
show the effect of including frame-synchronous acoustic co-
occurrence information. Short-term acoustic co-occurrence 
alone (τ = 2) seems too local to model word-level segments 
(WER = 6.09 %). Including longer-span co-occurrence 
histograms has a positive impact on the WER, although the 
knowledge sources at different τ are obviously correlated. 
Using segmental information only, the WER is 4.84 %. 
Combining the sources which contain related information but 
at different time scales, reduces the error rate to 2.50 %. 

Table 1: digit recognition word error rates (WER) 
when information sources are combined. Included 

sources are marked with X.  

segmental
V1 V2 V3 V4

phone VQ VQ VQ
τ = 1 τ = 2 τ = 5 τ = 10

x 6.09
x 4.22

x 4.17
x x 5.17
x x 4.99

x x 4.23
x x x 4.88

x 4.84
x x 3.58
x x 3.26
x x 3.29
x x x 2.80
x x x 2.73
x x x 2.57
x x x x 2.50

frame synchronous

WER (%)

 

3.2. Initialisation and convergence analysis 

NMF algorithms suffer from problematic convergence 
behaviour [10]. In the present experiments, we exploited the 
supervision knowledge in the initialisation of the matrix 
factors. Assuming that the M (=11 here) leftmost columns of 
W each model a single word, the arguments of section 2.2 
also allow to set the entries in the top M rows of H 
corresponding to the unused words in a particular training 
utterance to zero. The other entries of H and all entries of W 
are initialized to random strictly positive numbers and 200 
multiplicative update iterations are performed. In the 
experiments of section 3.1, this process was repeated 10 times 
and the factorisation with the smallest divergence is retained.  

If the factorisation outcomes are not identical on each 
trial, this results in a source of stochastic variation in the 
observed word error rate, which is now analysed. In fact, 
HMMs suffer from a similar phenomenon. For the case where 
the data consist of V1 and V3, we performed 180 trials and 
computed the WER for each outcome. A scatter plot of the 
observed WER on the test set versus the divergence value at 
the last iteration on the training set is given in Figure 3. None 
of the trials leads to a dramatically poor error rate. Most 
solutions the algorithm converges to are fairly equivalent, 
though a considerable variation in WER is observed. The 
lowest divergence on the training set is not a guarantee for the 
lowest WER on the test set. Like with HMMs, cross valida-
tion is required. Notice that the estimation of Ĥ with fixed Wv 
is a convex problem, so that a similar variations are not 
observed due to the matrix factorisation required for 
recognition. 
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Figure 3: word error rate as a function of the 
divergence between data and model during training. 

4. Discussion 
The presented training and recognition HAC framework 
possesses some properties that are markedly different from 
the wide-spread HMM framework. First, it can work in 
supervised (this paper) and unsupervised mode [2], [8]. 
Second, it can easily integrate correlated information as well 
as asynchronous information streams. Using correlated 
information streams in HMMs typically requires feature 
dimension reduction techniques such as linear discriminant 
analysis. Third, time and sequence are only weakly repre-
sented by acoustic event co-occurrence. Much like a word-
level bigram is only a weak linguistic representation of 
grammar, the acoustic event co-occurrence does represent 
order, but many different sequences can lead to the same or 
similar histograms. Especially, repetitions of a pattern or 
cyclic permutations lead to very similar histograms and are 
hard to distinguish. Fourth, the high-dimensional shift-
invariant speech representation does not require segmentation 
of the audio in words during training or recognition. This 
obviously has a disadvantage, in that it is not able to locate 
and order the recognized words within the analysis window 
(an utterance in this paper). Computing the histograms over a 
sliding window at least confines the recognised words to this 
window as was already shown in [2], but this technique needs 
future research. The absence of a segmentation step also has 
the advantage that related non-contiguous expressions such as 
separable verbs in Germanic languages can easily be related 
in one pattern. It also means that no time warping and 
dynamic programming are required, unlike in other pattern 
discovery algorithms [11]. 

5. Conclusions 
In this paper, we have presented an NMF-based method for 
supervised training of word models for speech recognition. 
The HAC method is capable of successfully integrating 
correlated information as well as information at different time 
scales, which was illustrated with the integration of utterance 
level information (G), segmental information (V1) and frame-

synchronous spectral information (V2 through V4). Evidently, 
other choices of acoustic events could be made. 

Though the initial results of this work are very 
encouraging, future research will need to address ways to 
generate segmentations in terms of the learned models as well 
as to explore the accuracy limits of HAC models as the 
vocabulary increases. 
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