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Abstract 
In this paper, we discuss a computational model of language 
acquisition which focuses on the detection of words and that 
is able to detect and build word-like representations on the 
basis of multimodal input data. Experiments carried out on 
three European languages (Finnish, Swedish, and Dutch) 
show that internal word representations can be learned 
without a predefined lexicon. The computational model is 
inspired by a memory structure that is assumed to be 
functional for human cognitive processing. The model does 
not use any prior segmentation, nor does it use the concept of 
segmentation later in the processing. This calls into question 
the importance that is conventionally attributed to the 
segmentation of the speech signal in terms of symbolic units 
for the purpose of detecting structure in speech.  
Index Terms: cross-modal learning, language acquisition, 
computational modelling, word detection. 

1. Introduction 
In nearly all disciplines dealing with speech, e.g., phonetics, 
speech technology, and psycholinguistics, it is assumed that 
the speech signal can be adequately represented in terms of 
sequences of discrete symbols. This idea of ‘beads-on-a-
string’ ([7]) is manifest at several different layers: a speech 
signal can be described in terms of e.g. phone- or phoneme-
like units or words, and multi-tier representations can exploit 
the relations between different tiers thanks to the symbolic 
representations in these tiers. Symbolic representations are 
also used in mainstream approaches in Automatic Speech 
Recognition and in models of human speech processing such 
as Shortlist ([6]). 
When using symbolic sequences, one tacitly assumes that 
each symbol in the sequence corresponds with a particular 
stretch of speech in the input signal, and that these stretches 
can be concatenated (with hard or soft boundaries) to 
reproduce the speech signal. This assumption, however, has a 
problematic character. For example, it is well known that 
human transcribers may substantially disagree about the 
transcription and the segmentation of speech at the phone-
level. Nevertheless, in many cases symbolic representations 
are extremely useful, be it in the form of a single symbolic 
sequence (first-best) or as a graph. 
Segmentation and the availability of symbolic representations 
go hand in hand. In speech corpora, segmentation information 
might be explicitly provided, such as the segmentation on 
phone-level in TIMIT, but in most speech corpora 
information about segmentation is not available. While the 
segmentation is not provided explicitly, it can often be 
hypothesised by aligning trained acoustic models with the 
speech signal, as done in automatic segmentation by ASR, or 
by bottom-up segmentation approaches ([13]).  These former 
approaches show that segmentation can be seen as a side 

effect of speech decoding, rather than as an essential 
ingredient that needs to be available a priori for speech 
processing. 
The issue of symbolic representation and segmentation is 
reflected in many approaches in modelling speech processing 
and language acquisition. For example, there is now 
considerable evidence from psycholinguistic and phonetic 
research that sub-segmental (i.e. sub-symbolic, fine-grained, 
acoustic-phonetic) and supra-segmental (i.e. prosodic) detail 
in the speech signal help the (adult) listener segment a speech 
signal into syllables and words (e.g. [19, 20]. And with 
respect to acquisition, infants face the task to detect word-like 
units in speech without any prior knowledge about lexical 
identities or information about the segmentation of the 
continuous speech signal ([10, 11, 15, 16, 18]). Newborns are 
not completely blank - they possess an auditory system that 
has been exposed in the pre-birth period to band-limited 
sounds with the same type of rhythm and variation as speech. 
It appears that infants can identify their native language based 
on stress patterns very soon after birth. A few months old, 
they are able to segment words and distinguish between 
familiar and unfamiliar words based on stress patterns 
(whether or not the word actually means anything to the 
infant, e.g. [15]). An infant of six months old can distinguish 
native and non-native vowels ([16]). And within 8 months, 
infants can segment words based on the statistical patterns in 
the observed phonotactics (e.g. [18]). After 2 minutes of 
exposure, infants can then use the statistical properties of the 
co-occurrence of syllable-sized units to segment novel words. 
These studies show that young infants are sensitive to the 
(statistical) structure in the speech signal on the level of 
phoneme or syllable-sized units. The model that we present 
here does not directly address the topic about to what extent 
this implies that phoneme-like units are used to represent 
words in the internal (mental) lexicon. Episodic theories of 
speech perception assume that listeners store multiple entries, 
in the form of detailed perceptual traces ('episodes'). In 
contrast, experimental data on e.g. perceptual learning in 
speech recognition are difficult to explain without 
hypothesizing more abstract phonological representations 
(features, phonemes or syllables) (for a discussion see [17]). 
An interesting result of our endeavours in building 
computational models of word discovery is that the role of 
segmentation in general may be overestimated. The model for 
unsupervised word detection presented here does not require 
any information about segmentation in the input and does not 
even use the concept of segmentation in the entire processing. 
We will show that the emerging representations that result 
from word detection can be used to segment a speech signal, 
but the segmentation procedure differs from the segmentation 
procedure as performed by e.g. HMM-models in many 
aspects. 
In the next section, we discuss this word detection algorithm. 
The third section presents word decoding results in various 

ISCA ITRW, Speech Analysis and Processing for Knowledge Discovery, ISBN: 978-87-92328-00-7

June 4-6, 2008, Aalborg University, Denmark



conditions, showing that the model is capable of building and 
updating internal representations of speech fragments. This 
part clarifies the status of segmentation in the entire model. 
The fourth section deals with segmentation in the decoding, 
while the last section concludes with a summary and outlook 
for future research. 

2. The word detection algorithm 
Our computational model of language acquisition is designed 
in particular to account for the processes involved in word 
discovery from ‘raw’ multimodal data ([1]). The model has 
similarities with the Cross-channel Early Lexical Learning 
(CELL) model ([8]), but differs from CELL in an essential 
aspect. CELL makes the assumption that babies represent 
speech signals in the form of a lattice of pre-defined 
phonemes. From the perspective of human language 
acquisition that assumption is questionable.  The model 
presented here avoids the use of any pre-existing 
representation for decoding the information in the input 
signals. Instead, the representations in the model emerge from 
the multimodal stimuli that are presented to the model. This is 
in line with growing evidence that speech and language skills 
are emergent capabilities of a developing communicative 
system ([3]). The way in which linguistic patterns are stored 
and used during language acquisition change constantly as 
these patterns become more numerous and fine-grained, and 
as the methods needed for processing these patterns become 
more complex ([10]).  
The computational model comprises two interacting modules: 
a carer module that presents multimodal stimuli to the learner 
module, and the learner module that simulates the young 
language learner. The learner operates as follows: 
 
a) the learner receives from the carer a multimodal 

stimulus, consisting of an utterance (presented as 
sampled data, without segmentation) in combination 
with an abstract tag that represents an interpretation of a 
corresponding visual stimulus. For example, an utterance 
‘look at this nice ball’ is associated with a tag ‘ball’. 
This tag does not necessarily refer to the word ‘ball’, nor 
does it give any clue about the phonetic realisation of the 
speech fragment associated to this tag or its position in 
the utterance. 

b) Next, the waveform is converted into a sequence of 
feature vectors (currently MFCC, but this choice is not 
relevant for the discussion here). 

c) Acoustic events in an utterance are represented by the 
unigram and bigram counts on the indices of a 
codebook. A mapping M is defined such that each 
utterance is mapped to a vector of a fixed (preset) 
dimension in a vector space S. This vector consists of the 
unigram and bigram counts. See [12]. 

d) M has the essential property that the joint presence of 
events in an utterance is translated into an additive 
property in S. For example, an utterance with the events 
‘A B A’ translates into a vector equal to twice the vector 
associated to ‘A’ plus one time the vector associated to 
‘B’, that is: M(‘ABA’) = 2M(‘A)+M(‘B’) (see sect. 4). 

e) The resulting vectors of all utterances observed so far are 
collected in one (big) data matrix X. An increasingly 
popular technique, Non-negative Matrix Factorization 
([2, 9, 12]) is applied to factorise the matrix X into two 
smaller matrices W and H. In combination with the tags 
in the input, the columns in W code speech fragments in 
the input that relate to specific tags. If the fragments 

correspond to ‘words’, this is equivalent to building 
internal representations of words.  

f) Test: For an unknown utterance, the corresponding 
vector in S is decomposed in terms of the columns of W, 
thereby providing the decoding of the utterance in terms 
of the set of already learned speech fragments. 
 

Segmentation is not used at the input side, nor in the process 
that results in the emerging word representations.  

3. Data and results 
This word detection algorithm was applied to three databases 
(Dutch, Finnish and Swedish). For each language the 
database contains 2000 utterances from 2 male and 2 female 
speakers. Each utterance comes with (exactly) one tag. In 
total, there are 13 different tags per language that are 
provided by the carer model to the learner model and must be 
learned by the learner. Figure 1 presents an example of the 
accuracy of the learner in recognizing tags presented by the 
carer. In the beginning, the learner does not have any word 
representation, but after a few hundred utterances the learner 
is able to bootstrap its internal word representations. The 
figure displays the accuracy of the learner’s performance (y-
axis) over time during one particular training session, in 
which the 8000 utterances in Dutch are presented to the 
learner in random order. Along the x-axis, the number of 
tokens (utterances) is displayed.  
Figure 2 also shows the accuracy of the learner as a function 
of the number of observed tokens, but now in the case where 
utterances are presented in speaker-blocked ordering. The 
tokens 1-2000 are from the first speaker (NL, female), tokens 
2001-4000, 4001-6000 and 6001-8000 are from a male, 
different female and male speaker, respectively. One observes 
that the learner is able to learn the words from speaker 1, 
every new speaker leads to a drop in performance, but the 
learner is able to ‘catch up’. A close analysis of the 
performance drop reveals that it this drop is mainly due to the 
speaker-dependency of the learned word representations, 
while the remainder of the effect is due to the introduction of 
one single new word per speaker. 
Figure 3 shows the performance of the learner in a 
multilingual acquisition experiment. The four speakers are a 
Dutch female, Dutch male, Swedish female, and Swedish 
male, respectively. As in figure 2, each new speaker is 
associated with a drop in performance. The language change 
(at x = 4000) shows a more dramatic drop in performance. 
The two curves relate to two different evaluation measures: 
the solid line corresponds to the case in which the tags are 
language independent, while the dashed line corresponds to 
the case were the learner is confronted with language-
dependent tags. 
These performance results have been obtained without using 
any information about segmentation (or even word ordering) 
in the entire processing. The results presented here and 
similar results for Swedish and Finnish in various training 
conditions show that, for a small number of words, word 
detection is possible without using the concept of 
segmentation. Even more, the models (i.e. the set of acquired 
and updated word representations) are powerful enough to 
allow a form of segmentation of the input signal. This is 
discussed in more detail in the next section. 
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Figure 1. This figure shows the accuracy of the learner as 
a function of the number of observed tokens (utterances). 
The 8000 (Dutch) stimuli are presented in random order. 
 

 
 
Figure 2. As in figure 1, this figure shows the accuracy of the 
learner as a function of the number of observed tokens 
(utterances). The (Dutch) stimuli are now presented in 
speaker-blocked order. New speakers occur at x=2000, 4000 
and 6000. 
 

 
 
Figure 3. This figure shows the performance of the learner in 
a multilingual acquisition experiment. For a discussion see 
the text. 

4. Segmentation 
 
The basic property of the current learning algorithm is to 
detect the presence of words (and word-like fragments) 
without looking which stretch of the signal matches best with 
one of its internal word representations. Instead, the learner 
analyses the entire utterance as a whole and tries to 
decompose, based on the additive property of the mapping M 
explained in section 2, the entire utterance using all its 
internal representations. This way of analysis resembles the 
way in which an emission spectrum of an unknown chemical 
compound is analysed to unravel the compound into its basic 
constituents. In the same way as the emission spectrum of the 
compound is an overlay of more elementary spectra, the word 
detection algorithm analyses the utterance by assuming it is a 
temporal composition of words that are associated to its 
internal representations. It follows that segmentation is not 
used in the input and in the learning process, nor is it directly 
available in the decoding. 
Although it is not directly part of the output, segmentation 
can still be obtained. The learned word representations allow 
a segmentation of the input. This is possible due to the 
additive property of M. Each time a certain word ‘A’ appears 
in the input, the corresponding vector in S has an additional 
term M(A) in its decomposition. That means that the location 
of a word can be found by presenting gated versions of the 
input to the decoding algorithm, by monitoring the coefficient 
of M(A) in the resulting decomposition, and by investigating 
the evolution over time of this particular coefficient. Figure 4 
presents the result for the Dutch word ‘luier’ (‘diaper’) that 
appears in one of the Dutch utterances. Along the x-axis, the 
last frame number of the gated input is displayed. A value of 
100 means that exactly one second of the utterance (measured 
from the beginning of the waveform) is presented to the 
decoding algorithm.  
 
 
 

 
 
 
Figure 4. The location of the word ‘luier’ visualised by 
plotting the activation of the ‘luier’ representation in the 
decoding of gated utterances. Along the x-axis, the last frame 
number is given of the gated utterance. For example, x=160 
corresponds to a gated signal of length 160 frames (1.60 
seconds). The actual start and end of the word ‘luier’ in the 
input are represented by the vertical bars. 
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The y-axis shows the weight (‘activation’) of the vector 
corresponding to ‘luier’ in the decoding of the gated input. 
Until x=140, the word ‘luier’ does not appear in the signal 
and the corresponding decoding result is in accordance with 
this. Between x=140 and x=200, more and more information 
from the acoustic token ‘luier’ is available in the input, and 
the decoding shows an increasing activation for the vector 
associated with the internal representation ‘luier’ between 
these instants. 
 

5. Discussion and outlook 

The experiments with the word detection model show that the 
learner is able to do the following: 

• The learner learns to relate acoustic word forms and 
references in the form of tags. The learner needs a minimal 
number of acoustic tokens before it can make a reliable 
word representation.  

• The learner rapidly adjusts to a new speaker. When the 
role of the carer is fulfilled by one speaker, the learner’s 
internal representations will be speaker-dependent. As 
soon as a new speaker starts interacting with the learner, 
the existing internal representations will be adapted to 
accommodate the characteristics of the new speaker. 

• In order to detect words, the learner does not rely on 
segmentation information. The internal representations, 
however, are powerful enough to support segmentation.  

 
It is clear from figure 4 that it is not easy to define the exact 
start and end of the target word (here the word ‘luier’ 
‘diaper’). The figure shows that the algorithm profits from 
information available in the context of the word ‘luier’. We 
have applied the segmentation algorithm on more tokens of 
several words, and a preliminary analysis of the results shows 
that the segmentation algorithm as described here is able to 
locate onset and offset of words with an temporal accuracy of 
σ = 10 frames (approximately).  Broadly speaking, this 
corresponds to 1 a 1.5 times the average duration of a phone 
in read-aloud speech. 
It is difficult (and close to unfair) to compare the learner’s 
performance to the performance of human listeners. E.g. 
human transcribers perform better when segmenting at the 
phone or word level, but they have the advantage of using 
context information and top-down knowledge in their 
segmentation decision. Moreover, most of them are adults – 
exposed to much more speech material than the learner 
algorithm in these experiments. 
The main question currently under investigation is to what 
extent and how the cognitive plausibility of the model can be 
improved. 
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