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Abstract-In  this paper the FP6 Future and Emerging
Technologies project ACORNS is introduced. This project aims at
simulating embodied language learning, inspired by the Memory-
Prediction theory of intelligence. ACORNS intends to build a full
computational implementation of sensory information processing.
ACORNS considers linguistic units as emergent patterns. Thus,
the research will not only address the issues conventionally
investigated in statistical pattern recognition, but also the
representations that are formed in memory. The paper discusses
details of the memory and processing architecture that will be
implemented in ACORNS, and explains how this architecture
merges the basic concepts of the Memory-Prediction theory with
results form previous research in the field of memory.

[.  INTRODUCTION

The conventional automatic pattern recognizers that we have
today are all to a large extent based on the same underlying
principle: during the training phase they form statistical models
to represent the training data in terms of a fixed and limited
number of pre-defined patterns, and during recognition they
search for the sequence of trained pattern that best matches the
incoming signal.

This approach has been very successful for the classification of
‘physical’ objects such as cars, airplanes, cells, chromosomes,
or the sounds produced by machinery, even if these objects are
observed in conditions that differ mildly from those
represented in the training data. In applications such as license
plate recognition these statistical pattern recognizers can
outperform humans.

However, it is well known that there are domains where
conventional automatic pattern recognizers fall dramatically
below the performance of biological systems. Automatic
speech recognition (ASR) is one such domain (Lee, 2004;
Moore, 2005). Advances in hardware, algorithms and data
structures have enabled the implementation of large
vocabulary, continuous speech recognition (LVCSR) systems
and the use of certain voice-enabled dialogue systems.
However, existing speech recognition applications are
restrictive, requiring that their users follow a strict protocol.
The technology is quite fragile, and careful designs have to be
adhered to rigorously if the technology deficiencies are to be
overcome (den Os et al., 2005). In adverse acoustic conditions,
when the mismatch between training and test data is large, the
accuracy of today’s ASR system accuracy declines

dramatically, to the extent that they become unusable, even for
cooperative users. When compared with human speech
recognition, or HSR, the error rates of state-of-the-art ASR
systems are an order of magnitude larger, even for rather
simple tasks in noise-free environments (Lippmann, 1997,
Sroka & Braida, 2005; Wesker et al., 2005).

Apart from the fact that the performance gap hampers the
commercial introduction of flexible voice-driven applications,
there is also a more scientific issue to be addressed. Due to the
nature of statistical modeling and optimization based on
statistical principles, today’s statistical pattern recognizers may
be fundamentally incapable of closing this performance gap
(Moore, 2003), and it may well be that new computational
methods must be applied that take into account key aspects of
human speech processing. Recently, there has been a growing
interest in approaches that explore new directions in cognitive
modeling, especially in learning and language acquisition. Roy
and Pentland (2002) focused on machine learning of words;
Werker and Curtis (2005) presented a comprehensive model of
human language acquisition, while Maloof and Michalski
(2004) focus on incremental learning. The developments in the
field of learning in general and language acquisition in
particular can be linked with seemingly independent
developments, such as the introduction of Hierarchical
Temporal Memories based on recent findings in neuroscience
(Hawkins, 2004) and the more general trend towards embodied
models of cognition (Pfeifer and Scheier, 1999).

The three-year European Union 6" Framework Future and
Emerging Technologies project ACORNS (started on
December 1 2006) aims at integrating the developments
alluded to above, so as to develop a novel approach to speech
recognition. We will use state-of-the-art learning models in
combination with advanced memory architectures. The project
is based on the conviction that the inability of statistical pattern
recognizers to approximate human performance is due to the
fact that these systems have been designed to emulate theories
about the structure of speech and language, rather than to
model the purposeful processing of speech for the purpose of
communication and, as a last resort, to survive in the natural
habitat. This corresponds to the fact that conventional pattern
recognizers are trained to discriminate pre-defined patterns that
are invariably based on a human-crafted meta-description of
the phenomena to be dealt with. For Automatic Speech
Recognition (ASR) this means that systems are trained to
recognize ‘words’ that are represented in the form of a



sequence of discrete sounds. However, although such a
representation of words may be very convenient for the
purpose of linguistic description, it does not reflect the fact that
speech production is fundamentally a continuous process
(Ostendorf, 1999). In terms of the theory of embodied
cognitive science this effectively means that conventional
(ASR) systems make an error of frame-of-reference: an
observer-based representation of some aspect of the task is
confused for the procedure needed to solve the task (Pfeifer
and Scheier, 1999).

For humans (and probably al other living organisms as well)
‘patterns’ (or perhaps more appropriately: “ecologically
relevant deviations from randomness™) in the sensory inputs
are emergent properties (Johnson, 2002) that are learned
because of the innate need to associate (inherently variable)
sensory inputs to meaningful objects and behavior in the
environment. Because the sensory signals corresponding to
ecologically relevant entities (e.g., words, phrases, multiword
expressions, etc.) are so variable, while ‘sufficiently accurate’
and latency-free recognition is essential for general well being
— if not for simply for survival in the real world- it is essential
that biological agents are able to adapt and generalize known
patterns quickly and effortlessly to recognize new variants that
were not previously encountered. This plasticity is a necessary
requirement for an organism’s ability to adapt quickly and
easily to new environments, fulfilling intrinsic needs (Maslow,
1954; Wang, 2003) as well as the capacity for dealing with
previously unknown patterns of behavior and new varieties of
patterns that have not been trained explicitly.

II. STATE-OF-THE-ART IN HUMAN SPEECH
PROCESSING

Many branches of Cognitive Science, including (psycho-)
linguistics, communication science, neurobiology, and brain
imaging, have contributed to a large and rapidly growing mass
of behavioral and phenomenological data about the speech
processing skills of adult human beings and the ways in which
these skills develop during infancy and childhood (Gerken &
Aslin, 2005; Gopnik et al., 2001; Juczyk, 1999; Kuhl, 2004,
Kuhl et al., 2003; Swingley, 2005). In accordance with the
conventional cognitive approach, these data are almost
invariably in the form of descriptions of the formal structure of
utterances, rather than in terms of testable theories that can
explain how the brain develops to exploit powerful and
effective capabilities that enable humans to communicate with
their environment. As a consequence, there is as yet no
comprehensive and integrative theory that can even begin to
explain how infants acquire speech and language (Werker &
Yeung, 2005), nor how an adult’s speech processing can be as
fast and robust against all kinds of novel and adversary
conditions as it apparently is. Today there is no computational
model that can explain the acquisition of language and
communication skills purely on the basis of sensory input,
combined with the needs of infants to communicate in order to
survive and flourish.

The Cross-channel Early Lexical Learning (CELL) model (Roy
& Pentland, 2002) is very interesting in this aspect. CELL is a
computational model for leaning associations and correlations
(also known as ‘words) in multimodal input data. It learns
words by associating fragments in the speech input with the
contents of pictures that contain objects that are referred to by
the speech signal. The CELL model is interesting because it
shows the potential of learning by cross-correlating
asynchronous information across different input modalities.
However, from the point of view of embodied cognitive
systems, some aspects of the CELL model are less convincing.
Most importantly, it is assumed that learning starts from what
is in effect a discrete symbolic representation of the speech
input, in the form of a lattice of symbols representing the
phonetic sound sequence.

In contrast, there is growing evidence that speech and language
skills are emergent capabilities of a developing communicative
system (Johnson, 2002; MacWinney, 1998) and that the way in
which linguistic patterns are stored and used during language
acquisition and use change constantly as these patterns become
more numerous and fine-grained, and as the methods needed
for processing the patterns become correspondingly more
complex (Werker & Curtis, 2005). In the same vein, there is
growing evidence that ‘processing’ in many cases is based on
direct links between perception and action, not mediated by
conscious reasoning (Rizzolatti and Arbib, 1998).

In ACORNS, we opt for using the memory-prediction model of
natural intelligence proposed by Hawkins (2004) to model
what is perhaps the most complex cognitive capability in the
known wuniverse: speech processing. Drawing on the
hierarchical structure of the neo-cortex, this theory proposes
that a rich (and in terms of Shannon’s information theory
redundant) representation of speech input is first stored in a
raw form in the lower levels of the neo-cortex. The stored
representations comprise substantial detail, including the
personal voice characteristics of the speaker, which is
important for infants to be able to recognize their mother’s
voice. Of course, the capability to detect and process personal
characteristics of voices remains important life long.
Therefore, we must assume that people store more than just
abstract symbolic representations of speech. Rather, the neural
representation must comprise substantial additional detail.
Which features exactly will be used in this representation, how
emergent patters will be discovered and how abstraction takes
place is topic of investigation in ACORNS.

It is known that on all levels of the cortical hierarchy
perceptual patterns can be associated with (motor) actions.
This enables various degrees of automation and shortcuts in
perception-action loops, which are vital for latency-free
responses in dangerous situations. The same mechanisms are
instrumental in casual interactions with fellow human beings,
where we show that we know that we are being addressed the
moment an interlocutor starts talking and where we interpret
the attitudinal (and emotional) layer of the speech well before
the end of a turn (Thorisson, 2002). This is directly related
with the shift from a data-driven bottom-up pattern recognition



towards a paradigm in which speech recognition is the result of
bottom-up hypothesis construction and top-down verification.
Once a pattern has formed in one of the higher layers in the
cortical hierarchy, sensory input that is compatible with part of
the pattern gives rise to top-down activation of the complete
pattern. In other words: the brain ‘predicts’ that the sensory
input will also contain the remaining parts of the pattern. And
as long as the actual input does not deviate so much from the
prediction that this hypothesis cannot be maintained, sensory
input is assimilated into the pattern. Inputs that deviate too
much from known patterns to be acceptable as new variants are
stored as potentially new patterns, which may be associated
with entities in the external world if they re-occur in similar
conditions.

In this way the system can learn new patterns. Biological
agents learn in a situation where there is always some form of
feedback, implicit in the form of what happens in the
environment, or explicit in the form of supportive or corrective
actions of a caregiver. It is difficult to conceive of language
acquisition without frequent and intensive interactions with a
caregiver. The behavior of the caregiver in these interactions
will tremendously enhance the reinforcement of existing and
the creation of new patterns.

III. THE STRUCTURE OF ACORNS

In ACORNS, the scientific focus is on integrating five different
interrelated aspects, viz. auditory front-end processing, pattern
discovery procedures, memory access and organization,
information discovery, and communication in what is
essentially a simulation of an embodied agent.

Front-end processing

ACORNS focuses on the processing of auditory signals.
Therefore, it is necessary to define and implement an auditory
front-end processor, i.e., a module that converts acoustic
signals into a rich internal representation that can be used for
learning new patterns and for recognizing known patterns.
There is accumulating evidence that this internal representation
must account for features of the input signals in multiple
simultaneous temporal resolutions, with a lower limit in the
order of 0.5 to 2 ms, and an upper limit of about 250 ms
(Hermansky, 1996). The representations must be suitable to
characterize and process essentially all ecologically relevant
sounds, from approaching footsteps and honking cars, doors
opening or objects being displaced, to infant and adult directed
speech. Since all these sounds can occur simultaneously, the
representation must be suitable for the different sources to be
modeled independently (Cooke and Ellis, 2001.

Pattern discovery

In conventional pattern recognition systems the patterns to be
recognized, as well as the primitive elements from which
complex pattern can be formed, are defined a priori. For
example, in the conventional approach to speech recognition

the patterns to be recognized are almost invariably words,
while the primitives are related to the phonemes of the
language (i.e., the speech sounds that distinguish between one
word and another, such as big and pig in English). However, it
is now generally agreed that the representation of words as
sequences of phonemes like beads on a string is not adequate
(Ostendorf, 1999) and there is accumulating evidence
suggesting that speech patterns may be stored in the form of
episodes spanning syllables or complete words, if not
multiword expressions (Emnestus et al., 2002: Goldinger,
1998).

While conventional ASR systems sidestep the task of detecting
what suitable basic units can be because these are pre-defined
by the developer, infants must solve the problem somehow in
language acquisition. It is likely that the repetitive character in
speech, even when covering non-adjacent structures helps to
distinguish word-like patterns (Newport et al., 2004).

Unlike in printed text, in normal speech, and even in infant-
directed speech words are not separated by silences. Rather,
words blend and merge at their boundaries. This makes it
necessary for a ‘newborn’ speech acquisition system to
discover patterns in the continuous input stream that
correspond to meaningful speech events and eventually also to
phoneme-like units. This task is probably simplified at least to
some extent by the fact that infant-directed speech often
consists of several repetitions of the same words and phrases
(Snow & Ferguson, 1997).

Memory organization and access

Cognitive theories of memory in the agree that it is useful to
distinguish at least three types of memory: a sensory store in
which all information is captured only for a very short time (in
the order of 2 seconds), a short-term memory (also called
working memory) that holds representations of sensory inputs
and serves as a executive module that is able to compare new
sensory inputs to previously learned patterns that are retrieved
from long-term memory. ACORNS aims at the development of
suitable computational representations of these memories and
the processing that takes place that can fit in an embodied
form, inspired by the memory-prediction model. The eventual
architecture will be able to support latency-free perception-
action loops, as well as some forms of symbolic processing and
reasoning for processing novel utterances. This architecture
will be discussed in more detail below.

An important aspect of memory processes is how
representations of novel patterns can form and be stored. In
addition to storing a complete representation of the input
signal, short-term memory must also be able to form and hold
‘codes’ derived from these complete representations. These
codes will then be used to activate patterns that are already
present in the long-term memory. Activated patterns must be
compared to a more complete representation of the input signal
in the working memory in accordance with the memory
prediction model, by verifying the likelihood of activated
patterns on the basis of the full signal representation.



Information discovery and integration

Storing patterns in memory is only useful if there are efficient
and effective techniques for retrieving them. All available
behavioral data strongly suggest that memory for speech and
language is organized in an associative manner. Therefore,
ACORNS will investigate three methods for addressing
associative memories that approach the problem from slightly
different angles. All these approaches hold the promise of
scaling to problems as large and complex as natural language
processing. The first approach takes its guidance from content
addressable memories (CAM), especially the form of CAMs
that handle fuzzy and incomplete codes for addressing the
contents of the memory. The second approach borrows from
Latent Semantic Analysis (e.g. Bellegarda, 2000), developed
for document retrieval, but also proposed as a model for speech
understanding (i.e., comprehending the semantic content of
spoken utterances). The third approach is based on the
assumption that similar patterns are related to each other, so
that it is possible to quickly identify all patterns that resemble
the input to be recognized. Gopnik et al. (2001) argue that an
infant actively explores its environment and even conducts
experiments (involving other people) to confirm/deny its
developing capabilities.

Interaction and communication

Speech and language acquisition happen as the result of
purposeful interaction between an infant and its environment.
Therefore, it is essential to integrate all processing to
realistically simulate speech acquisition driven by the intrinsic
desire of an artificial agent to communicate with its
environment. In the beginning an infant interacts with only a
limited number of ‘biological’ agents. This will inevitably
result in learning patterns that are strongly biased towards the
personal voice characteristics of the caregivers. However, the
infant will increasingly be addressed by other persons, thereby
forcing the representations to generalize. From the very first
days of its life, successful communication will contribute to
fulfilling the most basic needs of the infant. However, in the
case of an infant acquiring speech and communication skills it
is difficult to map Maslow’s hierarchy of needs onto its
behavior, if only because Maslow’s formulations address
relatively abstract and high level needs. We assume that a
newborn satisfies the physiological needs at the same time as
the safety and love needs. For an artificial agent it is even more
difficult to map Maslow’s hierarchy (cf. Sarma & van der
Hoek, 2004 for an attempt to adapt Maslow’s hierarchy of
needs to the situation where an individual is replaced by a team
of software experts).

Therefore, in ACORNS it is proposed that the learning
algorithm will be endowed with the intention to learn a
continuously growing vocabulary in order to maximize the
appreciation it receives from its environment. In the first stage
of the project, ACORNS aims at being able to respond to 10
different words, a number that show grow later in the project.

IV. ARCHITECTURE

In ACORNS, we envisage to use the architecture depicted in
figure 1. This architecture is based on recent psycholinguistic
research on the organization of memory in connection to
speech and language processing, especially on perceptual
organization and its implication for short term memory (Jones,
Hughes, and Macken, 2006).

During its speech interactions, the ACORNS system is
presented two types of input from outside:

- multimodal data consisting of (a) explicit audio and
(b) some kind of visual or tactile representation in of
the object or concept expressed if the speech is infant-
directed, while no systematic corresponding non-
speech input will be provided with adult-directed
speech.

- feedback about the appropriateness of output of the
learning system, on an utterance by utterance basis.
This information is equivalent to the feedback of the
caregiver on the learning system’s reaction to the
input.

Multimodal input

The multimodal input consists of an audio stream (containing
infant-directed speech, but also some adult-directed speech) in
combination with an abstraction of the non-speech
(visual/tactile) modality. This input is provided in synchrony
with the speech. The audio stream is represented as sampled
data streams; the non-speech modality contains an abstract
representation that is associated to objects that are referred to
in the infant-directed audio input. Thus, the learning system
will not see the orthographic representation of the speech (in
the form of invariant word symbols separated by blanks);
instead, it listens to the audio input and has access to the
abstract representation of the one (or two) subjects referred to
by the speech signal. In this way, we simulate the presence of
a visual sensory processing system of which the actual
technical implementation and realization is not feasible given
the time and resource constraints. It is up to the learning agent
to learn word-like entities from the repetitions in the audio
signal and from cross-modally reoccurring systematic
patterning.

Memory architecture

The proposed architecture is based on results reported in recent
literature on human memory, cognitive and language
processing. It must be realized that a substantial part of this
research is deigned and performed in a cognitive framework,
focused on symbolic processing. However, we believe that the
essential aspects of the cognitive model will also return in
memory models of fully embodied systems. It is generally
assumed that memory is divided into three types: sensory store,
short-term memory (also known as working memory) and



long-term memory. The sensory store records ALL incoming
sensory data. It is functionally partitioned into an ‘echoic’
memory (for acoustic information - lost after 2 sec) and an
‘iconic’ memory (for visual information - lost after 0.5 sec).
To reduce computational load and to decrease the required
amount of energy and time, an attention mechanism selects
specific information from the sensory store and pushes this
information into a short-term memory. This attention process
actively performs a selection of the data in the sensory store to
be stored in short-term memory.

The short-term/working memory can store data for up to about
a minute. Its role is manifold:
- serve as a central execution platform
- perform dedicated tasks (e.g. for visual information it
serves as a sketchpad, for speech it supports phone
detection tasks)
- store (episodic) traces.

The storage capacity of the short-term/working memory is
fixed; thus, new data overwrites older data.

The results available in short-term/working memory can be
stored in long-term memory. This process (enhanced by
rehearsal) is facilitated by the repetition of intrinsic and
extrinsic presentations. Rehearsal of an extrinsic presentation
may be forced by the frequent occurrence of a specific entity
(e.g. a target word) in the input speech stream. Another way of
rehearsal is intrinsic, in which the rehearsal is result of internal
reflection on a certain representation. Data in long-term
memory can remain a very long time, but may get lost due to
interference. Also access to long-term memory can be lost to
interference (see also http://thebrain.mcgill.ca)

The long-term memory is divided into two subparts: explicit
memory and implicit memory.

The explicit (or declarative) memory is divided into episodic
and semantic memory. The episodic store contains events and
their contexts, and small samples of episodic traces. The
semantic memory is assumed to contain the information that
one is aware of, and that is usually independent of time and
place, e.g. one’s birthday, knowledge of the world, abstract
relations and meaning. The implicit memory contains motor
and process memory (necessary to e.g. play a piano or driving
a car).

It is known that the content of a stored representation can
change by the memorization process itself: the content of the
memory is ‘overlaid’ by the context associated with the
moment of memorization. Memory is thus a dynamically
changing ensemble of representations with their contexts.
[tems in long-term memory can be accessed by retrieval, i.c.
the storage of long-term memorized representations back into
working (short-term) memory.

Attention and rehearsal processes

The attention and rehearsal mechanisms are processes that
work on representations stored in memory, transforming stored
representations into possibly more abstract representations.

The precise relation between these processes is not exactly
known — for example, some authors interpret their results as if
attention 1is maintained through rehearsal in order for
information to be stored in short-term memory. Attention is a
process that reduces the part of the input stream that must be
analyzed and is therefore indispensable for managing time,
space, effort and in the end for being successful: to keep the
computation load manageable, to reduce the storage into short-
term (working) memory, to reduce the ambiguity to be
resolved during the search, and to keep promising input
features within the attention ‘beam’.

Hierarchical Temporal Memories (HTM)

In ACORNS, HTMs (Hawkins, 2004) will be used to describe
the function of the memory on a conceptual level. HTMs
describe a memory structure with multiple connected levels:
data arrive episodically at the bottom level, and find their way
up towards more abstract representations at higher levels. At
the same time, from the higher levels, top-down information
goes back to the lower levels. The eventual interpretations and
representations are the result of both bottom-up and top-down
information in one common framework. If the incoming data
are sufficiently supported by the top-down expectation
activated by the bottom-up input, evaluation is shallow and fast
(shallow verification on high level); otherwise evaluations are
required on lower levels, requiring more time and effort.
Attention is directly related to the sensitivity to inputs that are
unexpected.

Feedback

Both training and test will be implemented as a control
feedback loop, in which the reference signal from the caregiver
(‘environment’) is represented via another channel (indicated
in Figure 1 by ‘ground-truth reaction from caregiver during
training’).

The role of feedback will be essential for the learning behavior
of the ACORNS model. In ACORNS, we envisage two types
of feedback: one is external and has the caregiver in the loop.
The caregiver interprets the output of the model and provides
feedback about her appreciation back to the learning model.
This loop supports the optimization of appreciation received by
the model from the environment. Besides this external loop, a
number of internal feedback loops will be available as well.
These loops take into account the performance of the various
learning algorithms, such as the quality of a certain parse, the
time it takes to perform a certain action, the amount of
resources required to disambiguate a certain input. This means
that learning takes place over two loops at the same time: one
short cycle loop taking place several times per utterance, and
one external loop that takes place on an utterance-by-utterance
basis.



Fig.1 Global layout of the architecture. Multimodal input is presented to the model (upper left corner) and put into its sensory
store. The three memory parts sensory store, short-term/working memory and long term memory form the entire memory, each
with different decay times. Processes such as attention and rehearsal move stored representations from one type of memory to
another in a possibly more abstract form. The integration module reads in multimodal abstract representations from the short-
term/working memory and outputs the recognition result to the communication module. Two feedback loops are foreseen: one
internal, governing the intrinsic learning processes and one external, in which the caregiver provides input to the model from
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V. ACORNS AND BEYOND

In ACORNS we take a realistic standpoint and we realize that
we cannot investigate all aspects of the learning process in full
detail. It is argued (Moore, 2007) that in order to understand
the perception-action loop in detail the model must contain a
speech production component which needs to learn and
develop in the same loop as language comprehension. This
production aspect has deliberately been taken out in the
ACORNS plan, because it involves a technically potentially
complicated aspect in the feedback loops. Also ACORNS
refrains from modeling other kinds of active exploratory
activities of the learning agent. It is interesting to speculate
about the limitations that the lack of active exploration imposes
on the agent and to investigate options for simulating language
learning by an agent that is able to actively and purposefully
explore its environment. To make experiments along this line
feasible, it will probably be necessary to focus on an artificial
agent that operates in virtual environments. Using physically
embodied agents would result in experiments that take many
years to perform. Moreover, the input that these ‘robots’ will
receive is impossible to reproduce exactly.

ACORNS interprets prediction (as in the memory prediction
framework) as a process involving both a recognition process
and a memory structure in which future events can be
anticipated. However, rolling out all possible future events,
even in a dynamic way as in regular ASR, is unrealistic and
undesirable. So, to reduce the computation load in short
term/working memory we need an attention process. It is likely
that this attention process is an emergent property in itself. The
results form the ACORNS project will be useful in determining
to what extent this attention process is itself a result of
learning.

It is well known that the development of human auditory
processing (and probably also of language acquisition) does
not start at birth, but months before. It would be interesting to
understand to what extent infants are tuned to rhythmic and
prosodic patterns due to their exposure to pre-birth speech
input (e.g. obtained by adequate low pass filtering). The idea
of training the computational model of language acquisition
would then be to feed the system with a speech signal with
limited acoustic variation, to build abstractions on the basis of
this impoverished input, and then to gradually enrich these
abstractions by providing more and more details in the speech
signal by opening up the bandwidth and the intrinsic variation
in the signal.

Another limitation of the ACORNS project is that it will not be
able to investigate the acquisition of syntactic structures with
their attendant richer semantics that becomes available when
full propositions can be processed. However, recent results in
embodied construction grammar suggest that it will be possible
to also apply the basic concepts of the memory-prediction
theory to syntax and semantics (Feldman, 2006).

VI. CONCLUSION

The ACORNS project represents a first step towards
establishing a computational model of the cognitive basis for
the acquisition of spoken language. As it stands, research is
primarily directed towards simulating the perceptual processes
involved in the early learning of speech by young infants. It is
envisaged that the insights gained through the investigation of
HTM-based cortical mechanisms for modeling and predicting
spoken language behavior will lead to substantial gains in
terms of improving the understanding of the structure,
representation and fidelity of speech signals. This, in turn will
feed back into the design and construction of next-generation
systems for automatic speech recognition, opening up
applications hitherto forbidden by the fragile nature of current
technology.

However, by excluding important components of the human
system (such as speech production), the ACORNS architecture
is fundamentally limited in what it is able to achieve. What is
required for the future is an architecture for spoken language
processing that extends ACORNS to a fully developed model
that incorporates both perception and production in a balanced
cognitive framework. Such an architecture has recently been
proposed by one of the authors of this paper (Moore, 2007).
Called PRESENCE — PREdicitive SENsorimotor Control and
Emulation — this new model integrates findings from a range of
scientific disciplines outside mainstream spoken language
processing, and provides a unified architecture for modeling
the interactive behavior of living organisms as well as a design
for artificial cognitive systems. It is envisaged that
PRESENCE will both influence the development of the
ACORNS project, as well as evolve to incorporate the results
of ACORNS research.
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