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Abstract 
The current generation of automatic speech recognizers in-
corporates a lot of hard coded knowledge about how speech is 
structured. Yet children seem to discover the structure of 
speech and language from examples. A new computational 
method to discover lexical items with little or no supervision, 
based on non-negative matrix factorization (NMF) of co-
occurrence counts of low-level acoustic events is proposed 
and analyzed. It is shown how multiple information streams 
can be integrated and in particular that multimodal informa-
tion relating to the message content facilitates vocabulary 
acquisition. A method to compute a phonetic interpretation of 
the models is given. 
Index Terms: unsupervised learning, keyword spotting, co-
occurrence data, non-negative matrix factorization, word ac-
quisition, pattern discovery 

1. Introduction 
Billions of babies around the globe have succeeded to acquire 
a vocabulary of their native language. This is a process with a 
surprisingly small amount of direct supervision. Most words 
they know are not explained to them, but are learned from 
their significance in the world they live in. The task is even 
more complicated if we observe that most of the utterances we 
speak to our babies or children contain more than one word 
[1] and many words are never heard in isolation. Yet, they 
succeed finally in segmenting spoken utterances in words. 

In this paper, we present a learning agent that discovers 
recurring acoustic patterns in speech, a problem that was ad-
dressed in a.o. [2], [3], [4], [5] and [6]. In this work, like in 
the present work, it is not assumed that an error-free transcrip-
tion of the speech into symbols such as phones or even letters 
is available. In the DP-N-gram-approach [2], partial matches 
between two strings of phonetic transcriptions generated with 
an HMM-based phone transcriber are found using a dynamic 
programming algorithm allowing such that the matched tran-
scriptions should be similar but not identical. Subsequently, 
an agglomerative clustering algorithm groups the similar 
phone strings into clusters that were then used for topic spot-
ting. In [3], dynamic time warping at the acoustic level com-
paring MFCC vectors directly is used instead of matching 
through dynamic programming at symbolic level. The units 
that are most similar in this fault-tolerant match are retained 
as acoustic patterns. In the multigram approach of [4], a sym-
bolically labeled input stream is entirely explained as a se-
quence a finite vocabulary of multigram models of variable 
length. Each of the vocabulary entries emits patterns of vari-
able length according to a statistical model. Estimation and 
detection with multigrams are scrutinized and an extension to 
acoustic (non-symbolic) input using “temporal decomposi-
tion” is proposed. In [5], a cognitively more plausible of early 
lexical acquisition is proposed. A short-term recurrence filter 

finds similar patterns in automatically generated phonetic 
representations. But more importantly, the model links the 
acoustic pattern discovery with word-to-meaning acquisition 
by using multi-sensory input. The discovered structure is 
intermodal, i.e. the discovered speech patterns are linked to 
structure in other modalities. 

A common property of the approaches discussed above is 
that models are aligned with the data and an explicit segmen-
tation of the input patters is derived. In our approach, this will 
not be the case. Instead, a holistic representation of fixed 
dimension containing co-occurrence information will be 
formed at the utterance level. This representation is then de-
composed in additive parts, which will represent the recurring 
patterns. Because we will explain all input utterances as 
closely as possible with a limited number of parts, these parts 
tend1 to contain recurrent patterns in the input. It is counter-
intuitive that segmentation is not a necessary step any more, 
nor for building the pattern models, nor for recognition of the 
patterns in unseen data. Yet, this is an important property of 
the proposed method and we radically do away with the 
‘beads-on-a-string’ model [7]: sub-phones are combined to 
phones, which are linked together to words, and finally to 
sentences. 

The core of the learning algorithm is proposed in this 
work is non-negative matrix factorization (NMF) [8]. By 
imposing non-negativity constraints, NMF allows only addi-
tive (not subtractive) combinations of parts, and thereby it is 
distinguished from other matrix factorization techniques such 
as principal component analysis or singular value decomposi-
tion.  

Moreover, like in [5], learning will be crossmodal. In our 
setup, much like in the real world, this message is conveyed 
to the learning agent through other modalities than audition 
(such as vision). With the multimodal information the agent 
can link the recurring acoustic patterns with events in the 
other modalities. In this sense, the patterns are assigned a 
meaning and can therefore rightfully be called ‘words’. In this 
respect, what is presented in this paper differs substantially 
from what we have presented earlier [6], [9]: exploiting the 
crossmodal information not only facilitates learning, it also 
augments the patterns with a meaning in the world the agent 
lives in.  

The remainder of this paper is organized as follows: sec-
tion 2 formalizes the problem that is addressed, section 3 
explains how NMF is used to achieve the goals of crossmodal 
learning, section 4 provides experimental results which are 
analyzed in section 5 and extended to a larger vocabulary in 
section 6. We conclude with the discussion of section 7. 

                                                                 
 
1 With proper initialization and constraints, the parts will be 
forced to not necessarily model the most frequently occurring 
patterns.  



2. Problem formulation 

2.1. Multimodal information 

The ACORNS project [10] aims to build a system that learns 
a vocabulary from multimodal information, much like a child 
does. Hence, the learning agent should be able to extract a 
vocabulary item like “ball” from spoken sentences such as 
“look at the ball” and “what a nice ball”. The relevance to the 
agent’s world of an utterance is conveyed through modalities 
other than audition. In this example, a round object could be 
presented through the visual channel simultaneously with the 
audio. However, in order to bypass the implementation of 
recognizers in modalities such as the visual or the tactile, it is 
assumed that the information of the other modalities can be 
represented by an unordered collection (a set) of tags drawn 
from a finite tag vocabulary. The tags idealize the input form 
other modalities and translate to the presence or absence of a 
vocabulary item (a keyword) in the audio stream. For the task 
complexity envisaged in the ACORNS project, the presence 
or absence of a tag suffices to represent the presence or ab-
sence of an object or action (transitive verbs are excluded) in 
the scene. Since the focus of this paper is on the acoustic 
aspects of pattern discovery, such an abstraction is not made 
for audition and hence every utterance uj (j = 1 … T) is ac-
companied by a “semantic” description consisting of a set of 
Kj tags drawn from a set of cardinality L. In the simple tasks 
envisaged here, tags map to one or more words (e.g. “ball” or 
“look at”). Hence, the multimodal tags can be summarized in 
the L × T matrix Vw with 

  [Vw] ij  = 1 if the i-the tag occurs in uj (1) 
               = 0 if it does not 

The task of the learning algorithm is now to discover in 
the audio which acoustic patterns relate to each of the tags. 
The task of the recognition algorithm is to produce the correct 
set of tags given an unseen utterance (without tags). 

2.2. Auditory preprocessing 

The human ear is modeled with a MEL-scale filter bank 
whose log-outputs are sampled every 10 milliseconds. This is 
known to be a coarse, yet workable approximation. Subse-
quently, spectral changes are emphasized by adding first and 
second order time derivatives resulting in three data streams 
called static (S), velocity (V) and acceleration (A). The spec-
tral similarity metric is Euclidean distance after cepstral trans-
form of these three streams.  

The input audio will be characterized by its similarity to 
examples in each of these streams. Therefore, the observed 
spectral vectors of each stream s (s = S, V or A) are clustered 
into Ns centroids using the K-means algorithm. The posterior 
probabilities Pi,s,n of all centroids n now characterize any 
frame of audio data at frame (time) i in terms of its similarity 
to each of the centroids. Given the Euclidean distance metric 
used in clustering, each centroid can be represented by a 
Gaussian with spherical covariance. The posterior probabili-
ties satisfy: 
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A special case is obtained in a vector quantization (or “winner 
takes all”) setting, where all posteriors are zero except for the 
centroid which is closest to the observation, which is assigned 
the value 1.  

3. Unsupervised learning 

3.1. Non-negative matrix factorization (NMF) 

Given a matrix V of size N × T or non-negative real numbers, 
approximate non-negative matrix factorization rewrites this 
matrix as the product of factors W and H are of size N × R 
and R × T respectively and containing non-negative real num-
bers: 

 V ≈ W H (2) 

and R « T. The distance metric to measure the similarity of the 
left hand side and the right hand side of (2) is: 
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In this paper, the iterative multiplicative updates for minimiz-
ing (3) as outlined in [8] and reproduced in [6] are used. 
Multiplicative updates are easy to implement but suffer from 
slow convergence. W and H are initialized randomly and 
updated until the decrease in (3) drops below a threshold. 
Multiple random initializations are attempted and the result 
with minimal divergence is retained. In particular for the 
minimization of the Frobenius norm of the fitting error, a 
wide range of faster algorithms is described in literature. The 
main reason for our choice is the asymmetry in the divergence 
metric (3) and the property that in multiplicative updates, a 
zero matrix entry will always remain zero1. 

It is important to notice that in (2), W and H are not 
unique. For instance, scaling and permutation of the columns 
of W or the rows of H lead to equivalent solutions. Therefore, 
the columns of W will be normalized to sum to 1. The permu-
tation problem will not hamper the analysis below.  

3.2. Directed co-occurrence 

The t-th utterance is represented by a single vector of lag-τ 
co-occurrence of acoustic events. In this paper, these acoustic 
events are the input nearing a centroid m (as defined in sec-
tion 2.2). Hence, “lag-τ co-occurrence” signifies that the input 
nears a centroid m at time i while nearing centroid n at time 
i+τ. Extension to other definitions of “acoustic event” is triv-
ial. The co-occurrence is weighted with the (approximated) 
probability of the event, i.e. : 
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where It is the length (in frames) of the t-th utterance. Notice 
that this co-occurrence is directed: [Cs,t

τ]nm ≠[Cs,t
τ]mn 

Let vec(C) denote the operator that stacks all columns of 
C in one column vector. The data matrix of a set of T utter-
ances is now formed by  

 

( )
( )
( )

( )
( )
( )

( )
( )
( )

,1 , ,

,1 , ,

,1 , ,

S S t S T

V V t V T

A A t A T

vec vec vec

vec vec vec

vec vec vec

τ τ τ

τ τ τ τ

τ τ τ

 
 
 =
 
 
  

C C C

V C C C

C C C

⋯ ⋯  (4) 

                                                                 
 
1 This property can also be implemented in additive updates 
by considering some entries as fixed (and zero). 



Notice that all entries in the (NS
2+ NV

2+ NA
2) × T matrix Vτ are 

real and non-negative such that the tools of section 3.1 apply. 
In case vector quantization (see section 2.2) is used, Vτ tends 
to be sparse. 

3.3. A generative model 

It is important to note that (4) is additive over time. If we 
imagine that an utterance is segmented in words, each word 
will contribute additively to the corresponding column of (4). 
Hence, if we place the co-occurrence counts of all words in a 
separate column of W, and if the corresponding rows of H 
would contain the presence of each word in each utterance, 
one would have 

 Vτ = W H (5) 

For uniqueness, one can again renormalize the columns of W 
and inversely compensate the rows of H.  

However, there are non-idealities: 
• crossword co-occurrences of acoustic events depend 

on the sequence in which the words occur 
• different realizations of a word might lead to differ-

ent co-occurrence counts 
• co-occurrence counts are proportional to the dura-

tion of the word 
Therefore, equation (5) will not hold exactly and approximate 
NMF as in equation (2) is needed. Better models are even 
obtained if W also contains nuisance-columns, which are 
intended to model these non-idealities. 

By mapping the columns of W to words, the question of 
the choice of R (the number of columns of W) is raised since 
the number of distinct words is unknown. However, since we 
assume each tag to correspond to at least one word, one 
should at least choose R ≥ L. 

Given the observation that a column of W can model dif-
ferent objects relevant to the structure of speech, the word 
“part” will be used to refer to a column this matrix. 

3.4. Learning with NMF 

In our problem, the words are unknown and NMF is used to 
separate out the words from the utterances. Though section 
3.3 argues that a possible decomposition of co-occurrence 
count matrix in terms of parts corresponding to words is pos-
sible, it is not the only one. Actually, decomposition (2) ap-
proximates the data V as an additive combination of a limited 
number of parts.  Utterances can be seen as a sequence of 
words, but also a sequence of phones, for instance, is a model 
that holds equally well. To conquer this ambiguity, con-
straints are imposed by exploiting the multimodal information 
(tags).  

Eventually, we want to recognize the presence of tags in 
an utterance. W and H are therefore partitioned into 
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where W1 is a N × L matrix and W2 is a N × (R-L) matrix and 
similarly H1 has L rows. Each column of W1 will model a 
single tag. Since tags correspond to one or more words the 
argument of additive contributions of section 3.3 still holds 
and leads to a correct model for the co-occurrence data V. 
Matrix W2 contains parts that are not constrained except by 
non-negativity and the additive model (2): they could be any-
thing from phones to multi-word expressions. 

To implement the constraint on W1, we need to express 
that its i-th column only contributes if the i-th tag is associ-
ated with that utterance. Hence, we impose [H1] it to be non-
zero if tag i occurs in utterance t by initializing H1 to zero 
when Vw is zero. Given the properties of multiplicative up-
dates (section 3.1) the final H will retain this sparseness struc-
ture ensuring that the NMF decomposition only associates tag 
models in W1 to the utterances containing those tags. Without 
this constraint, the NMF tends to spend columns of W pref-
erably on the more frequent acoustic patterns since this is 
most important to minimize the modeling error (3). 

In earlier work [6] and [9] we have applied NMF to dis-
cover recurring acoustic patterns in speech. There are two 
major differences. First, the input data were phone lattices, 
which implies that the learning agent would have first discov-
ered that speech is built up of phones that span up its auditory 
observation space space. In this work, we start directly form 
the acoustic events without phonetic knowledge. Secondly, 
we now deal with the multimodal information, which is im-
portant for learning by imposing constraints such that the 
parts model targeted information. Nevertheless, we observed 
in [6] that the discovered patterns modeled by columns of W 
could be mapped one-to-one to words. 

3.5. Joint modeling of multiple streams 

By construction, Vτ contains co-occurrence data from the 
static, velocity and acceleration streams along its different 
rows. This idea can be extended further to include co-
occurrence data at different lags. One may indeed expect that 
the time span over which acoustic events consistently co-
occur depends on what one wants to model. For plosives, one 
might suggest a value around 10 ms for τ, while for modeling 
diphthongs or phone sequences, values in the order of 100ms 
seem more appropriate. Therefore, Q values of τ are included 
in the model: 
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For these joint streams, the generative parts-based model still 
holds: the joint stream co-occurrences of utterances can be 
written as an additive combination of parts.  

The capability of NMF to jointly model different streams 
of information is a surprising strength of the model that de-
serves further research. In the present case, these streams are 
synchronous (sampled at a 10 ms interval), but this is not a 
requirement. In section 5 for instance, segmental information 
will be incorporated. 

Finally, though not essential to the success of the method, 
but for convenience in recognition, we add: 
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where β is a positive real number and Ww is a real non-
negative L × T matrix. Experiments show that β is not critical 
at all: the performance figures do not alter over a change of 
several orders of magnitude. The idea of adding additional 
rows to the data matrix extends further along the arguments 
given above for joint modeling of streams: Vw can be seen as 



a “semantic” information stream with one event per utterance. 
The matrix factorization (7) attempts to fit the acoustic and 
semantic information jointly. 

The final training now consists of initializing Ww with 
random positive numbers along the diagonal, W1 and W2 with 
random positive numbers and H as explained in section 3.4.  

3.6. Recognition with NMF 

After training, Ww, W1 and W2 are known. Given a set of T 
new test utterances (for which Vw is unknown), the matrix 
factor H is computed from the acoustic directed co-
occurrences only using multiplicative updates, i.e. by mini-
mizing the divergence (3) for model (6). Obviously, this ma-
trix differs from the one obtained during training. Matrix 
factor H estimates to which extent the parts are present in the 
acoustic data. Since the full columns of W jointly fit the 
acoustic co-occurrence and β Vw on the training data, we can 
estimate the unknown Vw of the test data as Ww H.           Fi-
nally, the activation of the tags can be computed using: 

 
1

wβ
=A W H  (8) 

The activations A (a L × T matrix) assume values between 0 
and about 1. Entry Ait gives an estimate of the relevance of 
the i-th tag in the t-th test utterance. In the simple case where 
only one tag is assumed relevant to an utterance (see section 
4.2), the recognized tags are the maximizers over the rows of 
A. 

4. Experiments 

4.1. The Dutch ACORNS database 

Two male and two female adult speakers each utter 1000 sen-
tences containing a single keyword in an infant-directed (IDS) 
and adult-directed (ADS) mode. Of these 7999 utterances, 
1000 are used for testing, the rest is used for training. The 
keywords (which coincide with the tags), their translation into 
English and the number of occurrences in the training set are 
given in Table 1. In this first experiment, there is one and 
only one tag per utterance. 
 

auto  car 696 
bad   bath 696 
boek   book 709 
damian   proper name 176 
flesje   bottle 708 
isabel   proper name 178 
luier   diaper 708 
mama   mammy 697 
mirjam   proper name 171 
otto   proper name 175 
papa   daddy 682 
schoen   shoe 693 
telefoon   telephone 712 

Table 1: number of occurrences in the training set 
(right column) of each of the keywords (left column) 

and their translation (middle column). 

Each of the keywords is embedded in a carrier sentence. 
The different carrier sentences are listed in Table 2. Here, 
<article> is either empty (for proper names), “de” (definite 
article for male or female nouns), “het” (neutral nouns) or 

“een” (indefinite article for all genders), while <key> is one of 
the keywords form Table 1. The keywords do not occur with 
an even distribution over in all carriers. 

 
daar is <article> <key> there is <article> <key> 709 
(dag|hallo|hee|hoi) <key> hello <key> 288 
dat is <article> <key>  that is <article> <key> 1103 
en daar komt <key> and there comes <key> 138 
en hier is <article> <key> and here is <article> <key> 697 
kijk <article> <key> look <article> <key> 629 
pak je <article> <key> ? do you take <article> <key> ? 476 
waar is <article> <key> 
nou ? 

where is <article> <key> ? 712 

wat een leuk(e) <key> what a nice <key> 413 
wijs <article> <key> aan point at <article> <key> 631 
zie je <article> <key> ? do you see <article> <key> ? 694 

Table 2: number of occurrences in the training set 
(right column) of each carrier phrase (left column) 

and its translation (middle column). 

4.2. Training and recognition 

In this experiment, we use a codebook for static, velocity and 
acceleration features of NS = 150, NV = 150 and NA = 100 re-
spectively with the vector quantization approach described in 
section 2.2. The codebook size is a compromise between 
quantization error and the size of the matrices to be handled. 
This value was an “educated guess” and not optimized on the 
present problem in any sense. The training as described in 
section 3.5 is performed with R = 25 and β = 1000 for one up 
to three values of the co-occurrence lag τ as listed in the first 
three columns of Table 3. Rows of V in equation (7) that are 
zero in the training are removed and the resulting number of 
rows N of V is given in column 4 of Table 3. The number of 
columns in V is always 6999, the number of training utter-
ances. Subsequently, recognition of a single tag is performed 
using (6) and the resulting error rate on 1000 test utterances is 
listed in the rightmost column of Table 3.  

We observe that most tags are correctly recognized de-
spite the different speaking styles (IDS vs. ADS), the multiple 
speakers and the uneven occurrence frequency of the tags. 
Notice however that the training and test speakers are the 
same in this database, which is also most relevant to early 
language acquisition. It is remarkable to observe that the 
NMF-based recognition can successfully integrate correlated 
information streams. Given the small amount of errors, it is 
not possible to draw conclusions about the superiority of one 
configuration over another with any statistical significance. 

 

ττττ1 ττττ2 ττττ3 N tag error rate 
0 - - 413 5.4 % 
2 - - 38986 0.9 % 
5 - - 48304 0.3 % 
10 - - 50731 0.6 % 
2 5 - 87277 0.4 % 
2 10 - 89702 0.3 % 
5 10 - 99022 0.2 % 
2 5 10 137995 0.2 % 

Table 3: tag recognition results on the Dutch 
ACORNS database. The leftmost 3 columns give the 

co-occurrence lag in frames (multiple of 10 ms). 



5. Examining the parts representation 

By construction, a column of W1 successfully models co-
occurrence of acoustic events that seem to be typical for a 
particular tag. However, since the number of carrier sentences 
is rather restricted and since the occurrence of the keywords 
in the tags is not evenly distributed, information in the carrier 
might contribute to the recognition of the tag. This would 
mean that the tag itself is not learned, but that the context it 
occurs in also plays a role. This is in itself not a negative 
property of a learning method: humans also exploit context 
and correlates to identify objects. A second question we 
would like to address in this section is what the model W2 
contains. They could be words, multi-words, individual 
phones or any set of units that can parsimoniously model 
what is not covered by the tag models. 

5.1. Analysis method 

To make the parts models easier to interpret, we will add a 
phonetic stream to the model (7). This stream is not used for 
the learning process nor is it used during recognition since we 
do not want to assume a learning agent would dispose of 
knowledge of phonetics. We merely add it for analysis pur-
poses. Like in [6], co-occurrence counts of adjacent phonetic 
events are used. Hereto, a phone lattice is generated with a 
phone recognizer [11] using an acoustic model for Dutch 
trained on 50 hours of read speech from the CGN corpus. For 
utterance t, the posterior probability γt,i of the i-th arc in the 
lattice is computed according to [12] and the posterior prob-
ability Pt,k of the k-th node is computed as well. The co-
occurrence probability of phones m and n of adjacent arcs is 
accumulated over the lattice by summing: 
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where α(i) and ω(i) are the start and end node of the i-th arc 
and φ(i) is its phone identity and δk,l is Kronecker’s delta. 
Finally, the phone co-occurrence counts of all T utterances are 
stacked in an observation matrix: 

 ( ) ( )1P Tvec vec=   V C C⋯  

This phonetic information stream is now joined with that 
from the “acoustic space” (7) though the latter has a frame-
synchronous event rate instead of the current segmental event 
rate. Subsequently, a NMF minimizing the divergence crite-
rion is applied: 

 

1

1 2

Q

w

w

P

P

τ

τ

β 
 

  
  = ≈   
    

 
  

V

V W

W WV H

WV

V

⋮  (10) 

where VP and WP have an equal number of rows and the other 
matrices have the same dimensions as in (7). Moreover, Ww, 
W1 and W2 are kept fixed to their values as obtained in sec-
tion 4.2 during the multiplicative updates (which also re-
moves the need for normalization of W and H). With this 
constraint, we impose that the existing parts representation in 
the acoustic space is unchanged while the joint model also 
needs to explain the phonetic stream as well as possible. In 

other words, WP hooks into the existing model and we associ-
ate a phonetic co-occurrence model to each tag model that 
was learned in the acoustic space before. 

We can now measure the similarity of the parts learned by 
the NMF to a reference phonetic transcription. To this end, 
the phone string is first transformed to a chain of arcs, each 
with unit posterior probability. Then the reference phone co-
occurrence count vector cref  = vec(Cref) is formed as in (9) for 
this particular lattice and normalized to sum to unity. The 
divergence measure between the reference transcription and 
the k-th column of WP (also normalized to sum to unity) is 
now: 
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A graphical representation of these divergences between 
W-columns for the model with τ1=2, τ2=5 and τ3=10 and the 
canonical transcription of each of the 37 words in the vocabu-
lary is given in Figure 1. Here, each word is softly assigned to 
the W-columns that respond most to it. The negative diver-
gences (11) are exponentiated and normalized to sum to one 
over all candidate models. The resulting normalized diver-
gence is a number between 0 (poor match) and 1 (canonical 
transcription with best match) where high values (white) indi-
cate that the part (W-column) responds most to the word. 

 

Figure 1: normalized divergence between canonical 
transcriptions (ordinate) and columns of WP (ab-

scissa). White represents close match. 



5.2. The tag models 

The first L (=13) columns of W model the tags by construc-
tion. We observe indeed from Figure 1 that each tag model 
responds well to one word from Table 1. However, some 
carrier words also produce good matches on some tag models. 
Acoustic similarity could be a reason for a good match, e.g. 
“auto” en “nou” are short words with a common vowel. How-
ever, this cannot be an argument for “komt” producing a good 
match on “mama” and “papa”. Closer inspection reveals that 
the carrier “en daar komt <key>” is only used with these two 
keywords and that “komt” is not used in any other context. 
Hence, the word “komt” helps to recognize these 2 tags. The 
association is not perfect, since “mama” and “papa” do occur 
in other carriers. Similarly, “dag”, “hallo” and “hee” are only 
used with the proper names which leads to an association 
effect. Finally, Dutch grammar imposes to use the definite 
articles “de” with “auto”, “luier”, “schoen” and “telefoon”, 
while “het” is used with “bad”, “boek” and “flesje”. Also 
these associations are apparent from Figure 1.  

5.3. The carrier models 

First notice that unlike the tag models, the carrier models are 
not essential for recognition (but improve performance). 
Since (7) is an approximate decomposition, differences be-
tween data and model can be tolerated. If recognition is at-
tempted using only the L first columns of W, tag error rates of 
13% to 20% are observed, depending on the values of τ. 
Hence it is advantageous for recognition accuracy to not only 
rely on the tag models, but also try to explain the acoustic co-
occurrences caused by the carrier sentences. Furthermore, as 
pointed out in section 3.3, parts in W2 can also account for 
model deviations such as co-occurrences of acoustic events 
that cross keyword boundaries. 

The relation between W2-columns and carrier vocabulary 
is not that clear for multiple reasons. First, quite different 
factorizations can lead to local minima of the approximation 
error (3) that are nearly equal. This non-uniqueness could also 
be attributed to the fact that multiplicative updates for non-
negative matrix factorization only guarantee non-increase of 
the divergence and may exhibit problematic convergence 
behavior [13]. But even in ideal cases where the global mini-
mum is reached as in the example of Appendix A, the number 
of contexts in which the intuitively perceived parts occur must 
be large enough in order to be found as parts. This condition 
is definitely not satisfied in the present database design. These 
ambiguities occur because constraints of the type of section 
3.5 are lacking fir the carriers. Secondly, the acoustic confus-
ability of the words used in the carrier phrases blurs the di-
vergence picture. Eight words contain only two phones and 
pairs like “waar”/“ daar” or “wat”/“ dat” are obviously acous-
tically similar. Third, the 12 parts (columns 14 through 25 of 
W) spent on the carrier phrases do not suffice to model 24 
words individually. Fourth, some words always occur to-
gether, such as the separable verb “wijs aan” and we cannot 
expect to find individual models for the components. It is 
therefore not possible to exactly match carrier models with 
words and multi-word expressions exactly, but an attempt is 
made in Table 4.  

 

Column word / MWE 
14 “wijs ... aan” + “waar is” + “daar 

is” 
15 “kijk” + “en hier” 
16 “wijs ... aan” 
17 “hoi” + “hee” 
18 “wat ... leuk(e)” 
19 “wat/dat” 
20 “pak je” 
21 “zie” 
22 “waar” 
23 “zie je” 
24 “dag” 
25 “waar is” + “daar is” + “dat is” 

Table 4: matching columns of W (left) with words 
and multi-word expressions in the carriers (right). 

6. Extended vocabulary 
In section 5, there was only one tag per utterance. Most mes-
sages have more than one associated concept. In the theory 
explained above, no assumptions were made about the num-
ber of tags that can be associated to an utterance. In case of 
multiple tags, Vw will have more than one non-zero entry per 
column.  

In the next experiment, we extend our tag set with “daar”, 
“dat”, “ hier”, “ kijk”, “ pak”, “ waar”, “ wijs” en “zie” (all words 
for which visual, tactile or circumstantial cues can be given) 
so it now has cardinality 21 and repeat the training with the 
same choice for the co-occurrence lags and R = 32 , as well as 
the analysis of section 5. The normalized divergence obtained 
between the canonical word transcriptions and this model is 
given in Figure 2.  

 

 

Figure 2: normalized divergence obtained with the ex-
tended tag set. 



We observe that the new keywords that always occur with 
another word are grouped: “daar” + “ komt” (column 4), 
“pak” + “ je” (column 15), “waar” + “ is … nou” (column 19), 
“wijs” + “ aan” (column 20) and “zie” + “ je” (column 21). 
There seems to be a better separation between the columns 
(remember that acoustic similarity also leads to a highlighted 
cell, e.g. “je” is a phonetic substring of “luier” and 
“damian”). For instance, the articles “de” and “een” do not 
seem to merge is as much with the keyword models and have 
received their own model in the carrier model W2. This also 
holds for “je”, “ leuk(e)”, “ is”, “ wat” have received a model 
that is better separated than before. Words like “het” are still 
mainly contained in the tag models. 

In terms of tag recognition rate on the set of 13, slightly 
but statistically insignificant improvement over Table 3 is 
obtained, so further experimentation is needed to determine if 
a better parts segregation in the carrier models also leads to 
better tag recognition. 

We conclude that the method can also handle multiple 
tags per utterance. The extended multimodal information 
helps to generate models of keywords and non-keywords that 
are less blurred. 

7. Discussion and conclusions 
This paper has shown that non-negative matrix factorization 
applied to co-occurrence matrices of acoustic events allows 
discovering recurring acoustic patterns with an associated 
meaning in a different modality. The multimodal information 
facilitates the separation of utterances into separate parts or 
models of words or multiple words. The parts are constructed 
such that acoustic and crossmodal information are best ex-
plained jointly. NMF successfully integrates multiple infor-
mation streams that are not necessarily synchronous, can be 
strongly correlated and can have large dimensionality. 

Multistream integration was used to compute a phonetic 
interpretation of the learned parts. It showed that the tag (key-
word) models are not accounting for the tag only, but that 
words that often co-occur with keywords are also assimilated 
in the model. 

A remarkable property of the NMF-based word models is 
that, unlike other unsupervised pattern discovery methods, a 
segmentation of the input in terms of the discovered units is 
not required. Instead, a holistic representation of the complete 
utterance (or more generally, of the analysis window) is made 
and approximately decomposed in parts. During recognition, 
the activity of all parts is computed where the order of the 
parts is not determined and the part boundaries are not 
aligned with the input. This also implies that a complete ex-
planation of the input audio is not required, much like a hu-
man brain does not need to recognize all words in a message. 
The NMF-based recognition measures to which extent a par-
ticular model is present in the input, or equivalently, words 
are activated to a greater or lesser extent. Another property 
linked to the lack of segmentation is that the discovered pat-
terns do not need to be contiguous, which allows to model 
separable verbs or exploit that words tend to occur together. 

The lack of segmentation also has downsides. Though the 
directed co-occurrence representation is sensitive to the order 
in which the events occur, it does not impose a strict ordering 
of events (states) like in a HMM. The time dimension is only 
weakly present in the models. For instance, a cyclic permuta-
tion of a pattern will lead to the same co-occurrence statistics. 
Also, decoding word order and detecting word repetitions are 
not trivial. An extension of the present method to give a 

stronger account for time and order are on our research 
agenda. 
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Appendix A 
In this section, we illustrate that valid decompositions into 
parts obtained with NMF can be counter-intuitive. The lesson 
to be learned is that the parts must occur in a “sufficiently 
large” number of contexts. 

We consider the 7-segment alphanumeric display. We 
form a 9 × 5 grid of pixels that can be switched on or off. 
However, the 45 pixels are not controlled independently, but 
may lie on one of the 7 segments (if not, they are always 
switched off). We expect to learn that the image is composed 
of 7 segments. 

We consider 3 training data sets: numeric, hexadecimal 
and alphanumeric symbols. For each symbol, a 35-
dimensional column vector is constructed with a 0 or 1 in the 
row indicating if the pixel is on or off. These vectors are sub-
sequently ranked in a matrix V of dimensions 35 × T, where T 
equals 10, 16 or 26 for the respective training sets. Subse-
quently, an NMF with common dimension R = 7 is computed. 
In all cases, the obtained divergence is 0, i.e. the factorization 
is without reconstruction error. 

The decompositions are depicted in Figure 3 through 
Figure 5. Only for the 26 training tokens, we have enough 
independent data to successfully separate all segments. Since 
non-integer weights are allowed, a “3” in Figure 3 for exam-
ple is formed as 2⁄3 W:5 + 2⁄3 W:6 + 1⁄3 W:7. These examples 
show that equivalent, but counter-intuitive solutions are still 
possible if the training data are insufficiently rich.   

 

 

 

Figure 3: training data (top) and obtained parts W 
(bottom) for the numeric training set. Blue = 0, 

brown = 1 and green = 0.5 

 

 

Figure 4: training data (top) and obtained parts W 
(bottom) for the hexadecimal training set. Blue = 0, 

brown = 1. 

 

 

Figure 5: training data (top) and obtained parts W 
(bottom) for the alphanumeric training set. Blue = 0, 

brown = 1. 

 


