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1. Introduction    
 

 
Human speech recognition seems effortless, but so far it has been impossible to approach 
human performance by machines. Compared with human speech recognition (HSR), the 
error rates of state-of-the-art automatic speech recognition (ASR) systems are an order of 
magnitude larger (Lee, 2004; Moore, 2003; see also Scharenborg et al., 2005). This is true for 
many different speech recognition tasks in noise-free environments, but also (and especially) 
in noisy environments (Lippmann, 1997; Sroka & Braida, 2005; Wesker et al., 2005). The 
advantage for humans remains even in experiments that deprive humans from exploiting 
‘semantic knowledge’ or ‘knowledge of the world’ that is not readily accessible for 
machines. 
 
It is well known that there are several recognition tasks in which machines outperform 
humans, such as the recognition of license plates or barcodes. Speech differs from license 
plates and bar codes in many respects, all of which help to make speech recognition by 
humans a fundamentally different skill. Probably the most important difference is that bar 
codes have been designed on purpose with machine recognition in mind, while speech as a 
medium for human-human communication has evolved over many millennia. Linguists 
have designed powerful tools for analyzing and describing speech, but we hardly begin to 
understand how humans process speech. Recent research suggests that conventional 
linguistic frameworks, which represent speech as a sequence of sounds, which in their turn 
can be represented by discrete symbols, fail to capture essential aspects of speech signals 
and, perhaps more importantly, of the neural processes involved in human speech 
understanding. All existing ASR systems are tributable to the beads-on-a-string 
representation (Ostendorf, 1999) invented by linguistics. But is quite possible –and some 
would say quite likely- that human speech understanding in not based on neural processes 
that map dynamically changing signals onto sequences of discrete symbols. Rather, it may 
well be that infants develop very different representations of speech during their language 
acquisition process. Language acquisition is a side effect of purposeful interaction between 
infants and their environment: infants learn to understand and respond to speech because it 
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helps to fulfil a set of basic goals (Maslow, 1954; Wang, 2003). An extremely important need 
is being able to adapt to new situations (speakers, acoustic environments, words, etc.) 
Pattern recognisers, on the other hand, do not aim at the optimisation of ‘purposeful 
interaction’. They are trained to recognize pre-defined patterns, and decode an input signal 
in terms of a sequence of these patterns. As a consequence, automatic speech recognisers 
have serious problems with generalisations. Although modern ASR systems can adapt to 
new situations, this capability is limited to a predefined set of transformations (Moore & 
Cunningham, 2005).  
 
Can the gap in speech recognition performance between humans and machines be closed? 
Many ASR scientists believe that today’s statistical pattern recognisers are not capable of 
doing this (see e.g. Moore, 2003). Most probably ASR can only be improved fundamentally 
if entirely new approaches are developed (Bourlard et al, 1996). We are trying to do just this, 
by investigating the way how infants acquire language and learn words and to see to what 
extent this learning process can be simulated by a computational model. Many branches of 
Cognitive Science, such as Psycho-linguistics, and Communication Science have contributed 
to a large mass of data about the speech processing skills of adults and the ways in which 
these skills develop during infancy and childhood (MacWhinney, 1998; Gerken & Aslin, 
2005; Gopnik et al., 2001; Jusczyk, 1999; Kuhl, 2004; Kuhl et al., 2003; Swingley, 2005; Smith 
& Yu, 2007). Despite the large number of studies, it is not yet clear how exactly infants 
acquire speech and language (Werker & Yeung, 2005), and how an adult’s speech processing 
can be as fast and robust against novel and adverse conditions as it apparently is. The 
design and use of a computational model is instrumental in pinpointing the weak and 
strong parts in a theory. In the domain of cognition, this is evidenced by the emergence of 
new research areas such as Computational Cognition and Cognitive Informatics (e.g. Wang 
et al, 2007). 
 
In this chapter, we describe research into the process of language acquisition and speech 
recognition by using a computational model. The input for this model is similar to what 
infants experience: auditory and visual stimuli from a carer grounded in a scene. The input 
of the model therefore comprises multimodal stimuli, each stimulus consisting of a speech 
fragment in combination with visual information. Unlike in a conventional setting for 
training an ASR system, the words and their phonetic representation are not known in 
advance: they must be discovered and adapted during the training. 
 
In section 2, we will present the model in more detail. The communication between the 
learner model and the environment is discussed in section 3. In section 4, the mathematical 
details of one specific instantiation of the learning algorithm are explained, while section 5 
describes three experiments with this particular algorithm. Discussion and conclusion are 
presented in sections 6 and 7. 
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2. The model 
   
2. 1 Background    
 

In order to be able to effectively communicate, infants must learn to understand speech 
spoken in their environment. They must learn that auditory stimuli such as stretches of 
speech are not arbitrary sounds, but instead are reoccurring patterns associated with objects 
and events in the environment. Normally this development process results in neural 
representations of what linguists call ‘words’. This word discovery process is particularly 
interesting since infants start without any lexical knowledge and the speech signal does not 
contain clear acoustic cues for boundaries between words. The conventional interpretation is 
that infants must ‘crack’ the speech code (Snow & Ferguson, 1977; Kuhl, 2004) and that the 
discovery of word-like entities is the first step towards more complex linguistic analyses 
(Saffran and Wilson, 2003). However, it seems equally valid to say that infants must 
construct their individual speech code, a complex task in which attention, cognitive 
constraints, social and pragmatic factors (and probably many more) all play a pivotal role. 
 
Psycholinguistic research shows that infants start with learning prosodic patterns, which are 
mainly characterised by their pitch contours and rhythm. A few months later, infants can 
discriminate finer details, such as differences between vowels and consonants (e.g. Jusczyk, 
1999; Gopnik et al., 2001). At an age of about 7 months infants can perform tasks that are 
similar to word segmentation (e.g. Werker et al., 2005 and references therein; Newport, 2006; 
Saffran et al., 1996; Aslin et al., 1998; Johnson & Jusczyk, 2001; Thiessen & Saffran, 2003). 
These skills can be accounted for by computational strategies that use statistical co-
occurrence of sound sequences as a cue for word boundaries. Other experiments suggest 
that the discovery of meaningful ‘words’ is facilitated when the input is multimodal (e.g. 
speech plus vision), experiments (Prince & Hollich, 2005) and computational models (such 
as the CELL model, Roy & Pentland, 2002). 
 
As observed above, the design and test of a computational model of word discovery may be 
pivotal for our understanding of language acquisition in detail. Simultaneously, such a 
model will inform possible ways to fundamentally alter (and hopefully improve) the 
conventional training-test paradigm in current ASR research. The classical limitations for 
defining and modelling words and phonemes in ASR might be radically reduced by 
exploring alternatives for data-driven word learning (e.g. by the use of episodic models – 
see Goldinger, 1998; Moore, 2003).  
 
The computational model that we are developing differs from most existing psycho-liguistic 
models. Psycho-linguistic models of human speech processing (e.g. TRACE, McLelland & 
Elman, 1986; Shortlist, Norris, 1994; Luce & Lyons, 1998; Goldinger, 1998; Scharenborg et al., 
2005; Pisoni & Levi, 2007; Gaskell, 2007) use a predefined lexicon and take symbolic 
representations of the speech as their input. The fact that a lexicon must be specified means 
that these models are not directly applicable for explaining word discovery (nor other 
aspects of language acquisition). The success of these models, however, suggests that 
concepts such as activation, competition and dynamic search for pattern sequences are 
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essential ingredients for any model aiming at the simulation of human speech processing 
(cf. Pitt et al, 2002, for a discussion about these topics). 
 
The computational framework that we propose in this paper builds on Boves et al. (2007) 
and combines the concepts of competition and dynamic sequence decoding. 
Simultaneously, it builds the lexicon in a dynamic way, starting empty at the beginning of a 
training run. During training, the model receives new utterances, and depending on the 
internal need to do so, new representations are hypothesized if existing representations fail 
to explain the input in sufficient detail. 
 
The model hypothesizes that patterns are stored in memory mainly on the basis of bottom-
up processing. Bottom-up models performing pattern discovery are also described in Park & 
Glass (2006) and ten Bosch & Cranen (2007). These models are based on a multi-stage 
approach in which first a segmentation of the speech signal is carried out, after which a 
clustering step assigns labels to each of the segments. In the final stage, then, these symbolic 
representations are used to search for words. The important difference beween ten Bosch & 
Cranen (2007) on the one hand and Park & Glass (2006) and Roy & Pentland (2002) on the 
other is that former does not rely on the availability of a phonetic recogniser to transcribe 
speech fragments in terms of phone sequences. Models that do bottom-up segmentation 
have already been designed in the nineties by Michiel Bacchiani, Mari Ostendorf and others. 
But the aim of these models was entirely different from ours: the automatic improvement of 
the transcription of words in the lexicon (Bacchiani et al., 1999). 
 
2.2 Architecture 
 
Our novel computational model of language acquisition and speech processing consists of 
two interacting sub-models: (1) the carer and (2) the learner. In this paper we focus on the 
architecture of the learner model. The computational model of the learner must be able to 
perform three major subtasks. 
  
Feature extraction 
The learner model has multimodal stimuli as input. Of course, the speech signal lives in the 
auditiry modality. To process the audio input, the model has an auditory front-end 
processor, i.e., a module that converts acoustic signals into an internal representation that 
can be used for learning new patterns and for decoding in terms of known patterns. The 
front-end generates a redundant representation that comprises all features that have been 
shown to affect speech recognition (and production) in phonetic and psycholinguistic 
experiments. However, for the experiments described in this chapter we only used 
conventional Mel Frequency Cepstral Coefficients (with c0) and log energy.  
In the second modality (vision), we sidestep issues in visual processing by simulating the 
perception of objects and events in the scene by means of symbols (in the simplest version) 
or possibly ambiguous feature vectors (in more complex versions of the model).  
 
Pattern discovery 
The learning paradigm of the computational model is different from conventional automatic 
speech recognition approaches. In conventional speech recognition systems the patterns to 
be recognised are almost invariably lexical entries (words), representeds in the form of 
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sequences of phonemes.  In the current model, we avoid the a priori use of subword units 
and other segmental models to hypothesize larger units such as words, and explicitly leave 
open the possibility that the model store patterns in the form similar to episodes (see also 
McQueen, 2007).  
 
Apart from the question how meaningful (word-like) units can be represented, the discovery 
of words from the speech signal is not straightforward. In our model, we use two strategies: 
(1) exploit the repetitive character of infant-directed speech (Thiessen et al., 2005) (2) make 
use of the cross-modal associations in the speech and the vision modality. This is based on 
the fact that infants learn to associate auditory forms and visual input by the fact that the 
same or similar patterns reappear in the acoustic input whenever the corresponding visual 
scene is similar (Smith & Yu, 2007; see also Shi et al, 2008).  
The chosen architecture is such that representations of word-like units develop over time, 
and become more detailed and specialised as more representations must be discriminated.  
 
Memory access 
Theorists on the organisation of human memory disagree on the functioning of human 
memory and how exactly the cognitive processes should be described. However, there is 
consensus about three processes that each plays a different role in cognition (MacWhinney, 
1998). Broadly speaking, a sensory store holds sensory data for a very short time (few 
seconds), a short-term memory (holding data for about one minute) acts as ‘scratch pad’ and 
is also used for executive tasks, while a long-term memory is used to store patterns (facts 
e.g. names and birthdays, but also skills such as biking) for a very long time.  
 
The short-term memory allows to store a representation of the incoming signal (from the 
sensory store) and to compare this representation to the learned representations retrieved 
from long-term memory. If the newly received and previously stored patterns differ mildly, 
stored representations can be adapted. If the discrepancy is large, novel patterns are 
hypothesized and their activation is increased if they appear to be useful in following 
interactions. If they are not useful, their activation will decay and eventually they will not be 
longer accessible. Short-term memory evaluates and contains activations, while long-term 
memory stores representations. 
 
The input and architecture of the computational model are as much as possible motivated 
by cognitive plausibility. The words, their position in the utterance, and its 
acoustic/phonetic representation are unspecified, and it is up to the model to (statistically) 
determine the association between the word-like speech fragment and the referent. 
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3 Interaction and communication 

 
Language acquisition takes place in communication loops between the infant and the 
environment. In the beginning of language acquisition, the number of persons that the 
infant interacts with is usually limited, which leads to patterns that are biased towards the 
personal voice characteristics of these few caretakers. As soon as the infant is addressed by 
more persons, the stored representations will be adapted in some way to accommodate the 
differences between speakers (and other differences, such as speaking styles). 
 
The communicative framework involves two active participants and simulates a ‘learner’ 
involved in interaction with a ‘carer’. The learner discovers words and word-like entities on 
the basis of the grounded stimuli presented by the carer during the interaction.  
The learner starts with an almost empty memory, and during the interaction between 
learner and carer, the learner gradually detects more and different meaningful sound 
patterns. This is done by first hypothesising an internal representation of a word-like entity, 
followed by strengthening or weakening of this representation on the basis of new stimuli. 
This means that the concept of word is not built-in a priori, but that meaningful acoustic 
patterns come about as an emergent property during learning. ‘Words’ in the linguistic 
sense of the term are meta-level concepts that children acquire when they start talking about 
language. 
 
The multimodal stimuli from which our model must learn consist of two parts (a) the audio 
parting the form of real speech signals (short utterances) and (b) the visual (semantic) input 
corresponding to the meaning of the utterances. This visual representation in the 
experiments described here is an abstract tag, which uniquely refers to the object that is 
referred to by the utterance. In the experiments described in section 5, we use 13 of these 
tags (representing 13 target words). The tags represent an abstraction of the information that 
would otherwise be available along the visual modality. The tag itself does not give any clue 
about the word, or the phonetic representation of any target word.  
 
The speech used for training the learner is highly repetitive in terms of verbal content and 
produced by four speakers. In a later phase of the learning process the model will be 
exposed to speech produced by other speakers. The communication starts when the carer 
presents a multimodal stimulus to the learner. Once the carer has provided a stimulus, the 
learner’s response consists of the concept the learner thinks is referred to by the audio part 
of the stimulus. This reply is combined with a confidence measure. In the learner’s memory 
this results in an update of the internal representations of the concepts. 
The emphasis is on learning a small vocabulary, starting with an empty lexicon. A basic 
vocabulary must be formed by listening to simple speech utterances that will be presented 
in the context of the corresponding concepts. 
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Figure 1. This picture shows an overview of the overall interaction between learner model 
(within grey-line box) and the environment (i.e. carer, outside the box). Multimodal stimuli 
are input of the model (top-left corner). For an explanation see the text. 
  

 
 
A schematic representation of the interaction between the learner and the carer is shown in 
figure 1. The learner is depicted within the grey box, while the carer is indicated as the 
environment outside the grey box. A training session consists of a number of interaction 
cycles, each cycle consisting of several turns. Per cycle, the learner receives multimodal 
input from the carer after which a reply is returned to the carer. In the next turn, the carer 
provides the learner with a feedback about the correctness of the response, after which it is 
up to the learner to use this feedback information. 
When the learner perceives input, the speech input is processed by the feature extraction 
module. The outcome is stored in the sensory store, from where it is transferred to short-
term memory (STM) if the acoustic input is sufficiently speech-like (to be determined by the 
attention mechanism in Figure 1). In STM, a comparison takes place between the sensory 
input on the one hand and the stored representations on the other.  The best matching 
representation (if any) is then replied to the carer. 
 
The role of the carer 

The carer provides multimodal utterances to the learner. The moment at which the carer 
speaks to the learner is determined by a messaging protocol that effectively controls the 
interaction during a training session. The utterances used during training and their ordering 
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are determined by this protocol. After a reply from the learner, the carer provides feedback 
about the correctness of the reply. In the current implementation, the feedback is just a 
binary yes/no (approval/disproval). 
 
Learning drive 
The communication between carer and learner is not enough for learning. Learning is a 
result of a learning drive. Exactly which drive makes the learner learn? When looking at real 
life situations, a baby’s drive to learn words is ultimately rooted in the desire to have the 
basic needs for survival fulfilled: get food, care and attention from the carers. In the current 
model, this ‘need’ is implemented in the form of an ‘internal’ drive to build an efficient 
representation of the multimodal sensory input, in combination with an ‘external’ drive to 
optimise the perceived appreciation by the carer. 
The internal drive basically boils down to the quality of the parse of the input. Given a 
certain set of internal representations, the leaner is able to parse the input to a certain extent. 
If the input cannot be parsed, this means that representations must be updated or even that 
a new representation must be hypothesised and stored. 
The external drive (related to the optimisation of the appreciation by the carer) is directly 
reflected in the optimisation of the accuracy of the learner’s responses (i.e. minimisation of 
the error rates). The optimisation of the accuracy can mathematically be expressed in terms 
of constraints on the minimisation between predicted reply (predicted by the learner model) 
and the observed ground truth as provided in the stimulus tag.  

 

4 Learning and decoding algorithm  

 
In the current implementation of the learner’s model, training and decoding is done by first 
combining acoustic and visual/semantic information from the incoming new stimulus into 
one single vector. Thus, each stimulus is represented as a vector with a fixed dimension. As 
a result, a sequence of stimuli is represented as a matrix (in this chapter, this data matrix will 
be referred to by X). The actual search for patterns is performed by a decomposition 
technique called Non-Negative Matrix Factorisation (NMF) on X (Hoyer, 2004; Stouten et al, 
2007, 2008). NMF is a technique to find structure in (large) data sets. The usefulness of NMF 
for our purpose derives from the fact that it is able to decompose the very large matrix X 
into two (much smaller) matrices W and H such that 
 

(a) X ≈ WH: The distance between X and the product WH is minimised according to some 
distance function (see below) 
(b) All components of X, W and H are positive or zero 
 
In our experiments, X represents previously learnd (but constantly updatable) patterns 
residing in the long term memory of the learner. Prior to the training X is initialised to the 
empty matrix. Each new utterance is first encoded in a vector which is then appended to the 
current matrix X. If there is no forgetting, the number of columns of X equals the number of 
utterances observed so far in the training run. This is reminiscent of episodic memory.  
After NMF decomposition, the columns in W act as basis vectors into which the columns of 
X are represented. What we want the NMF to produce is a decomposition of each utterance 
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in terms of word-like entities. In the current experiments, where X is based on utterances (in 
linguistic term: sequences of words), each column of W should therefore ideally be related 
to a single word-like entity. A necessary condition to enable this utterance–to-word 
decomposition is provided by the way in which new utterances are mapped to a new 
column of X. This mapping will be denoted map below. If s1 and s2 are two arbitrary speech 

segments, and s1 ⊕ s2 is the concatenation of these segments, then map must meet the 
following property: 
 

map(s1 ⊕ s2) = map(s1) + map(s2) 
 
where the right-hand side ‘+’ sign refers to the usual vector-addition of two vectors. 
 
The matrix H contains the corresponding weights (activations) in the decompositions. If a 
certain entry in H (hij) is positive, it means that the corresponding column of W is required 
with weight hij to explain the corresponding column in X.  
In this decomposition, the number of columns in W (and so the number of rows in H) is a 
model parameter. This number must be estimated on the basis of the number of input 
stimuli observed so far. In the current implementation, this number is initialised to 5 and 
increases with the number of observed stimuli. The way how this number increases is 
basically heuristically determined. The number of columns in W must be larger than the 
number of concepts that must be distinguished. Else, it would not be possible to account for 
different linguistic contexts of the target words (the acoustic context of the target words in 
the utterances). This implies a tendency for the learner to overestimate the number of things 
in the environment that must be distinguished.  
In the current implementation, the NMF factorisation takes place for the first time after K 
stimuli have been observed, where K is a user-defined number. This corresponds to the 
assumption that reorganization towards a more efficient storage of episodic traces in the 
memory is only necessary after a certain number of observations. After this initialisation, the 
resulting W and H are updated after each following stimulus. As a result, W and H evolve 
gradually as long as more utterances are being observed.  
 
To decode a new (not yet observed) utterance U, the map operation is applied on U, and a 
vector h is sought such that the difference between 
 
map(U) and W h 
 
with W the current internal representation, is minimised. As a result, the vector h encodes 
the utterance in terms of activations of the columns of W: The winning column is the one 
corresponding to the highest value in h. 
As said above, the multimodal stimulus contains a tag corresponding to visual input; this 
tag can be coded into W such that each column of W is statistically associated with a tag. In 
combination with the information in the vector h, this association allows the learner to 
respond with the corresponding tag, in combination with the corresponding value in h. 



Name of the book (Header position 1,5) 

 

10 

 
  
NMF minimisation 

The minimisation of the NMF cost function leads to the overall closest match between 
prediction and observation, and so to an overall minimisation of the recognition errors made 
by the learner. Hoyer (2004) presents two different NMF algorithms, each related to a 
particular distance that is to be minimised. In the case of minimisation of the Euclidean 
distance (Frobenius norm) between X and WH, the cost function that is minimised reads 
(see Hoyer, 2004 for details) 
 

2/)][(),( 2

,
1 ij

ji
ij WHXWHXF −=∑  

 
while in case of the Kullback-Leibler divergence, this cost function reads  
 

∑ +−=
ij

ijWHXWHXXWHXF ))/(.log(*.(),(2  

 
In this formula, .* and ./ denote component-wise multiplication and division, respectively. 
The structure of the expressions at the right-hand side indicates that in both cases the error 
between prediction and observation is an accumulated sum over all tokens that are available 
in X (and so processed during training). Splitting the 2-way sum in two separate one-way 
sums (using i and j, respectively), the terms (Xj-[WH]j)2 and (X .* log(X./WH) – X + WH)j can 
be interpreted as the internal target function that is to be minimized on a token-by-token 
basis. In these token-related expressions, X, WH and H are now column vectors rather than 
matrices; W   is a matrix. 
The second expression, related to the Kullback-Leibler distance between reference (X) and 
hypothesis (WH), can be regarded as the log-likelihood of the model (XH) predicting the 
observation (X). This, in turn, can be interpreted as a measure for the quality of the parse of 
the utterance associated to X, in terms of the concepts that are associated with the columns 
in matrix W. 
 
Interestingly, the learning model does not need to segment utterances in order to 
hypothesize the presence of target words. Nor is the ordering of the words in the utterance 
used. This is so because the map function is symmetric: 
 

map(s1 ⊕ s2) = map(s1) + map(s2) = map(s2 ⊕ s1) 
 
This implies that word ordering is not reflected after the map operation. We come back to 
this property in the discussion section (section 6). 
 
 
Figure 2 shows how the use of NMF relates to the use of abstraction, which is necessary to 
facilitate access to the internal representations of speech signals. It shows how information 
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in X (at a low level of abstraction) is factorised to obtain more abstract information (in W 
and H). Thus, abstraction is mathematically modelled as factorisation of the data matrix X. 

 
 
 
 

 
 

 
Figure 2. This figure shows a multi-layered representation of the contents of the memory of 
the learner model. On the lowest level, data are represented in unreduced form. The higher 
the level, the more abstract the corresponding representation is. The picture shows the 
general idea of having multiple different levels of abstractness in parallel. In the current 
computational model of the learner, just two levels are used, an ‘episodic’ one (here: actual 
sequences of feature vectors obtained from the feature extraction module), and an abstract 
one (here: basis vectors in a vector space representing words, in combination with activation 
strengths). By using NMF, the conceptual bottom-up process of abstraction is translated into 
explicit matrix factorisations, while the top-down process is represented by matrix 
multiplications. These top-down and bottom-up processes can interact in a natural way 
since they use the same paradigm of algebraic matrix manipulation. 
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5 Experiments 

5.1 Materials 

 
For the experiments discussed here, we use three comparable databases collected in the 
ACORNS project: one Dutch database (NL), a Finnish database (FIN), and a Swedish 
database (SW). For each language, the databases contain utterances from 2 male and 2 
female speakers. Each speaker produced 1000 utterances in two speech modes (adult-
directed, ADS, and infant-directed, IDS). For the infant-directed style, all speakers were 
asked to act as if they addressed a child of about 8-12 months old. The resulting speech has 
the well-known characteristics of infant-directed speech, such as a more exaggerated 
intonation, clear pronunciation, and low speaking rate.  
The set of 1000 uterances contains 10 repetitions of combinations of target words and 10 
carrier sentences. Within a database, not all target words are uniformly distributed. While 
all 4 speakers share the same target words, the proper name they use to address the learner 
is different for each speaker. For example, the NL database (8000 utterances) contains 800 
tokens of ecologically relevant target words such as luier (diaper), auto (car), but only 200 of 
the proper names mirjam, isabel, damian, otto. In total, there are 13 different target words 
per language. 
 

5.2 Experimental set-up 

 
In each experiment the training is based on a specific list of utterances selected from the 
available pool of 8000 utterances. The ordering in which the utterances are presented is one 
of the experimental parameters (for example, this ordering can be random or speaker-
blocked). During a training the utterances are always processed utterance-by-utterance. It 
must be emphasized that in our approach there is no essential difference between training 
and test: each NMF update is based on the history observed so far (matrix X), while each 
new utterance is recognised (decoded) on the basis the stored representations (W) of the 
learner learned so far. In the experiments reported here, the length of the history-update 
window used in each NMF step is a parameter. One training session of the computational 
model consists in presenting (by the carer) the next not yet observed multimodal stimulus. 
The learner attempts to decode the audio part of this new input stimulus, and replies by 
providing its most active word hypothesis in combination with a confidence score. Then, 
exactly as in a real-life carer-child interaction, it is up to the carer-model to give feedback: by 
providing the next stimulus, or by correcting the model’s reply.  
 
5.3 Experiment 1 
 
Experiment 1 aims at showing that the learner is able to create representations of target 
words, and that when a new speaker is encountered, these representations must be adapted 
towards the characteristics of the new speaker. 
 
To that end, the pool of 8000 Dutch utterances was blocked by speaker, and randomized 
within speaker. The resulting utterance list contained 2000 utterances by a female speaker, 
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followed by 2000 utterances produced by a male speaker, followed again by the utterances 
from another female and another male speaker. 
 
The results of this word detection experiment are shown in Figure 3. The plot shows the 
performance of the learner, measured as average accuracy over the most recent 50 stimuli. 
The horizontal axis shows the number of stimuli (tokens) presented so far. The vertical axis 
shows the corresponding accuracy in terms of percentages correct responses. Each time a 
new speaker starts, a drop in performance of about 20-30 percent points can be seen. This 
performance drop is mainly due to the fact that the word representations learned so far are 
inadequate to correctly parse the utterances by the new speaker. The dip shows that 
representations are dependent on the speakers previously encountered during training. 
Given the learning settings, the learner is able to create adequate internal representations for 
10 target words as produced by the first female speaker within about 1000 tokens (that is, 
approximately 100 tokens per word). For each new speaker, the performance is back on its 
previous high level within about 100 tokens per word. Results for Finnish and Swedish are 
very similar. 
During the first few hundred utterances the learner does not have any repreentatin available 
and so does not respond in a meaningful manner; this explaines why the accuracy is zero. 

 

 
 
Fig 3. Results of word detection experiment (for Dutch, speaker-blocked). The plot shows 
the performance of the learner, measured as average accuracy over the most recent 50 
stimuli. The horizontal axis shows the number of stimuli (tokens) presented so far. The 
vertical axis shows the corresponding accuracy in terms of percentages. A drop in 
performance of about 20-30 percent point can be seen each time when a new speaker starts.  
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5.4 Experiment 2 
 
During the training, the NMF update takes place after each utterance. Tus, there are two 
parameters in the model that affect the eventual performance of the learner. These 
parameters specify the update scheme for the internal representations: how many utterances 
are to be used in the update of the internal representations, and when the initialisation of the 
internal representation should occur. The first parameter (number of utterances used in each 
NMF step) is referred to by memory length (indicated by ‘ml’) – this parameter specifies 
something that might be called ‘effective memory length’. The second parameter deals with 
the initialisation and denotes the number of stimuli before the first NMF decompistion 
(‘nsbt’). 
 
In this experiment, we focus on the 2000 utterances of one Dutch female speaker. Figure 4a 
shows the dependency of the eventual performance of the memory length. Four values for 
ml are shown (20, 100, 500, inf). The value ‘inf’ means that all utterances that are observed so 
far are used in the NMF updates. In this experiment, the value of nsbt is fixed to 100, which 
means that the very first NMF factorisation occurs after 100 utterances, after which 
recognition takes place. 
The plot shows that the eventual performance largely depends on the memory length. 
Values of 500 and ‘inf’ do lead to results that are almost indistinguishable; a value of 100, 
however, leads to considerably lower performance. Translating this to the level of 
individual words, this implies that 50 tokens per word suffice, but 9 to 10 tokens are 
insufficient to yield adequate representations.  
As shown in Fig. 4b the effect of the parameter nbst is much less dramatic. The most 
interesting observation is that there is no need to delay the first decomposition until after a 
large number of input stimuli have been observed. Delaying the first decomposition does 
not buy improvements in later learning. But in a real learning situation it might cost a baby 
dearly, because the carer might become frustrated by the lack of meaningful responses. 

 
5.5 Experiment 3 
 
In this experiment, the aim is to show that internal representations are changing 
continuously, and that we can exploit structure in the representation space by statistical 
means. This shows how abstraction may follow as a result of competition in crowded 
collections of representations on a lower level. For example, we would like to know whether 
speaker-dependent word representations can be grouped in such a way that the common 
characteristics of these representations combine into one higher-level word representation. 
We investigate this by first creating speaker-dependent word representations, followed by a 
clustering to arrive at speaker-independent word representations. 
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Figure 4a. This figure shows the dependency of the eventual performance of the memory 
length. Three values for memory length (indicated by ‘ml’) are shown (20, 100, 500, inf). The 
value ‘inf’ means that all utterances that are observed so far are used in each NMF update. 
The number of stimuli that are processed before the first NMF-step (‘nsbt’) is fixed to 100. 
For further explanation see the text. 

 

 
Figure 4b. In this figure, the performance of the learner is shows as a function of the number 
of utterances used for the first NMF update (‘init’). For the sake of comparison, the memory 
length is chosen to be equal to 500. The dashed curve in this figure is comparable to the solid 
curve in figure 4a (ml = 500, number of stimuli used in first NMF factorisation = 100). One 
observes that the eventual learner result is only slightly dependent on the amount of data 
used in the initialisation of W and H. 
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The training data are taken from the Dutch database and consists of 2000 utterances, 500 
utterances randomly chosen from each speaker. The visual tags that are associated to the 
utterances now differ from the tags used in the two previous experiments. While in those 
experiments the tag was a unique reference to an object, such as ‘ball’, the tags in this 
experiment are a combination of the object referred to (ball) and the speaker. That means 
that the leaner has to create and distinguish speaker-dependent representations for all 
‘words’, leading to 36 different columns in the W matrix (the nine common words x four 
different speakers). As a result, each column encodes a speaker-dependent variant of a 
target word. For example, for the single target word ‘luier’ (diaper), 4 columns in W 
represent the speaker-dependent acoustic realisations as produced by the four speakers. 
The question in this experiment is to what extent the W columns can be clustered such that 
the speaker-dependent variants of a single word can be interpreted as belonging to one 
cluster.  
All representations are one-to-one with columns in W. The metric of the vector space in 
which these columns reside is defined by the symmetrised Kullback-Leibler divergence. 
This means that for any vector pair (v1, v2) the distance KL(v2, v2) can be used as a 
dissimilarity measure, resulting in a KL-distance matrix MKL. A 10-means clustering using 
MKL then yields 10 clusters (where each cluster contains one or more word-speaker 
representations). 
Eventually, we obtained clusters that correspond almost perfectly to speaker-independent 
word representations. Figure 5 shows how the between-cluster distance increases while the 
average within-cluster variance decreases during training. This implies that clusters do 
emerge from the entire set of representations, which indicates that NMF is able to group 
speaker-dependent word representations one more abstract representation.  
 
One interesting aspect to address here is the precise evaluation of the within and between-
cluster variances. This is not trivial, since the KL divergence in the vector space spanned by 
the columns of W is not Euclidean, meaning that the concept of ‘mean’ vector is problematic. 
To circumvent this, the symmetrised KL divergence was first used to define a distance 
between any two vectors in the space spanned by the columns of W. Next, evaluation of the 
mean vector was avoided by making use of the following property: 
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Application of this expression for both within and between cluster variances leads to the 
results as shown in Figure 5. 
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Figure 5. Values of the between-cluster variance (dotted line) and within-cluster variance  
(bold line) during training. The ratio of the within-variance and between-variance decreases. 
This shows that the speaker-dependent word representations can indeed be clustered into 
groups that become increasingly more distinct.  

 
 
 
 
6 Discussion 
 
The computational model presented here shows that words (and word-like entities) can be 
discovered without the need for a lexicon that is already populated. This discovery 
mechanism uses two very general learning principles that also play a role in language 
acquisition: the repetitive character of infant-directed speech on the one hand, and cross-
modal associations in the speech and visual input on the other hand. 
The use of the term ‘word’ in the context of discovery may be a bit misleading, due to the 
meanings of the term in linguistics. Throughout this chapter ‘word’ means an entity of 
which an acoustic realisation is present across utterances as a stretch of speech. 
Given a database consisting of 8000 utterances, we showed that our learning model is able to 
build and update representations of 13 different target words. Experiment 1 shows that 
these representations are speaker dependent: When the learner is confronted with a new 
speaker, the model must adapt its internal representation to the characteristics of the speech 
of the new speaker. A computational model like we are building allows us to look inside the 
representation space and to investigate the dynamic behaviour of representations during 
learning. 
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Experiment 2 showed that the actual performance of the learner depends on two parameters 
that determine when and how the internal representations are updated. The amount of 
utterances that is used for each update of internal representations relates to the amount of 
memory that can be kept active during training. The result in experiment 2 suggests that 10 
to 50 observations must be kept in memory for building adequate representations of words. 
The second result of experiment 2 shows that the amount of data used for bootstrapping the 
NMF decomposition is not crucial for the eventual performance of the learner. This means 
that learning can be considered as a truly ongoing process, operating directly from the first 
stimulus. 
 
The third experiment showed that the representations are changing continuously, and that 
the representation space can be investigated in detail. A clustering of the columns of W 
showed how speaker-dependent word representations can be grouped into clusters that 
correspond almost 1-1 with speaker-independent word representations. 
The conceptual consequences of this result are very interesting. In the literature on mental 
representations of words and the status of phonemes in the prelexical representation (see 
e.g. McQueen, 2007) there is considerable discussion about the level of abstractness that 
must be assumed in the word representations. Although based on a simple database and a 
simple word discovery scheme, the result in experiment 3 suggests how abstraction may 
follow as a result of competition between crowded collections of representations on a lower 
level. If needed, speaker-dependent word representations can be clustered such that the 
common characteristics of these representations combine into one unique word 
representation. 
 
The current word discovery approach does not use the ordering of the words in an 
utterance. The utterances ‘the ball is red’ and ‘the red is ball’ would be mapped onto the 
same vector (there are small differences that are not relevant for this discussion). This seems 
an undesirable property of a word discovery algorithm, especially when the acquisition of 
syntax is a next step in language acquisition (cf. Saffran and Wilson, 2003). Current research 
shows that NMF is able to recover information about word order by augmenting the output 
of the map function with additional components related to the relative position of words in 
the input. A discussion about this approach is outside the scope of this paper. 
 
Since the computational model aims at simulating word discovery as it could happen in 
human language acquisition, the cognitive plausibility of the model is an important 
evaluation criterion. The literature on language learning and word acquisition discusses a 
number of phenomena. 
Firstly, the number of words that young infants understand increases over time, with a 
‘word spurt’ between the age 1y and 2y. This word spurt is generally attributed to various 
factors such as effective reuse of existing representations (but other factors may play a role, 
see McWhinney, 1998). In the current experiments, a word spurt effect is not yet shown. The 
way in which internal representations are built, however, paves the way to investigate 
whether a word spurt effect can be (at least partly) explained by the efficient reuse of 
already-trained internal representations. If the representations space becomes too crowded, 
this may be a trigger for the learner to look for a more efficient encoding of the stored 
information, with a better (more efficient) decoding of new words as a possible result.   
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In the language acquisition literature, a few more characteristics of language learning are 
discussed of which the modelling will be a challenge for all models that are ultimately based 
on statistics. One of these characteristics is that infants reach a stage in which they need just 
a few examples to learn a new word. Apparently, a reliable representation can be built on 
the basis of a few tokens only. Our model is in principle able to do that, but to what extent 
this is dependent on other factors remains to be investigated. Investigations about how a 
training could be performed on the basis of single tokens (or just a few tokens) will help to 
understand to what extent the human speech decoding process deviates from a purely 
Bayesian model. 
  
Another characteristic of first language acquisition is a phenomenon referred to as fast 
mapping. Broadly speaking, fast mapping means that children learn that ‘new’ (unobserved) 
words are likely to refer to ‘so far unobserved’ objects. Apparently the formation of form-
referent pairs is a process that might be controlled by some economic rules (in combination 
with statistically motivated updates of representations). For example, it may imply that an 
utterance that cannot be understood (fully parsed) given the current representations inspires 
the learner to postulate a new word-referent pair. However, we want to avoid an ad-hoc 
approach, in the sense that we want to avoid that the computational model is able to 
reproduce the effects due to a pre-thought scheme in the implementation. Instead, the fast 
mapping may result from the use of an underlying rule e.g. based on efficient reuse of 
representations or on efficient interpretation of the stimulus. The phenomenon of fast 
mapping will be topic of experiments in the near future. 
 
Our last discussion point relates to the use of visual/semantic tags in the multimodal 
databases. In the experiments reported in this chapter, tags serve as an abstract 
representation of the object in the scene that the utterance relates to. The tags are now 
interpreted by the computational model as they are, without any uncertainty that might 
obscure its precise interpretation. This might be regarded as undesirable, since it favours the 
visual information compared to the auditory input (which is subject to variation and 
uncertainty). Moreover, it is not realistic to assume that the visual system is able to come up 
with unambiguous and invariant tags. 
In the near future the computational model will be extended with a component that allows 
us to present ‘truly’ multimodal stimuli, comprising of an audio component and 
‘visual/semantic’ component. The visual/semantic component will then replace the tag that 
was used in the current databases. For example: the tag ‘ball’ will be replaced by a vector of 
binary components, each of them indicated the presence or absence of a certain primitive 
visual feature (such as red-ness, blue-ness, round-ness). 

7 Conclusion 
 
We presented a computational model of word discovery as the first step in language 
acquisition. The word representations emerge during training without being specified a 
priori. Word-like entities are discovered without the necessity to first detect sub-word units. 
The results show that 13 target words can be detected with an accuracy of 95-98 percent by 
using a database of 8000 utterances spoken by 4 speakers (2000 utterances per speaker). 
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Future research will enhance the model such that information about word ordering can be 
obtained. Also the multi-modal information in the stimuli will be enriched to encode 
visual/semantic information in a cognitively more plausible way. 
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