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Abstract. The discovery of words by young infants involves two interre-
lated processes: (a) the detection of recurrent word-like acoustic patterns
in the speech signal, and (b) cross-modal association between auditory
and visual information. This paper describes experimental results ob-
tained by a computational model that simulates these two processes.
The model is able to build word-like representations on the basis of mul-
timodal input data (stimuli) without the help of an a priori specified
lexicon. Each input stimulus consists of a speech signal accompanied by
an abstract visual representation of the concepts referred to in the speech
signal. In this paper we investigate how internal representations general-
ize across speakers. In doing so, we also analyze the cognitive plausibility
of the model.
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1 Introduction

Learning the sound patterns of new words is an essential part of learning lan-
guage. In the literature on language learning, two fundamental processes are
discussed that are needed to accomplish this task [13][20].

The first process is the word discovery and recognition from an acoustic
point of view. Infants (until about six months old) are truly ’universal’ learners
without preference for a particular language or sound structure. Recent research
strongly suggests that infants store a great deal of acoustic information about
words [12][17]. For infants of 6-7 months old, the reliance on acoustic detail can
even hamper the recognition of the same word when it is spoken by another
speaker or in another speaking style ([11][19]). When infants are about one year
old, they become better in generalizing across speaker and gender.

The second process in word discovery is cross-situational and cross-modal
learning. Infants are mostly confronted with multimodal stimuli: they hear speech
in the context of tactile or visual information that is associated with the infor-
mation in the auditory channel (word-referent pairs). In individual word-scene
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pairs, the relation between word and referent may be ambiguous, and it may
only be revealed by accumulation of statistical evidence across many situational
examples. [20] provides arguments for the hypothesis that young learners make
use of statistical cues to associate acoustic patterns and referents.

How can word learning by young infants be modeled computationally? Cur-
rently, automatic speech recognizers (ASR) are the most elaborate computa-
tional models of speech recognition. Contrary to virtually all psycholinguistic
models of speech processing, an ASR-based model is able to handle the entire
chain from speech signal to a sequence of words. However, current ASR algo-
rithms certainly cannot claim cognitive or ecological plausibility. Moreover, ASR
systems perform substantially worse than humans [15] [21]. In [2][4][7] we have
described a novel computational model that is designed in the framework of the
ACORNS project [23]. The model bears some similarity with the CELL model
developed by [18], but unlike CELL it does not assume (unrealistic) phonemic
input representations for the speech signal. The ACORNS model is able to learn
words in a cognitively plausible analogy of the way in which infants acquire their
native language. Following [20], we model the detection of words by searching
recurrent patterns in the speech modality, in such a way that hypothesized word-
like units statistically correspond with visual information. In designing the model
we have made an attempt to make it as cognitively plausible as possible with
respect to processing and representations in memory. Our research pursues two
goals: to better understand human speech recognition and to improve ASR by
including essential knowledge from human speech recognition.

More often than not infants hear speech from a small number of speakers
(their caregivers). This raises the question to what extent initial representa-
tions of word-like units are speaker dependent. Behavioral experiments suggest
that infants do not readily generalize ’words’ learned from one speaker to other
speakers [17]. However, there are indications that recognizing other speakers is
improved if infants learn from speech of several different speakers. In this paper,
we investigate these issues by means of a number of simulation experiments.

The structure of this paper is as follows. In the next section, we will dis-
cuss the main components of the computational model. The following sections
describe the experiment and results in more detail. The final section contains a
discussion and conclusions.

2 Brief description of the model

An input stimulus in our model consists of a spoken utterance in combination
with a visual representation of (some of) the objects referred to in the speech.
For the time being, the visual representation of a referent (e.g. ’car’) is repre-
sented by a low-dimensional vector containing visual features. This is provided
in synchrony with the speech signal. The acoustic input consists of continuous
speech; there is no word segmentation and there is no orthographic represen-
tation available for the learner. It is the task of the learner to find a coherent
relation between acoustic forms (word-like units) and the referent.
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The learning is incremental and takes place in a communicative loop be-
tween the learner and the ’caregiver’. An interaction takes place as follows. The
(virtual) ’caregiver’ presents one multimodal stimulus to the (virtual) learner.
After the learner receives the input stimulus, structure discovery techniques are
applied to hypothesize new and/or adapt existing internal representations for
word-like units. This process is based on the stimulus and the information stored
in the learner’s memory (see e.g. [2][4][5][7] for more detail). During training, the
learner uses both modalities of an input stimulus. In the test, only the auditory
part of the stimulus is processed, and the learner responds with the hypothesized
concept(s) that match(es) best with the utterance.

In the ACORNS project we are experimenting with several different structure
discovery techniques [23]. In this paper we only report results obtained with Non-
negative Matrix Factorization (NMF) [10][14][22]. NMF is member of a family
of computational approaches that represent input data in a (large) observation
matrix V and uses linear algebra to decompose V into much smaller matrices W
and H such that V ≈ W ·H. After this decomposition, W can be interpreted as
a set of representations of speech units, while H contains the associated internal
activations. In combination, W and H represent the information in V in a more
condensed form (’reconstruction’). The number of columns in W (and rows in
H) is equal to the number of different internal representations. This number is a
model parameter (see next section). The other dimension of W is specified by the
dimension of the input. In our experiments, an input utterance is coded in the
form of counts of co-occurrences of Vector Quantization labels. This allows us to
represent utterances of arbitrary length in the form of a fixed-length vector (this
is the acoustic part of the stimulus). The visual representation of the stimulus
is appended to the acoustic part to obtain its full vectorial representation.

NMF is reminiscent of Latent Semantic Analysis, e.g. [1]. It can be shown
that NMF provides a clear interpretation of concepts such as abstraction in
terms of linear algebraic operations [23]. Prior to a training, both W and H are
initialized randomly, and during training both matrices are updated on the basis
of the stimuli. In its conventional form NMF is a technique for decomposing
matrices that comprise a large number (possible all) of input stimuli [14]. To
make the approach more cognitively plausible, the decomposition algorithm has
been adapted such that the influence of past stimuli decays exponentially over
time. The decay is determined by a model parameter γ (set to 0.99 – the closer
to 1, the smaller the forgetting decay). Apart from details, the adapted NMF-
update has the following form (Θ denoting an auxiliary matrix) ([8], cf [14]):

Wnew = Wold · ((V/WoldHold) ∗ Htr

old
) + γΘold

Θnew = Wnew · ((V/WnewHnew) ∗ Htr
new

) + γΘold

(1)

It is left to the learner to decide how many different internal representations
will be built. Also, we exercise no control over the ’contents’ of the internal
representations: they may represent phrases, words, sub-word units, etc. Input
utterances are not kept in memory after the update of the W matrix is complete.
Therefore, in psycholinguistic terms our present model is not purely episodic.



4 Louis ten Bosch, Joris Driesen, Hugo Van hamme and Lou Boves

However, it is possible to mix abstractionist and episodic representations by
deferring the update of W until after a certain number of input utterances have
been received.

The virtual learner is endowed with the intention to learn words in order to
maximize the appreciation (s)he receives from the caregiver. Here it is assumed
that appreciation is a function of the proportion of utterances that are correctly
understood. In addition, the learner tries to minimize the stress between the
internal representations of speech units and the representation of a new utter-
ance. This optimization boils down to the minimization of the Kullback-Leibler
distance between the original input V and the reconstructed Ṽ = WH [10].

3 Experiment

In this section we describe the design of the experiments with which we tested
the hypothesis that if the observed variation during training is small, the ability
to generalize will be small as well, while a larger amount of variation observed
during training will lead to a larger ability to generalize.

3.1 Data

A pre-recorded database of Dutch utterances was applied for constructing spe-
cific training and test sets ([4]). It consists of utterances with a simple syntactic
structure, in analogy to infant-directed speech. For this experiment, the data
was narrowed down to utterances with exactly one concept (target word). For
example, one of the stimuli is ’daar is een auto’ (English: ’there is a car’), in
which ’car’ is one of the target words. In total, there are 13 different target
words, all inspired on the basis of child language inventories [24].

3.2 Procedure

Table 1 presents a summary of the experiments that have been carried out. Each
row represents a separate experiment. The column ’training’ indicates which
speaker(s) are used by the model for learning the internal word representations.

Table 1. Overview of the experiments on generalization across speakers.

experiment training (600) held-out test (400) accuracy (%) conf. intervals (5% 1%)

1 female 1 (F1) F1 99–100 - - - -
2 male 1 (M1) M1 99–100 - - - -
3 F1 F2 85.25 82.33–88.17 81.13–89.37
4 M1 M2 87.30 84.56–90.04 83.43–91.17
5 F1 M1 61.80 56.24–65.90 55.36–66.76
6 M1 F1 67.10 63.57–70.82 61.51–72.44

7 F1+F2 (600) F1 89.00 86.43–91.57 85.36–92.64
8 F1+F2 (1200) F1 95.25 93.50–97.00 92.78–97.72
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The column ’test’ indicates the test speaker(s). Each experiment consists of one
incremental training starting with blank memory, using 600 stimuli presented
in randomized order. Each test set consists of 400 stimuli. Experiments 1 and
2 assume a single speaker as the primary caregiver for training and test. The
other experiments represent different possibilities for speaker generalization. Ex-
periments 3 and 4 deal with cross-speaker, within-gender generalization. Exper-
iments 5 and 6 show cross-gender performance. The final two experiments 7 and
8 can be compared to experiment 1 and 3, but investigate the effect of mixing in
other speakers during training. In experiment 7, the 600 training stimuli are a
randomized combination of 300 training stimuli from F1 and another 300 from
F2. In experiment 8, the training consisted of the entire combined set from F1
and F2 (1200 utterances). The number of columns in W was set to 70, which is
more than enough to build speaker-dependent representations of the 10 concepts
presented to the model.
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Fig. 1. Example of the learning performance of the computational model. The stimuli
are taken from a single (female) speaker (F1). The horizontal axis indicates the stimulus
index, while the accuracy of the learner (in terms of fraction of correctly recognized
key words) is displayed along the vertical axis. The first 600 utterances are processed
in incremental training mode, and the remaining 400 utterances are tested without
any further training. Within about 200 utterances, that is, about 20–25 tokens per key
word, the learner is able to build useful word representations.
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4 Results

The results are shown in the column ’accuracy’ of table 1. The accuracy is given
as the percentage correctly recognized keywords in a test with 400 utterances.
The confidence intervals (based on the student’s t-test and a binomially dis-
tributed success-rate, both for the p = 0.05 level and the p = 0.01 level) are
provided in the last column.

Not surprisingly, the model performs best in case of speaker-matched training-
test conditions. This is true for both the female and the male speaker. Rows 1
and 2 in table 1 show that speaker-dependent learning is almost perfect. Rows
3 and 4 show that generalization to a new speaker of the same gender, however,
already provides significantly worse results on the p = 0.01 level. Generalization
across gender (experiments 5 and 6) is significantly worse than the performance
in the same gender cases.

Experiments 7 and 8 show that learning is affected by the number of train-
ing speakers, and not necessarily in a positive way. If the model learns from
speakers F1 and F2, recognition of F1 deteriorates compared to the situation
(in experiment 1) where there is only one training speaker. The accuracy of 89%
in experiment 7 cannot be attributed to lack of training data. Fig. 1 shows how
learning proceeds for speaker F1 if she is the only person from whom the model
learns. It can be seen that recognition performance is already close to 100% after
some 200 utterances. In the presence of speaker F2 that performance level is not
even reached after learning from 600 utterances.

5 Discussion

Most of the results in table 1 are unsurprising when considered from an Auto-
matic Speech Recognition (ASR) point-of-view. The table shows that test results
are best for within-speaker conditions, and deteriorate for the different-speaker
same-gender condition, and are worst for different-gender conditions. However,
we did not perform a conventional ASR training-test experiment. It was left to
the learner to figure out how many different representations to build from the
input utterances, and how to link these to the keywords. In our experiments the
word-referent pairs were quite strongly tied. While this may seem to enhance
learning, it might actually have had the opposite effect. From experiments 7 and
8 it appears that the learner tried to build speaker independent representations
for the referents and that this slows down learning and results in sub-optimal
performance.

A possible explanation for this behavior of the learner is the use of mem-
ory in the present NMF-based structure discovery approach. In all experiments
reported above, a 70-column W matrix was initialized randomly (more than 5
times the number of concepts to be learned). The close to perfect recognition
performance on independent test sets observed in experiments 1 and 2 shows
that the ratio between the number of concepts to be learned and the number
of representations that can be built is not the culprit. More likely, the inter-
ference between two speakers is due to the fact that the learner did not try
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to build (seemingly inefficient) speaker dependent representations, which would
then only (much) later be reorganized into more abstract speaker independent
representations.

For adults, the recognition of new speakers seems easy, but the underlying
learning and adaptation processes are not well understood. The literature on
language acquisition provides evidence that children must learn to adapt: they
start storing a great deal of phonetic detail and gradually learn to generalize
towards new speakers when they are between 7 and 12 months old. Recent theo-
ries in psycholinguistics assume that adaptation (by adults) can probably be best
explained by hybrid models in which both so-called ’episodes’ (detailed acoustic
representations) and abstractions play a role ([9][16]). If we would exactly un-
derstand the processes involved, the ’gap’ between human and automatic speech
recognition could be narrowed in many realistic conditions.

When humans adapt to a new speaker, this adaptation process does not come
at the cost of ’forgetting’ older information that appeared to be useful in the past.
Instead, learning to understand new speakers involves adapting existing internal
representations if this does not destroy older information, and by creating addi-
tional representations if the new input differs too much from what was already in
memory. In our model this can be accomplished if we change the present update
procedure: instead of updating the W matrix after every utterance the learner
should estimate the degree of fit between the new utterance and the internal
representations. Only if that fit is good enough, the update should proceed. In
all other cases a new representation should be added to the W matrix. However,
implementing such a conditional update procedure is not straightforward. So far,
we have not been able to define a reliable distance measure for the fit between
an utterance and the internal representations. In [6] we have shown that reorga-
nization of a large set of over-detailed representations (formed by enforcing the
learner to create fully speaker dependent representations) can be implemented
by means of clustering procedures.

So far, the ACORNS project has been more successful in applying knowledge
from ASR and machine learning to elucidating models of human speech process-
ing. However, we are confident that the underlying idea, viz. that the learning
system should build its representations on the basis of its experience with input
data rather than building models of pre-defined units, will result in automatic
speech recognition systems that will rival human performance.
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