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Abstract 

If social robots are to become widespread there is a need 

for them to offer spoken communication in a manner close 

to humans.  This should be achieved by grounding the 

speech being recognised by the robot into the real world 

instead of trying to recognise the speech signal in 

isolation.  This paper examines a hierarchical recurrent 

self-organising map (H-RSOM) memory model for 

emergent speech representation, which makes use of 

evidence from human cognitive processing.  The H-RSOM 

memory architecture is constrained by the structure of the 

cerebral cortex and working memory, neurocognitive 

evidence on word representation and infant speech 

acquisition.  By associating the speech signal 

representation with semantic (visual) features the H-

RSOM offers a temporal-distribution speech 

representation based on phone like-speech sounds and 

semantic (visual) features.  Using this representational 

approach it should be possible in the future, in a similar 

fashion to infants, to develop a robotic automatic speech 

recogniser that offers grounding of words in meaning. 

Introduction 

If humanoid robots are to be accepted by the general 

public they must be able to communicate with humans 

using spoken natural language.  Hence, there is a need for 

speech recognition in an open environment.  However, 

existing speech recognition systems for use in robot 

communication are overly restrictive, requiring their 

human users to follow a very strict procedure [den Os et 

al. 2005].  It is not sufficient to simply try to recognise 

auditory signals but rather there is a need to achieve 

understanding of the meaning of what is being spoken and 

how this relates to the real world [Cangelosi et al. 2007].  

Harnad (2003) when considering the grounding problem 

states that an abstract representation such as spoken words 

must be grounded or associated to something in the real 

world to interpret their meaning.  Hence, to actually 

attribute meaning to a spoken word there must be 

interactions with the world to provide relevance to the 

abstract representation and so not describe spoken words 

simply in terms of other spoken words [Roy 2003]. 

This paper describes a hierarchical recurrent self-
organising map (H-RSOM) architecture for emergent 
temporal speech representation, which has been developed 
within the European ACORNS (Acquisition of 
Communication and Recognition Skills) project. This 
project has the overall goal of developing a novel speech 
recogniser that does not suffer from the shortcomings 
described above.  The neural network based architecture 
introduced here takes inspiration and is directed by the 
growing body of knowledge about human cognitive 
processing and acquisition of speech in infants.   

The capability of the H-RSOM model is demonstrated to 

move towards robot grounding by developing a 

representation of spoken words in a temporal emergent 

manner.  To achieve this a learned self-organised neural 

approach is used. It associates speech signals and semantic 

(visual) features to provide meaning to the spoken word.  

Semantic features are used to approximate the visual 

inputs of an infant learner.  Features can be used to 

represent type distance (the degree of similarity between 

different kinds of objects) as well as giving a realistic 

representation of the object or action.  Semantic features 

further allow the simulation of phenomena like over-

generalisation (calling a cat ‘dog’) that can be observed 

during language acquisition. 

The cognitive inspiration of the H-RSOM architecture 
presented in this paper comes from neuroscience evidence 
on word representation, the structure and organisation of 
working memory and the cerebral cortex [Baddeley 1992, 
Doya 1999, Pulvermüller 1999, Werker, and Curtis 2005]. 

The remainder of this paper is as follows: the second 
section gives the biological inspiration and constraints of 
the H-RSOM architecture; the third section describes 
previous computational models that relate to this H-RSOM 
neural architecture; the actual details of H-RSOM that 
describes the architecture and experimental method used is 
in the fourth section; and the fifth section the results and 
discussion associated with this H-RSOM architecture for 
emergent speech representation for spoken word 
grounding for a robot.   



Cognitive System Inspiration 

The H-RSOM neural architecture takes inspiration, at an 
abstract level, from various cognitive systems such as 
neurocognitive evidence on word representation, structure 
and processing approaches of the cerebral cortex and the 
working memory system.  In addition, the H-RSOM 
architecture is inspired by the temporal unsupervised self-
organised learning found in the cerebral cortex [Doya 
1999].  The H-RSOM architecture does not use all features 
of these cognitive systems but incorporates certain 
processing characteristics. 

Central to the H-RSOM architecture that works towards 
robot grounding is the inspiration offered by the structure 
of the brain’s working memory.  Baddeley (1992) notes in 
his first model that working memory is split into three 
main subsystems: (i) the central executive that performs as 
an attention-control system (ii) the visuospatial sketchpad 
that manipulates visual inputs which in the H-RSOM 
architecture is the semantic feature self-organising map 
(SOM) component; and (iii) the phonological loop which 
is used for the storage of speech based knowledge and as 
such inspires the H-RSOM architecture for speech signal 
representation.  Baddeley (2003) later included an episodic 
buffer in the working memory model that stores 
information from diverse modalities in the form of an 
episode and so inspires the associator RSOM component 
of the H-RSOM model. 

Neurocognitive evidence of Pulvermüller [Hauk and 
Pulvermüller 2002, Pulvermüller 1999, Pulvermüller, 
2003] offers inspiration to the H-RSOM architecture 
related to how the brain represents words using synfire 
chains.  Synfire chains are formed from the spatiotemporal 
firing patterns of different associated cell assemblies.  
Synfire chains represent words as temporal sequence of 
activated cell assemblies (in the cerebral cortex).  The cell 
assembly representation of a word includes assemblies 
associated with its word form (speech signal 
characteristics) and others associated with the word’s 
semantic features.  The semantic factors that influences 
the cell assemblies that are activated come from various 
modalities and include the complexity of activity 
performed, facial expression, the type and number of 
muscles involved, the colour of the stimulus, movement 
involved and the tool used.   

Related Computational Models 

A computational model related to the H-RSOM memory 
model outlined in this paper is that of Wermter et al. 
(2003) who explore the use of semantic features in a SOM 
to achieve the association of language with actions.  
Although the architecture of Wermter et al. (2003) fails to 
use a recurrent approach and include speech signals, it 
does offer a hierarchical approach.  The architecture 
contains a SOM to perform the coarse clustering that 

relates semantic action verb representations with the 
appropriate body part.  At the next processing level of the 
Wermter at al. (2003) architecture, there is finer clustering 
through a SOM for each body part to identify the actual 
action verbs.   

Motivated by the association of semantic features with 
language representations, Wermter et al. (2005) develop a 
language memory based approach.  This model allows a 
robot to learn to perform three behaviours ‘go’, ‘pick’ and 
‘lift’ based on multimodal inputs that act as semantic 
features.  In this hierarchical memory based architecture 
there is the association of the motor and high-level vision 
inputs using the first hidden layer based on Helmholtz 
machine learning [Dayan et al. 1995].  The activations of 
the first hidden layer are then associated with the language 
instruction region input at the second hidden layer based 
on SOM learning.   

Cangelosi et al. (2007) produced a model based on multi-
layer perceptron (MLP) neural network to perform the 
association of language with actions.  This is achieved 
through imitation learning, with the teacher robot 
performing a set of actions that are associated with 
linguistic names.  From this the student robot learns the 
actions and then directly grounds the actions in these 
names.  The student robot is able to gain higher-order 
behaviours by using these names and the learned actions.  
The MLP has input units associated with language, motor 
control and visual information and has output motor 
control and language.  For the higher-level behaviours the 
teacher robot provides the name of two connected actions 
and the new higher-level name of this and from this the 
student robot learns the new higher behaviour.  The MLP 
does not incorporate the self-organised nature of the 
cerebral cortex found in H-RSOM. 

A related approach to the H-RSOM architecture that 

associates speech language with cognitive activities using 

Modeling field theory (MFT) is outlined by Perlovsky 

(2005).  MFT associates lower-level signals (speech) with 

higher-level concept-models so that input signals can be 

seen in terms of real world concepts.  In the MFT hetero-

hierarchical system, the output is based on concepts 

produced from the input, with the input-concept 

association based on representational models and 

similarity measures.  Association-recognition models are 

updated so they represent better the input and similarity 

measures are changed to match the uncertainty levels.  

Overtime the uncertainty reduces and the models become 

more accurate representation of the input and similarity 

less fuzzy.  Hence, links are produced between speech 

signal elements such as words and model-concepts to 

produce grounding between speech and the real world.   

Roy (2001) and Roy and Pentland (2002) developed CELL 
to associate speech with objects using a robot equipped 
with a camera and microphone.  The robot associates 
symbolic representation of language (utterance) with 



semantic features of the utterance (visual representation).  
CELL represents/memorises 3-dimensional objects 
depicted by histograms of local characteristics from 2-
dimensional representations.  In Roy (2001) and Roy and 
Pentland (2002) CELL approach short-term memory is 
used to store utterance-shape pairs and produce hypotheses 
about the association by extracting part of the utterance 
and linking it with the observed shape.  This association is 
placed in long-term memory which is consolidated over 
various observations.  The focus of interaction between 
short-term and long-term memory is also found in the H-
RSOM with the RSOM activations the working memory 
and the stored weights long-term memory.   

In the approach by Roy (2001) and Roy and Pentland 
(2002) spoken utterances are depicted as sets of phone 
probabilities, which are obtained from a spectral depiction 
using the Relative Spectral-Perceptual Linear Prediction 
(RASTA-PLP) algorithm.  A recurrent neural network 
examines RASTA-PLP coefficients to predict phone and 
speech/silence probabilities.  The H-RSOM architecture 
however does offer an approach that is closer to 
neuroscience evidence on the cortex in that it is 
unsupervised in nature and develops a representation of 
speech in an emergent manner instead of using a 
predefined phone structure. 

A further model associated with the H-RSOM model is the 
working memory approach of O’Reilly and Frank (2006).  
Despite the H-RSOM memory model described in this 
paper performing emergent speech representation and the 
working memory model of O’Reilly and Frank (2006) 
learning the 1-2-AX task they do share certain common 
concepts.  For instance, they both rely on the learning of 
sequences of inputs by storing context information.  The 
O’Reilly and Frank (2006) computational working 
memory architecture models the prefrontal cortex and 
basal ganglia interaction and how a working memory 
model is able to perform sequential activities to achieve 
action selection.  This model depends on maintaining 
depictions in the prefrontal cortex which are gated via the 
basal ganglia.   

Grossberg (2003) developed a related model to the H-

RSOM architecture which is also based on interaction 

between working memory (WM) and long-term memory 

(LTM).  In this approach, by using Active Resonance 

Theory (ART), speech perception occurs in a self-

organised manner using a model based on resonance in 

the brain.  Resonance states occur in the model when 

bottom-up speech signals interact with top-down beliefs 

using a matching process.  In this model the speech signal 

activates traces in WM to produce bottom-up patterns.  

These bottom-up patterns activate list categories in WM 

through interaction with traces found in LTM. The list 

categories produce top-down belief signals from LTM 

which are matched against the active units of WM.  

Through this matching procedure the WM activations are 

chosen based on the LTM traces.  While the H-RSOM 

only depends on bottom-up learning the ART model feeds 

down beliefs at the top-level as well as relying on bottom-

up speech signals.   

Hierarchical Recurrent Self-Organising Map 

(H-RSOM) Architecture  

The H-RSOM architecture works towards language 
grounding through the associating of speech signals and 
semantic (visual) features using an emergent speech 
representation.  In the H-RSOM architecture (Figure 1) 
the speech signal RSOM (lower right box) is trained using 
as input the speech slice for the current time-step (27ms) 
and activations from the speech signal RSOM at the 
previous time-step.  A standard SOM is also trained using 
semantic features of the words to produce a neural 
representation of these semantic features (lower left box of 
Figure 1).   

Once training is completed for these two lower 
components of the H-RSOM, the associator RSOM (top 
centre Figure 1) is used to associate the speech signal and 
the semantic (visual) feature representations.  Through 
this association mechanism there is an emergent speech 
representation that offers the possibility to ground words 
for a robot application.  This is achieved by introducing 
the activation values associated with each speech time 
slice for the speech signal RSOM units, with the 
activations for associator RSOM for the previous time-step 
and the semantic feature SOM unit activations for the 
appropriate word.   

Standard Self-Organising Map (SOM) 

The H-RSOM makes use of standard SOM [Kohonen 
1997, Haykin 1994] for the semantic feature component 
and as basis for the RSOM components.  As seen in Figure 
2 the non-recurrent standard SOM consists of an input x


 

and an output layer y


.  Typically all inputs are connected 
via weights w  to all the units in the output layer [Spitzer 
1999].  Learning in SOMs is performed by updating the 
weights between the input layer and the output layer via a 
form of Hebbian learning. 

There are various ways to calculate the activation on the 
SOM output layer.  The approach used in the H-RSOM 
architecture described in this paper is Euclidean distance.  
The output representation y


 is determined based on the 

Euclidean distance between the unit weights and input: 
| || | xwy kk  .  Where k  is the index of units in the 

SOM output layer.  The best matching unit (BMU) is the 
one with the smallest Euclidean distance 'k

y .  The 
weights of the SOM are update:  

)(' kjjkkkj wxhw                (1) 

where   is the learning rate and j  is the index of input 
units. kkh   is the neighbourhood function.  The  



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Representation of H-RSOM architecture for emergent speech representation. 
 
neighbourhood function in the H-RSOM architecture in 
this paper is a Gaussian and is created using Equation (2).  
Where ',kk

d  is the distance between unit k  and the 
winning unit 'k  on the SOM output layer.   sets the size 
of the Gaussian with the larger the value the broader the 
neighbourhood function. The number of units in the 
neighbourhood usually drops gradually over time. 

)2/( 22
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Figure 2  A depiction of a standard SOM, with input x


, 

weights w  and output y


. 

A problem associated with the standard SOM is that it is 
not possible to incorporate temporal information into the 
model in a straightforward manner. This, however, is 
critical for emergent speech representation.  As a response 
to this the H-RSOM makes use of the extension of the 
SOM described by Voegtlin (2002) to incorporate 
recurrent temporal processing.   

Input to H-RSOM for emergent speech 
representation 

The training set of the speech signal RSOM component of 
the H-RSOM architecture is made up of the individual 
words extracted from 50 utterances repeated 5 times by a 
female from the ACORNS English database speaker.  
These individual words used for training are extracted has 
they appeared in the utterances from this female speaker.  
The test data is the same words extracted from 5 new 
recordings by this female speaker of the 50 training 
utterances.  For the speech signal RSOM network, 703 
words are used for training and the same number for 
testing the network, within which there are 42 distinct 
words.  Hence, the same words are extracted from 
utterances with difference carrier words.   

In the speech signal RSOM the 703 training spoken words 
are split into speech time slices, using a moving window, 
which are introduced into the network sequentially.  This 
moving window is 27ms in size that moves along the 
sample 13.5ms at a time, with an overlap of 50%.  The 
speech slice inputs in the form of logarithmic mel-
spectrum values [Holmes and Holmes 2001, Shah, et al. 
2004] are introduced with the activations of the speech 
signal RSOM for the previous time-step.   

The semantic feature SOM is trained and tested using 
semantic (visual) feature inputs for 17 nouns and 12 verbs 
found in the words used to train the speech signal RSOM.  
Semantic features are only produced for content words. 
Function words (such as ‘what’, ‘did’, ‘finally’, ‘today’, 
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‘matches’ and ‘the’) that are used to train the speech 
signal RSOM are not considered.  The nouns considered 
are ‘car’, ‘water’, ‘house’, ‘door’, ‘couch’, ‘bath’, ‘nappy’, 
‘shoe’, ‘bottle’, ‘taps’, ‘book’, ‘newspaper’, ‘daddy’, 
‘baby’, ‘telephone’, ‘Ewan’ and ‘mummy’.  The verbs are 
‘like’, ‘back’, ‘sits’, ‘seen’, ‘coming’, ‘going’, ‘join’, 
‘read’, ‘calls’, ‘driving’, ‘changed’ and ‘take’. 

Table 1 Semantic (visual) features for verb inputs. 

Semantic Features Responses 

Body Movement Small/Medium/Large 

Interaction with object Small/Medium/Large 

Interaction with agent Small/Medium/Large 

Task Complexity Small/Medium/Large 

Emotion related Extent (0-1) 

Precise of activity Extent (0-1) 

Communication Extent (0-1) 

Change to object Small/Medium/Large 

Cognitive complexity Small/Medium/Large 

Instigated activity Extent (0-1) 

Table 2 Semantic (visual) features for noun inputs. 

Semantic Features Responses 

Worn Extent (0-1) 

Food related Extent (0-1) 

Furniture Extent (0-1) 

Inanimate Extent (0-1) 

Communication device Extent (0-1) 

Gender Male/Female/Neuter 

Used by Child/Adult/Non 

Creates noise Extent (0-1) 

Breakable Fragile/Durable/Strong 

Tool Extent (0-1) 

read Extent (0-1) 

animate Extent (0-1) 

man made Extent (0-1) 

Provides information Extent (0-1) 

Texture Smooth/rough/liquid 

technology Small/Medium/Large 

Location Indoor/Outdoor 

Size Small/Medium/Large 

The 17 nouns and 12 verbs semantic feature inputs for the 

semantic feature SOM are introduced as a single 

representation per word.  The semantic feature input is 

based on an approach similar to McClelland and 

Kawamoto (1986) and uses various semantic features.  For 

verbs the features include ‘body movement’, ‘interaction 

with object’, ‘interaction with agent’, ‘task complexity’ 

and ‘emotion related’.  The noun semantic features 

include whether the noun is ‘worn’, ‘food related’, 

‘furniture’, ‘inanimate’, ‘human’, ‘communication 

device’, ‘gender’ and ‘creates noise’.  Table 1 gives the 

full set of semantic features for verbs and Table 2 the full 

set for nouns.  Some of the semantic values are given an 

extent value between 0 and 1.  For those features that have 

multiple possible options such as texture each of the three 

options have a value that adds up to 1.  In this approach 

the values for the semantic (visual) features are subjective 

however in the future they can be replaced with more 

objective values based on measurement such as of colour 

and movement etc. 

The associator RSOM is trained and tested using the 
activations produced by the speech signal RSOM for the 
speech time slices and the semantic feature SOM for the 
set of 17 nouns and 12 verbs.  The speech samples for the 
17 nouns and 12 verbs are extracted as they appear in the 
same utterances used for training and testing the speech 
signal RSOM.  This produced 407 word recordings for a 
training epoch and the same number for testing the 
associator RSOM.   

Training of the associator RSOM (upper centre Figure 1) 
is performed using 407 words using inputs made up of (i) 
the activations for each speech time slice produced by the 
trained speech signal RSOM; (ii) the activation of the 
associator RSOM at the previous time-step; and (iii) the 
activations of trained semantic SOM for the appropriate 
word sample.  The speech signal RSOM and the semantic 
feature SOM are trained separately and once this is 
complete these networks are used to train the associator 
RSOM.  For each training session to update the weights 
for the speech signal RSOM, the semantic feature SOM 
and the associator RSOM the training samples making up 
an epoch are introduced in random order.  The number of 
epochs used to train these components is fixed at the start 
of session. 

RSOM components for emergent speech 
representation 

Figure 3 gives a more detailed representation of the speech 
signal RSOM (lower right Figure 1).  In this model, the 
27ms speech slices making up the word representations 
are introduced sequentially with the activations for the 
speech signal RSOM from the previous time-step.  In the 
model a set of weights is trained so it is associated with 
the current speech input slice and another set of weights 
trained so it is associated with the speech signal RSOM 
activations at the previous time-step.   

Using a similar structure to the speech signal RSOM in 
Figure 3 the associator RSOM is trained to produce a 
representation of speech that associates the speech signal 
with semantic feature towards robot grounding.  However, 
for the associator RSOM this is achieved with three inputs 
at each time-step rather than two: (i) the activations of the 
speech signal RSOM for each speech time slice; (ii) the 
activation for the associator RSOM at the previous time-
step; and (iii) the activations for the appropriate word 



from the semantic feature SOM which are presented at the 
same time as each speech time slice.   

The activation values of each unit in the speech signal 
RSOM are determined using two different Euclidean 
distance values.  These two Euclidean distance values for 
each unit are based on the difference between the speech 
input slice and the activation for the previous time slice of 
the speech signal RSOM and their related weights.  The 
three sets of Euclidean distance values for the associator 
RSOM units are based on the difference between weights 
and their related inputs: (i) the activation for the speech 
signal RSOM; (ii) the activations for the semantic feature 
SOM; and (iii) the activation for the previous time slice of 
the associator RSOM.  Two parameters for the speech 
signal RSOM and three parameters for the associator 
RSOM are used to influence the impact of the Euclidean 
distance values on unit activation values for these two 
RSOM components.   

 

 

 

 

 

 

 

 

 

Figure 3 The speech signal RSOM component of the H-
RSOM memory structure for emergent speech 
representation. 

The first set of Euclidean distance values for the speech 
signal RSOM are based on the difference between the 
input speech slice )(tx


 and weights 
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The second set of Euclidean distance values B


 for the 
speech signal RSOM are determined using the difference 
between the activations of the speech signal RSOM at the 
previous time-step )1( tE


 and the associated weights 

yw . 

| | )1(| |
y
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To determine the activation for the units in the speech 
signal RSOM E


 and hence from this the BMU, A


 and 

B


 are combined (Equation 5).  The parameters   and   
are used to control the impact of the current input speech 
slice and the context memory has on the activations for the 
units, with them set to 0.75 and 2, respectively.   

))()(( kkk BAE               (5) 

As with the standard SOM the weights are trained 
according to: 
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x
kjjkk

x
kj wtxhw                 (6) 

)1(('

y
kjjkk

y
kj w)tEhw               (7) 

The associator RSOM model is trained in a similar way to 
the speech signal RSOM but includes three inputs rather 
than two.  For the associator RSOM three parameters are 
used to control impact of three input Euclidean distance 
values on the activations on the associator RSOM in a 
similar manner to Equation (5).  The three parameters   
(speech signal activations),   (associator RSOM 
activations at previous time-step),   (semantic feature 
SOM activations) are set to 2.75, 0.75 and 2.0, 
respectively.   

For all the components of the architecture the learning rate 
  is set at 0.01.  For the neighbourhood function 
determined using Equation (2)   starts at 6 and 
decreasing to 0.5 over the first 2/3 of the epochs and then 
remains at 0.5 for the 1/3 of the epochs.  In the H-RSOM 
by an empirical study the speech signal RSOM grid is set 
at 15 units along the x-axis and 15 units along the y-axis, 
the semantic feature SOM grid is 12 by 12 units and the 
associator RSOM grid is 18 by 18 units.  The number of 
epochs that the speech signal RSOM, semantic feature 
SOM and associator RSOM are trained for 1000, 400 and 
800 epochs, respectively. 

The location of sub-sequences of BMUs on the speech 
signal RSOM and associator RSOM are examined to 
establish if the former architecture component creates 
representations associated with specific speech sounds and 
the latter component is associated with specific speech 
sounds and words semantic feature representations. 

H-RSOM Architecture Results 

Given the nature of the SOM algorithm for each training 
session a different set of weights and hence BMUs are 
produced for the inputs to the components of the H-
RSOM.  However, it is found that the H-RSOM does 
create meaningful representations across training sessions.  
This is achieved by the H-RSOM relating of specific 
speech signal time slices, semantic (visual) features and 
associations between speech and semantic features with 
distinct BMU regions.  However, these BMU regions are 
likely to be different for each training session.  To assist 
understanding of these relations, the BMUs regions 
created for a specific training session are examined below 
but these should only be seen as an indication of the form 
the represents take.   

The speech signal RSOM is tested using the same words 
as used for training but recorded at a different time. By 
examining the sequences of BMUs created for the test 

Speech signal RSOM 
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words it is possible to find that the speech signal RSOM 
represents phone-like speech sounds using BMU sub-
sequences.  In the rest of this paper the syntax of phone-
like speech sounds is equal to those in the DARPA 
phonetic alphabet.  Certain phone speech sounds are 
represented by sub-sequences of BMUs in a single region 
of a map.  For example, the speech time slices making up 
the ‘SH’ sound found in the word ‘shoe’ are associated 
with a specific region of the map.  For the training session 
considered here this is the top right hand area of the 
speech signal RSOM output layer.  However, in other 
cases, phone-like speech sounds are represented by 
combining sub-sequences of BMUs from different regions 
of the RSOM. 

For the speech signal RSOM the model creates distinct 
regional associations, based on sub-sequences of BMUs 
from words, with speech sound simular to phones.  For the 
example training session considered here the top left hand 
area represents the speech slices making up the sound ‘S’ 
at the end or start of words.  In the training and test set 
these include such words as ‘matches’, ‘taps’, ‘news’, 
‘seen’, and   ‘comes’, as well as the ‘S’ sound inside 
words such as ‘newspaper’, ‘closer’ and ‘house’.  A region 
of the map is also associated with ‘SH’, ‘CH’, ‘JH’ and 
‘K’ sounds, which in this example is the dark grey units in 
top right of the RSOM.  These are sounds found in words 
such as ‘fashion’, ‘shoe’, ‘shy’, ‘matches’, ‘couch’, ‘join’ 
and ‘back’.  The sound ‘AH’ is represented by a sub-
sequence of BMUs located in a distinct region of the map, 
which in this case is the lower left corner of the example 
network associated with words from the database such as 
‘telephone’ (T EH L AH F OW N),  ‘Ewan’ (Y UW AH 
N) and ‘what’ (W AH T).   

The speech signal RSOM also creates a region of the map 
whose units are part of the BMU sub-sequence 
representations of the ‘A’, ‘I’ and ‘OW’ phone sounds.  
For the example training session this is at bottom right of 
the map and are those units that predominately have more 
than one of these phone sounds associated with them.  
These phone sounds are particularly ‘AE’ from words 
such as ‘daddy’ (D AE D IY), ‘navigating’ (N AE V AH 
G EY T IH NG), and ‘bath’ (B AE TH), ‘AY’ found in 
words such as ‘like’ (L AY K), ‘driving’ (D R AY V IH 
NG), ‘finally’ (F AY N AH L IY) and ‘shy’ (SH AY).  
While ‘OW’ is associated with words such as ‘telephone’ 
(T EH L AH F OW N) and ‘broken’ (B R OW K AH N) in 
the training and test set.  This is possibly due to these 
speech sounds at a lower level that the phone level sharing 
certain sound similarities.   

When considering the BMUs for the semantic (visual) 
feature SOM in most cases the words are located in their 
own unit on the map.  This does not occur in the case of 
‘comes’ and ‘going’ which share the same BMU as they 
are very similar words in terms of the activities involved.  
Furthermore, similar words are also located in close 
regions of the semantic (visual) feature SOM.  For 
instance, for the example training session higher level 

cognitive function such as ‘like’ and ‘see’ are located in 
the top left of the SOM output layer.  The words associated 
with humans such as ‘daddy’, ‘mummy’, ‘Ewan’ and 
‘baby’ are found in the lower left hand corner.  Also 
communication approaches ‘newspaper’ and ‘book’ are 
located close together has are the action verbs ‘coming’ 
and ‘join’.   

When combining the activations for the speech signal 
RSOM and the semantic SOM using the associator RSOM 
(top centre Figure 1), it is possible to identify units on the 
associator RSOM (Figure 4) that are associated with 
specific speech sounds (from speech signal RSOM) for 
particular words (from semantic features SOM).  In 
addition, in certain cases regions of the associator RSOM 
are related with specific sounds (from speech signal 
RSOM) for different words (from semantic (visual) 
features SOM), and that speech sounds for semantically 
related words are located in similar regions of the RSOM.   

The associator RSOM ouput layer (Figure 4) shows the 
location of BMU sub-sequences related to phone-like 
speech sounds (from speech signal RSOM activations) for 
particular words (from semantic feature SOM activations).  
The words (from semantic feature SOM) associated with a 
unit are represented by the colour pattern of the unit and 
for the speech sounds (from speech signal RSOM 
activations) the DARPA phonetic alphabet characters on 
the unit.  It is possible to identify that various units of the 
network are associated with specific phone speech signal 
sounds and words.  For instance, for the example training 
sesson the ‘SH’ speech sound for the word ‘shoe’ (SH 
UW) is related with the unit 1 on x-axis and unit 1 on the 
y-axis.  This is the light grey unit with a ‘SH’ on.   

When considering the sub-sequence of BMUs for the 
associator RSOM it is found that the ‘S’ speech sound for 
the words ‘taps’ (T AE P S) and ‘house’ (HH AW S) are 
located close together on the map.  For the example 
training session these are found at unit 1 on the x-axis and 
unit 3 on the y-axis and unit 1 on the x-axis and unit 5 on 
the y-axis, respectively.  It is also possible to identify 
further regions of the map that are associated with specific 
speech sounds such as the ‘K’ sound.  The units with a 
spheres pattern with ‘K’ on at units 1 on x-axis and 6 and 
7 on y-axis are associated with the ‘K’ sound for ‘car’ (K 
AA R) and the units with a ‘K’ on with diagonal lines up 
and down pattern which are units 1 on x-axis and 8 and 9 
y-axis is the ‘K’ sound for ‘couch’ (K AW CH).   

The ‘T’ sound for the words ‘telephone’ (T EH L AH F 
OW N) and ‘taps’ (T AE P S) can also be seen on the 
associator RSOM to be location in their own individual 
units but close together on the map for the example 
training session.  These units for the speech sound ‘T’ for 
taps’ are represented on the map as units that are dark 
grey with a ‘T’ on and the units for the sound ‘T’ for 
‘telephone’ are those that have black dots with a white 
background with a ‘T’ on them. 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Shoe  Taps  House  Telephone  Bottle  
          

Couch  Comes  Like  Bath  Newspaper  
          

Nappy  Water  Door  Ewan  Car  
          

Mummy  Seen  Sits  Book  Daddy  
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Baby  Driving  Read  Going    
 
Figure 4 BMU regions of associator RSOM output layer associated with specific phone-like speech sounds and 
semantic features for words. 
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It is also possible to see that speech sounds (from speech 
signal RSOM activations) for semantically related words 
(from semantic feature SOM activations) are located in 
near units on the associator RSOM (Figure 4).  For 
instance, for the example training session the sounds ‘M’ 
in ‘mummy’ (M AH M IY), ‘D’ (D AE D IY) in ‘daddy’ 
and ‘Y’ for ‘Ewan’ (Y UW AH N) and hence family-
human related words are located around x-unit 8 and y-
unit 13.  This is also the case for family-human related 
words for sounds such as ‘AH’ and ‘IY’ for the word 
‘mummy’ (M AH M IY), ‘IY’ and ‘AE’ for the word 
‘daddy’ (D AE D IY) in ‘daddy’ and ‘Y’ for ‘Ewan’ (Y 
UW AH N) and and ‘B EY’ speech sound for the word 
‘baby’ (B EY B IY).   

This is also the case for communication approach such as 
‘telephone’, ‘newspaper’ and ‘book’, with speech sounds 
associated with these words located close together on the 
associator RSOM.  The phone-like speech sounds that are 
included in a specific word can be seen to be distributed 
among different units despite the semantic (visual) 
features input being the same for full length of word.  This 
indicates that the speech signal and semantic feature 
representations are combined in such a way that the two 
sets of activations have an impact on the final 
representation created by the associator RSOM.   

Discussion and Future Work 

The H-RSOM model successfully combines self-
organising recurrent approaches at different levels of 
processing that achieves the association of speech signals 
with semantic (visual) features for word grounding for 
robot speech recognition.  It is anticipated that by making 
use of such a self-organising temporal representation that 
speech recognition and human-robot communication 
would benefit from the neuroscientific inspiration that is 
incorporated.  The H-RSOM architecture produces a 
representation which is based on associating semantic 
(visual) features with phone-like speech sounds that could 
act as building blocks to be combined to produce word 
meaning and the recognition of words.   

In terms of the working memory model of Baddeley (1992) 
H-RSOM recreates functionality of the phonological loop 
by producing representations of the current speech signal.  
The semantic SOM representation of words recreates part 
of the functioning of the visuospatial sketchpad in the 
working memory as it gives a representation of visual 
inputs.  The final speech representation of the associator 
RSOM recreates some of the functionality of the episodic 
buffer, in an abstract manner, by combining of the visual 
semantic features and the speech signal.  This 
representational approach based on phone-like speech 
sounds and semantic features is seen only as the first step 
towards word grounding.  However, scientists working on 
child development have shown that this type of emergent 
representation is fundamental for child speech 

development, understanding and word learning and so a 
robotic speech recognition system could use this 
representation  in the same way [Kuhl 1993, Werker and 
Yeung 2005, Kuhl 2004]. 

The ability of the speech signal RSOM and associator 
RSOM to develop a representation that discriminates 
based on phone-like sounds is despite in certain cases, 
such as between ‘P’ and ‘L’, the difference between phone 
sounds being very small [Kuhl 1993].  Since the H-RSOM 
model develops a representation of words in terms of 
phones, it matches the findings of researchers in cognitive 
child development on infant speech encoding [Kuhl 1993, 
Werker and Yeung 2005].  It is noted by Kuhl (2004) that 
infants use and recognise phonetic characteristics of 
speech and the retention of such speech sounds are critical 
for the extraction and the development of words.   

The H-RSOM architecture also matches the 
neurocognitive model of Pulvermüller in that different 
units of the H-RSOM (as abstract cell assemblies) are 
combined over time in the representation of a word to 
produce a chain of active units.  The H-RSOM 
representation through active units can be seen to combine 
the word form (speech signal) and the semantic (visual) 
features.  This was identified by Pulvermüller to give the 
richer brain representation of words, which offers an 
approach to achieve word grounding in robots.   

Possible future work for this H-RSOM architecture would 
incorporation of an episodic long-term memory instance 
based approach such as MINERVA2 [Neath and 
Surprenant 2002].  This episodic memory could be used to 
perform word recognition for the robot system based on 
the emergent representation developed by the H-RSOM 
model.  MINERVA2 is a computational multiple-trace 
episodic memory model and could be used to produce an 
overall representation of the sequences of BMUs produced 
for the words.  This would be achieved by comparing the 
sequence of BMUs for the unknown word with stored 
sequences of example words to produce an overall word 
representation based on a distance measure.  The H-
RSOM can, by means of these names and the learned 
actions, also be used to create representations for the other 
input stream.  For instance the speech signal RSOM 
activations might be used in the re-activation of the 
semantic feature meaning associated with spoke auditory 
input and vice-versa.   
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