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Abstract 

 

This paper reports the on-going research of a 

thesis project investigating a computational 

model of early language acquisition. The 

model discovers word-like units from cross-

modal input data and builds continuously 

evolving internal representations within a cog-

nitive model of memory. Current cognitive 

theories suggest that young infants employ 

general statistical mechanisms that exploit the 

statistical regularities within their environment 

to acquire language skills. The discovery of 

lexical units is modelled on this behaviour as 

the system detects repeating patterns from the 

speech signal and associates them to discrete 

abstract semantic tags. In its current state, the 

algorithm is a novel approach for segmenting 

speech directly from the acoustic signal in an 

unsupervised manner, therefore liberating it 

from a pre-defined lexicon. By the end of the 

project, it is planned to have an architecture 

that is capable of acquiring language and 

communicative skills in an online manner, and 

carry out robust speech recognition. Prelimi-

nary results already show that this method is 

capable of segmenting and building accurate 

internal representations of important lexical 

units as ‘emergent’ properties from cross-

modal data.  

1 Introduction 

Conventional Automatic Speech Recognition 

(ASR) systems can achieve very accurate recog-

nition results, particularly when used in their op-

timal acoustic environment on examples within 

their stored vocabularies. However, when taken 

out of their comfort zone accuracy significantly 

deteriorates and does not come anywhere near 

human speech processing abilities for even the 

simplest of tasks. This project investigates novel 

computational language acquisition techniques 

that attempt to model current cognitive theories 

in order to achieve a more robust speech recogni-

tion system.  

Current cognitive theories suggest that our 

surrounding environment is rich enough to ac-

quire language through the use of simple statisti-

cal processes, which can be applied to all our 

senses. The system under development aims to 

help clarify this theory, implementing a compu-

tational model that is general across multiple 

modalities and has not been pre-defined with any 

linguistic knowledge. 

In its current form, the system is able to detect 

words directly from the acoustic signal and in-

crementally build internal representations within 

a memory architecture that is motivated by cog-

nitive plausibility. The algorithm proposed can 

be split into two main processes, automatic seg-

mentation and word discovery. Automatically 

segmenting speech directly from the acoustic 

signal is made possible through the use of dy-

namic programming (DP); we call this method 

acoustic DP-ngram’s. The second stage, key 

word discovery (KWD), enables the model to 

hypothesise and build internal representations of 

word classes that associates the discovered lexi-

cal units with discrete abstract semantic tags.  

Cross-modal input is fed to the system through 

the interaction of a carer module as an ‘audio’ 

and ‘visual’ stream. The audio stream consists of 

an acoustic signal representing an utterance, 

while the visual stream is a discrete abstract se-

mantic tag referencing the presence of a key 

word within the utterance.    

Initial test results show that there is significant 

potential with the current algorithm, as it seg-

ments in an unsupervised manner and does not 

rely on a predefined lexicon or acoustic phone 

models that constrain current ASR methods.  



The rest of this paper is organized as follows. 

Section 2 reviews current developmental theories 

and computational models of early language ac-

quisition. In section 3, we present the current 

implementation of the system. Preliminary ex-

periments and results are described in sections 4 

and 5 respectively. Conclusions and further work 

are discussed in sections 6 and 7 respectively. 

2 Background 

2.1 Current Developmental Theories 

The ‘nature’ vs. ‘nurture’ debate has been fought 

out for many years now; are we born with innate 

language learning capabilities, or do we solely 

use the input from the environment to find struc-

ture in language? 

Nativists believe that infants have an innate 

capability for acquiring language. It is their view 

that an infant can acquire linguistic structure 

with little input and that it plays a minor role in 

the speed and sequence with which they learn 

language. Noam Chomsky is one of the most 

cited language acquisition nativists, claiming 

children can acquire language “On relatively 

slight exposure and without specific training” 

(Chomsky, 1975, p.4). 

On the other hand, non-nativists argue that the 

input contains much more structural information 

and is not as full of errors as suggested by nativ-

ists (Eimas et al., 1971; Best et al., 1988; Jusc-

zyk et al., 1993; Saffran et al., 1996; 

Christiansen et al., 1998; Saffran et al., 1999; 

Saffran et al., 2000; Kirkham et al., 2002; 

Anderson et al., 2003; Seidenberg et al., 2002; 

Kuhl, 2004; Hannon and Trehub, 2005). 

Experiments by Saffran et al. (1996, 1999) 

show that 8-month old infants use the statistical 

information in speech as an aid for word segmen-

tation with only two minutes of familiarisation.  

Inspired by these results, Kirkham et al. 

(2002) suggest that the same statistical processes 

are also present in the visual domain. Kirkham et 

al. (2002) carried out experiments showing that 

preverbal infants are able to learn patterns of vis-

ual stimuli with very short exposure.  

Other theories hypothesise that statistical and 

grammatical processes are both used when learn-

ing language (Seidenberg et al., 2002; Kuhl, 

2004). The hypothesis is that newborns begin life 

using statistical processes for simpler problems, 

such as learning the sounds of their native lan-

guage and building a lexicon, whereas grammar 

is learnt via non-statistical methods later on. Sei-

denberg et al. (2002) believe that learning 

grammar begins when statistical learning ends. 

This has proven to be a very difficult boundary 

to detect.  

2.2 Current Computational Models 

There has been a lot of interest in trying to seg-

ment speech in an unsupervised manner, there-

fore liberating it from the required expert knowl-

edge needed to predefine the lexical units for 

conventional ASR systems. This has led speech 

recognition researchers to delve into the cogni-

tive sciences to try and gain an insight into how 

humans achieve this without much difficulty and 

model it. 

Brent (1999) states that for a computational 

algorithm to be cognitively plausible it must: 

• Start with no prior knowledge of general 

language structure. 

• Learn in a completely unsupervised 

manner. 

• Segment incrementally. 

An automatic segmentation method similar to 

that of the acoustic DP-ngram method is segmen-

tal DTW. Park & Glass (2008) have adapted dy-

namic time warping (DTW) to find matching 

acoustic patterns between two utterances. The 

discovered units are then clustered, using an ad-

jacency graph method, to describe the topic of 

the speech data. 

Statistical Word Discovery (SWD) (ten Bosch 

and Cranen, 2007) and the Cross-channel Early 

Lexical Learning (CELL) model (Roy and Pent-

land, 2002), also similar methods to the one de-

scribed in this paper, discover word-like units 

and then updating internal representations 

through clustering processes. The downfall of the 

CELL approach is that it assumes speech is ob-

served as an array of phone probabilities.   

A more radical approach is Non-negative ma-

trix factorization (NMF) (Stouten et al., 2008). 

NMF detects words from ‘raw’ cross-modal in-

put without any kind of segmentation during the 

whole process, coding recurrent speech frag-

ments into to ‘word-like’ entities. However, the 

factorisation process removes all temporal in-

formation.  

3 The Proposed System 

3.1 ACORNS  

The computational model reported in this paper 

is being developed as part of a European project 

called ACORNS (Acquisition of Communication 



and Recognition Skills). The ACORNS project 

intends to design an artificial agent (Little 

Acorns) that is capable of acquiring human ver-

bal communication skills. The main objective is 

to develop an end-to-end system that is biologi-

cally plausible; restricting the computational and 

mathematical methods to those that model be-

havioural data of human speech perception and 

production within five main areas: 

Front-end Processing: Research and devel-

opment of new feature representations guided by 

phonetic and psycho-linguistic experiments.  

Pattern Discovery: Little Acorns (LA) will 

start life without any prior knowledge of basic 

speech units, discovering them from patterns 

within the continuous input.       

Memory Organisation and Access: A mem-

ory architecture that approaches cognitive plau-

sibility is employed to store discovered units.  

Information Discovery and Integration: Ef-

ficient and effective techniques for retrieving the 

patterns stored in memory are being developed. 

Interaction and Communication: LA is 

given an innate need to grow his vocabulary and 

communicate with the environment. 

3.2 The Computational Model 

There are two key processes to the language ac-

quisition model described in this paper; auto-

matic segmentation and word discovery. The 

automatic segmentation stage allows the system 

to build a library of similar repeating speech 

fragments directly from the acoustic signal. The 

second stage associates these fragments with the 

observed semantic tags to create distinct key 

word classes.     

Automatic Segmentation 

The acoustic DP-ngram algorithm reported in 

this section is a modification of the preceding 

DP-ngram algorithm (Sankoff and Kruskal, 

1983; Nowell and Moore, 1995). The original 

DP-ngram model was developed by Sankoff and 

Kruskal (1983) to find two similar portions of 

gene sequences. Nowell and Moore (1995) then 

modified this model to find repeated patterns 

within a single phone transcription sequence 

through self-similarity. Expanding on these 

methods, the author has developed a variant that 

is able to segment speech, directly from the 

acoustic signal; automatically segmenting impor-

tant lexical fragments by discovering ‘similar’ 

repeating patterns. Speech is never the same 

twice and therefore impossible to find exact 

repetitions of importance (e.g. phones, words or 

sentences). 

The use of DP allows this algorithm to ac-

commodate temporal distortion through dynamic 

time warping (DTW). The algorithm finds partial 

matches, portions that are similar but not neces-

sarily identical, taking into account noise, speed 

and different pronunciations of the speech.  

Traditional template based speech recognition 

algorithms using DP would compare two se-

quences, the input speech vectors and a word 

template, penalising insertions, deletions and 

substitutions with negative scores. Instead, this 

algorithm uses quality scores, positive and nega-

tive, to reward matches and prevent anything 

else; resulting in longer, more meaningful sub-

sequences.  

 
Figure 1: Acoustic DP-ngram Processes. 

Figure 1 displays the simplified architecture of 

the acoustic DP-ngram algorithm. There are four 

main stages to the process:  

Stage 1: The ACORNS MFCC front-end is 

used to parameterise the raw speech signal of the 

two utterances being fed to the system. The de-

fault settings have been used to output a series of 

37-element feature vectors. The front-end is 

based on Mel-Frequency Coefficients (MFCC), 

which reflects the frequency sensitivity of the 

auditory system, to give 12 MFCC coefficients. 

A measure of the raw energy is added along with 

12 differential (∆) and 12 2
nd

 differential (∆∆) 

coefficients. The front-end also allows the option 

for cepstral mean normalisation (CMN) and cep-

stral mean and variance normalisation (CMVN). 

Stage 2: A local-match distance matrix is then 

calculated by measuring the cosine distance be-
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tween each pair of frames ( )1 2,v v  from the two 

sequences, which is defined by: 

 1 2 1 2 1 2( , ) ( . ) / ( . )
TT

d v v v v v v=  (1) 

Stage 3: The distance matrix is then used to cal-

culate accumulative quality scores for successive 

frame steps. The recurrence defined in equation 

(2) is used to find all quality scores ,i jq .  

In order to maximize on quality, substitution 

scores must be positive and both insertion and 

deletion scores must be negative as initialised in 

equation (3). 

 

( )

( )

( )

1, 1, 1,

, 1 , 1 , 1

,

1, 1 1, 1 1, 1

,

,

,

1 ,

1 ,
max

,

0,

. .

. .

. .

i

j

i j

i j i j i j

i j i j i j

i j

i j i j i j

a

b

a b

q s d q

q s d q
q

q s d q

φ

φ

− − −

− − −

− − − − − −

+ −

+ −
=

+









 (2) 

where, 

 

,

,

,

,

,

1.1    (Insertion score)

1.1    (Deletion score)

1.1    (Substitution score)

frame-frame distance

Accumulative quality score

i

j

i j

a

b

a b

i j

i j

s

s

s

d

q

φ

φ

= −

= −

= +

=

=

 (3) 

The recurrence in equation (2) stops past dissimi-

larities causing global effects by setting all nega-

tive scores to zero, starting a fresh new homolo-

gous relationship between local alignments.  

 
Figure 2: Quality score matrix calculated from two 

different utterances. The plot also displays the optimal 

local alignment. 

Figure 2 shows the plot of the quality scores cal-

culated from two different utterances. The 

shaded areas show repeating structure; longer 

and more accurate fragments attain greater qual-

ity scores, indicated by the darker areas within 

the plot. 

Applying a substitution score of 1 will cause 

the accumulative quality score to grow as a linear 

function. The current settings defined by equa-

tion (3) use a substitution score greater than 1, 

thus allowing local accumulative quality scores 

to grow exponentially, giving longer alignments 

more importance.  

By setting insertion and deletion scores to val-

ues less than -1, the model will find closer 

matching acoustic repetitions; whereas a value 

greater than -1 and less than 0 allows the model 

to find repeated patterns that are longer and less 

accurate, therefore allowing control over the tol-

erance for temporal distortion. 

Stage 4: The final stage is to discover local 

alignments from within the quality score matrix. 

Backtracking pointers ( )bt  are maintained at 

each step of the recursion: 
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When the quality scores have been calculated 

through equation (2), it is possible to backtrack 

from the highest score to obtain the local align-

ments in order of importance with equation (4). 

A threshold is set so that only local alignments 

above a desired quality score are to be retrieved. 

Figure 2 presents the optimal local alignment 

that was discovered by the acoustic DP-ngram 

algorithm for the utterances “Ewan is shy” and 

“Ewan sits on the couch”.  

The discovered repeated pattern (the dark line 

in figure 2) is [y uw ah n]. Start and stop times 

are collected which allows the model to retrieve 

the local alignment from the original audio signal 

in full fidelity when required. 

Key Word Discovery 

The milestone set for all systems developed 

within the ACORNS project is for LA to learn 10 

key words. To carry out this task, the DP-ngram 

algorithm has been modified with the addition of 

a key word discovery (KWD) method that con-

tinues the theme of a general statistical learning 

mechanism. The acoustic DP-ngram algorithm 

exploits the co-occurrence of similar acoustic 

patterns within different utterances; whereas, the 
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KWD method exploits the co-occurrence of the 

associated discrete abstract semantic tags. This 

allows the system to associate cross-modal re-

peating patterns and build internal representa-

tions of the key words.  

KWD is a simple approach that creates a class 

for each key word (semantic tag) observed, in 

which all discovered exemplar units representing 

each key word are stored. With this list of epi-

sodic segments we can perform a clustering 

process to derive an ideal representation of each 

key word. 

For a single iteration of the DP-ngram algo-

rithm, the current utterance ( )
cur

Utt  is compared 

with another utterance in memory ( )nUtt . KWD 

hypothesises whether the segments found within 

the two utterances are potential key words, by 

simply comparing the associated semantic tags. 

There are three possible paths for a single itera-

tion:   

1: If the tag of 
curUtt  has never been seen then 

create a new key word class and store the whole 

utterance as an exemplar of it. Do not carry out 

the acoustic DP-ngram process and proceed to 

the next utterance in memory 
1( )nUtt +

. 

2: If both utterances share the same tag then 

proceed with the acoustic DP-ngram process and 

append discovered local alignments to the key 

word class representing that tag. Proceed to the 

next utterance in memory 
1( )nUtt +

. 

3: If both utterances contain different tags then 

do not carry out acoustic DP-ngram’s and pro-

ceed to the next utterance in memory 
1( )nUtt +

.    

By creating an exemplar list for each key word 

class we are able to carry out a clustering process 

that allows us to create a model of the ideal rep-

resentation. Currently, the clustering process im-

plemented simply calculates the ‘centroid’ ex-

emplar, finding the local alignment with the 

shortest distance from all the other local align-

ments within the same class. The ‘centroid’ is 

updated every time a new local alignment is 

added, therefore the system is creating internal 

representations that are continuously evolving 

and becoming more accurate with experience.  

For recognition tasks the system can be set to 

use either the ‘centroid’ exemplar or all the 

stored local alignments for each key word class.  

LA Architecture 

The algorithm runs within a memory structure 

(fig. 3) developed with inspiration from current 

cognitive theories of memory (Jones et al., 

2006). The memory architecture works as fol-

lows: 

Carer: The carer interacts with LA to con-

tinuously feed the system with cross-modal input 

(acoustic & semantic). 

 
Figure 3: Little Acorns’ memory architecture. 

Perception: The stimulus is processed by the 

‘perception’ module, converting the acoustic sig-

nal into a representation similar to the human 

auditory system. 

Short Term Memory (STM): The output of 

the ‘perception’ module is stored in a limited 

STM which acts as a circular buffer to store n 

past utterances. The n past utterances are com-

pared with the current input to discover repeated 

patterns in an incremental fashion. As a batch 

process LA can only run on a limited number of 

utterances as the search space is unbound. As an 

incremental process, LA could potentially handle 

an infinite number of utterances, thus making it a 

more cognitively plausible system.  

Long Term Memory (LTM): The ever in-

creasing lists of discovered units for each key 

word representation are stored in LTM. Cluster-

ing processes can then be applied to build and 

update internal representations. The representa-

tions stored within LTM are only pointers to 

where the segment lies within the very long term 

memory.  

Very Long Term Memory: The very long 

term memory is used to store every observed ut-

terance. It is important to note that unless there is 

a pointer for a segment of speech within LTM 

then the data cannot be retrieved. But, future 

work may be carried out to incorporate addi-

tional ‘sleeping’ processes on the data stored in 

VLTM to re-organise internal representations or 

carry out additional analysis. 

4 Experiments 

Accuracy of experiments within the ACORNS 

project is based on LA’s response to its carer. 

The correct response is for LA to predict the key 
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word tag associated with the current incoming 

utterance while only observing the speech signal. 

LA re-uses the acoustic DP-ngram algorithm to 

solve this task in a similar manner to traditional 

DP template based speech recognition. The rec-

ognition process is carried out by comparing ex-

emplars, of discovered key words, against the 

current incoming utterance and calculating a 

quality distance (as described in stage 3 of sec-

tion 3.2). Thus, the exemplar producing the high-

est quality score, by finding the longest align-

ment, is taken to be the match, with which we 

can predict its associated visual tag. 

A number of different experiments have been 

carried out: 

E1 - Optimal STM Window: This experi-

ment finds the optimal utterance window length 

for the system as an incremental process. Vary-

ing values of the utterance window length (from 

1 to 100) were used to obtain key word recogni-

tion accuracy results across the same data set.  

E2 - Batch vs. Incremental: The optimal 

window length chosen for the incremental im-

plementation is compared against the batch im-

plementation of the algorithm.  

E3 - Centroid vs. Exemplars: The KWD 

process stores a list of exemplars representing 

each key word class. For the recognition task we 

can either use all the exemplars in each key word 

list or a single ‘centroid’ exemplar that best 

represents the list. This experiment will compare 

these two methods for representing internal rep-

resentations of the key words. 

E4 – Speaker Dependency: The algorithm is 

tested on its ability to handle the variation in 

speech from different speakers with different 

feature vectors.  
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Using normalisation methods will reduce the 

information within the feature vectors, removing 

some of the speaker variation. Therefore, key 

word detection should be more accurate for a 

data set of multiple speakers with normalisation. 

4.1 Test Data 

The ACORNS English corpus is used for the 

above experiments. Sentences were created by 

combining a carrier sentence with a keyword. A 

total of 10 different carrier sentences, such as 

“Do you see the X”, “Where is the X”, etc., where 

X is a keyword, were combined with one of ten 

different keywords, such as “Bottle”, “Ball”, etc. 

This created 100 unique sentences which were 

repeated 10 times and recorded with 4 different 

speakers (2 male and 2 female) to produce 4000 

utterances.   

In addition to the acoustic data, each utterance 

is associated with an abstract semantic tag. As an 

example, the utterance “What matches this 

shoe” will contain the tag referring to “shoe”. 

The tag does not give any location or phonetic 

information about the key word within the utter-

ance.  

E1 and E2 use a sub-set of 100 different utter-

ances from a single speaker. E3 is carried out on 

a sub-set of 200 utterances from a single speaker 

and the database used for E4 is a sub-set of 200 

utterances from all four speakers (2 male and 2 

female) presented in a random order. 

5 Results 

E1: LA was tested on 100 utterances with vary-

ing utterance window lengths. The plot in figure 

4 shows the total key word detection accuracy 

for each window length used. The x-axis displays 

the utterance window lengths (1–100) and the y-

axis displays the total accuracy. 

The results are as expected. Longer window 

lengths achieve more accurate results. This is 

because longer window lengths produce a larger 

search space and therefore have more chance of 

capturing repeating events. Shorter window 

lengths are still able to build internal representa-

tions, but over a longer period. 

 
Figure 4: Single speaker key word accuracy using 

varying utterance window lengths of 1-100.  

Accuracy results reach a maximum with an ut-

terance window length of 21 and then stabilize at 

around 58% (±1%). From this we can conclude 
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that 21 is the minimum window length needed to 

build accurate internal representations of the 

words within the test set, and will be used for all 

subsequent experiments. 

E2:  The plot in figure 4 displays the total key 

word detection accuracy for the different utter-

ance window lengths and does not show the 

gradual word acquisition process. Figure 5 com-

pares the word detection accuracy of the system 

(y-axis) as a function of the number of utterances 

observed (x-axis). Accuracy is recorded as the 

percentage of correct replies for the last ten ob-

servations. The long discontinuous line in the 

plot shows the word detections accuracy for ran-

domly guessing the key word. 

 
Figure 5: Word detection accuracy LA running as a 

batch and incremental process. Results are plotted as a 

function of the past 10 utterances observed. 

It can be seen from the plot in figure 5 that the 

system begins life with no word representations. 

At the beginning, the system hypothesises new 

word units from which it can begin to bootstrap 

its internal representations.  

As an incremental process, with the optimal 

window length, the system is able to capture 

enough repeating patterns and even begins to 

outperform the batch process after 90 utterances. 

This is due to additional alignments discovered 

by the batch process that are temporarily distort-

ing a word representation, but the batch process 

would ‘catch up’ in time.  

Another important result to take into account 

is that only comparing the current incoming ut-

terance with the last observed utterance is 

enough to build word representations. Although 

this is very efficient, the problem is that there is a 

greater possibility that some words will never be 

discovered if they are not present in adjacent ut-

terances within the data set. 

E3: Currently the recognition process uses all the 

discovered exemplars within each key word 

class. This process causes the computational 

complexity to increase exponentially. It is also 

not suitable for an incremental process with the 

potential of running on an infinite data set. 

To tackle this problem, recognition was car-

ried out using the ‘centroid’ exemplar of each 

key word class. Figure 6 shows the word detec-

tion accuracy as a function of utterances ob-

served for both methods. 

 
Figure 6: Word detection accuracy using centroids 

and complete exemplar list for recognition.  

The results show that the ‘centroid’ method is 

quickly outperformed and that the word detection 

accuracy difference increases with experience. 

After 120 utterances performance seems to 

gradually decline. This is because the ‘centroid’ 

method cannot handle the variation in the acous-

tic speech data. Using all the discovered units for 

recognition allows the system to reach an accu-

racy of 90% at around 140 utterances, where it 

then seems to stabilise at around 88%. 

E4: The addition of multiple speakers will add 

greater variation to the acoustic signal, distorting 

patterns of the same underlying unit. Over the 

200 utterances observed, word detection accu-

racy of the internal representations increases, but 

at a much slower rate than the single speaker ex-

periments (fig. 7). 

The assumption that using normalisation meth-

ods would achieve greater word detection accu-

racy, by reducing speaker variation, does not 

hold true. On reflection this comes as no sur-

prise, as the system collects exemplar units with 

a larger relative fidelity for each speaker. 

This raises an important issue; the optimal ut-

terance window length for the algorithm as an 

incremental process was calculated for a single 
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speaker, therefore, increasing the search space 

will allow the model to find more repeating pat-

terns from the same speaker. Following this 

logic, it could be hypothesised that the optimal 

search space should be four times the size used 

for one speaker and that it will take four times as 

many observations to achieve the same accuracy. 

 
Figure 7: Total accuracy using different feature vec-

tors after 200 observed utterances. 

6 Conclusions  

Preliminary results indicate that the environment 

is rich enough for word acquisition tasks. The 

pattern discovery and word learning algorithm 

implemented within the LA memory architecture 

has proven to be a successful approach for build-

ing stable internal representations of word-like 

units. The model approaches cognitive plausibil-

ity by employing statistical processes that are 

general across multiple modalities. The incre-

mental approach also shows that the model is 

still able to learn correct word representations 

with a very limited working memory model.  

Additionally to the acquisition of words and 

word-like units, the system is able to use the dis-

covered tokens for speech recognition. An im-

portant property of this method, that differenti-

ates it from conventional ASR systems, is that it 

does not rely on a pre-defined vocabulary, there-

fore reducing language-dependency and out-of-

dictionary errors. 

Another advantage of this system, compared 

to systems such as NMF, is that it is able to give 

temporal information of the whereabouts of im-

portant repeating structure which can be used to 

code the acoustic signal as a lossless compres-

sion method.  

7 Discussion & Future Work 

A key question driving this research is whether 

modelling human language acquisition can help 

create a more robust speech recognition system. 

Therefore further development of the proposed 

architecture will continue to be limited to cogni-

tively plausible approaches and should exhibit 

similar developmental properties as early human 

language learners. In its current state, the system 

is fully operational and intends to be used as a 

platform for further development and experi-

ments.  

The experimental results are promising. How-

ever, it is clear to see that the model suffers from 

speaker-dependency issues. The problem can be 

split into two areas, front-end processing of the 

incoming acoustic signal and the representation 

of discovered lexical units in memory. 

Development is being carried out on various 

clustering techniques that build constantly evolv-

ing internal representations of internal lexical 

classes in an attempt to model speech variation. 

Additionally, a secondary update process, im-

plemented as a re-occurring ‘sleeping phase’ is 

being investigated. This phase is going to allow 

the memory organisation to re-structure itself by 

looking at events over a longer history, which 

could be carried out as a batch process.  

The processing of prosodic cues, such as 

speech rhythm and pitch intonation, will be in-

corporated within the algorithm to increase the 

key word detection accuracy and further exploit 

the richness of the learners surrounding envi-

ronment. Adults, when speaking to infants, will 

highlight words of importance through infant 

directed speech (IDS). During IDS adults place 

more pitch variance on words that they want the 

infant to attend to.  

Further experiments have been planned to see 

if the model exhibits similar patterns of learning 

behaviour as young multiple language learners. 

Experiments will be carried out with the multiple 

languages available in the ACORNS database 

(English, Finnish and Dutch).  
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