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Abstract

It is shown that robust dimension-reduction of a feature set for speech

recognition can be based on a model of the human auditory system.

Whereas conventional methods optimize classification performance, the

new method exploits knowledge implicit in the auditory periphery, in-

heriting its robustness. Features are selected to maximize the similar-

ity of the Euclidian geometry of the feature domain and the perceptual

domain. Recognition experiments using MFCCs confirm the effective-

ness of the approach, which does not require labeled training data.

For noisy data the method outperforms commonly used discriminant-

analysis based dimension-reduction methods that rely on labeling. The

experiments indicate that selecting MFCCs in their natural order re-

sults in subsets with good performance.

c©2009 Acoustical Society of America.

PACS numbers: 43.71.-k,43.72.Qr,43.72.Ne
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1. Introduction

The extraction of acoustic features is an essential component of automatic speech recog-

nition (ASR). It enables the classification of speech signals at a reasonable computational

complexity based on training with speech databases of a practical size. However, the data

processing inequality implies that the extraction of acoustic features from a speech signal at

best preserves information relevant for phone discrimination. Thus, careful selection of the

acoustic features is essential.

The existing approach for selecting features from a larger set of candidate features is

based on direct optimization of classification performance, using labeled training databases.

Many algorithms have been developed to select features for classification1–4. In ASR it is

common to use dimension-reduction procedures4–6, a more general paradigm where input

features are combined into a new set of lower cardinality. In general, existing feature-

selection and dimension-reduction methods require classified training data. For ASR this

means that dimension-reduction methods are sensitive to differences in training and testing

conditions.

In this paper, a fundamentally different principle is proposed for feature selection for

ASR: to exploit the knowledge implicit in the human auditory system. Importantly, this

means the new method does not require labeled training data. Humans perform better at

speech recognition than machines, particularly for noisy environments. Recently, accurate

models of the periphery have become available7,8. This motivates the selection of a subset of

acoustic features from a larger set by maximizing the similarity of the Euclidian geometry

of the selected feature set and the human auditory representation of the signal.

The implementation of our approach relies on perturbation theory. For two features

sets to perform similarly in classification, “small” Euclidian distances must be similar in

the two domains (except for a scaling). The similarity of “large” distances is immaterial for

the classification. The implementation is based on the so-called sensitivity matrix, which

was first developed in the context of rate-distortion theory9–11 and has been used for audio
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coding12.

The present work is related to the many studies on the usage of auditory models as a

front-end for ASR, e.g.,13–16. The performance for such front-ends is generally robust to

variations in environmental conditions. Importantly, the new approach removes the com-

putational complexity associated with pre-processing the signal with an auditory model. It

also avoids the difficulty of formatting the auditory-model output for classification.

A side outcome of our work is that it provides a measure of relative importance of a

set of features. In this first study, the most commonly used set of static features, the mel-

frequency cepstral coefficients (MFCC)17, are used. The results confirm that the human

auditory model is a good guide for the selection of robust acoustic features. They also show

that the initial set of MFCCs corresponds to perceptually important information.

This paper is organized as follows. Sec. 2 discusses a similarity measure for the per-

ceptual and feature domains. Sec. 3 applies the method to ASR. Sec. 4 confirms with

experiments that the selected features are effective and robust and Sec. 5, provides conclu-

sions.

2. Maximizing similarity of feature and perceptual domain

Our objective is to select, from a larger set of features, a subset of features that provides

a separation of sound classes that is close to that obtained by state-of-the-art auditory

models. Ideally, this implies an isometry between the perceptual domain and the selected

acoustic feature domain. The mapping from the perceptual domain to the acoustic-feature

domain would then be distance preserving. To obtain the best approximation to this ideal

scenario, we define a new, objective criterion in this section. Thus, we avoid the ad-hoc

nature of many auditory-system inspired features.

The motivation for the objective is that human recognition performance indicates that

the human auditory periphery provides a relatively good separation of sound classes. We

postulate that little information relevant for sound classification is lost in the mapping from
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the acoustic domain to the perceptual domain. It is, however, not clear if the representation

is redundant.

2.1. A distance preservation measure

It is not possible to design acoustic features that are a distance-preserving mapping from

the perceptual domain. For accurate classification, the preservation of the data geometry

near the class boundaries is most critical. The preservation of distances that are short

relative to classification boundary curvature is important, whereas the preservation of “long”

distances is not important.

Distance measures must be defined in both the perceptual and feature domains. Let

xj ∈ RN denote the N -dimensional speech signal vector characterizing a segment with time

index j ∈ Z and let x̂j,m be a perturbation of xj with perturbation index m. A perceptual-

domain distortion is defined as a surjective mapping of two signals: Υ : RN × RN → R+,

where R+ are the nonnegative reals. Perceptual distortion measures are commonly based

on the L2 norm of the difference between the perceptual-domain signals y(xj) and y(x̂j,m),

where y : RN → RK is a mapping to the (K-dimensional) perceptual domain, Υ(xj, x̂j,m) =

‖y(xj)−y(x̂j,m)‖2. This measure is the desired distance measure in the perceptual domain.

A similar distortion measure Γi : RN ×RN → R+ can be defined for the feature domain

of feature set i. Let ci : RN → RL be the mapping from a signal segment xj to a set

of L features ci(xj) with set index i. An L2 norm based measure is then: Γi(xj, x̂j,m) =

‖ci(xj)− ci(x̂j,m)‖2.

Given a finite sequence of frames j ∈ J and a finite set of acoustic perturbations

m ∈Mj, the distance-preservation objective leads to the objective to find the particular set

of features i that minimizes a measure of dissimilarity in the perceptual-domain distortion

and the feature-domain distortion,

G(i) =
∑

j∈J ,m∈Mj

[Υ(xj, x̂j,m)− λΓi(xj, x̂j,m)]2 , (1)
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where λ =

∑
j∈J ,m∈Mj

Υ(xj ,x̂j,m)Γi(xj ,x̂j,m)∑
j∈J,m∈Mj

Γi(xj ,x̂j,m)2
is an optimal scaling of the acoustic feature criterion.

Eq. (1) can be interpreted as a measure of proximity to isometry.

2.2. Perturbation analysis

While it is possible to evaluate Eq. (1) directly even for complex distortion measures, this

can be computationally expensive. For short distances, the perceptual distortion measure

Υ(xj, x̂j,m) and the feature-based distortion measure Γ(xj, x̂j,m) can be approximated with

simpler quadratic measures, reducing the computational complexity. The approach is based

on the sensitivity matrix framework9–12.

The perturbation analysis for the perceptual domain and the feature domain is identical,

and we only describe the first case. For notational brevity we omit the subscripts indicating

frame number and perturbation where no ambiguity exists. First, let us consider Υ(x, x̂) to

be known. We assume that Υ(x,x) = 0 and that this forms a minimum. We furthermore

assume that Υ(x, x̂) is analytic in x̂. Then, for sufficiently small perturbations x̂ − x, we

can make the approximation

Υ(x, x̂) ≈ [x̂− x]TDΥ(x)[x̂− x], (2)

where DΥ,ij(x) = ∂2Υ(x,x̂)
∂x̂i∂x̂j

∣∣∣∣
x̂=x

is the sensitivity matrix.

It is common that the mapping from x to the perceptual or feature domain is given,

rather than the distortion criterion. Consider the mapping c to the feature domain. If the

mapping c is analytic, the Taylor series can be used to make a local approximation around

x:

c(x̂) ≈ c(x) + A[x̂− x], (3)

where A = ∂c(x)
∂x̂

∣∣∣∣
x̂=x

. An L2 distance measure in the feature domain then leads to a signal

domain sensitivity matrix

DΓ(x) = ATA. (4)

Thus, we can write the distortion Γ(x, x̂) in the form of Eq. (2). The sensitivity matrix

based expressions facilitate a fast evalution of Eq. (1).
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3. Application to speech recognition

In our algorithm the perceptual domain is the domain of the output vectors of the

auditory model used. This section illustrates the application of the method to a specific

auditory model and specific type of acoustic features.

3.1. van de Par auditory model

The van de Par8 auditory model is a static psycho-acoustic masking model. As it uses

the magnitude spectrum as input, the vector xj characterizing speech segment j is now the

(square-root) periodogram. The model consists of channels f , in each of which the ratio of

the distortion x̂− x to masker x is estimated, where x denotes the magnitude spectrum of

speech. In the end, all ratios are combined together, to account for the spectral integration

property of the human auditory system. The complete model is

Υ(x, x̂) = CsLe

∑
g∈G

1
N

∑
f=0,··· ,N−1 |hom(f)|2|γi(f)|2|x(f)− x̂(f)|2

1
N

∑
f=0,··· ,N−1 |hom(f)|2|γi(f)|2|x(f)|2 + Ca

, (5)

where Cs and Ca are constants calibrated using measurement data, Le is the effective du-

ration of the segment according to the temporal integration time of the human auditory

system, the integer g labels the gamma-tone filter and G the set of gammatone filters con-

sidered, hom is the outer and middle ear transfer function which is the inverse of the threshold

in quiet and γi is the i ’th gammatone filter.

Combining Eq. (2) and Eq. (5), the sensitivity matrix DΥ(x) can be obtained. It is a

diagonal matrix with the diagonal element for row and column f given by

DΥ,ff (x) ≈ 2CsLe

∑
i

1

N

∑
f

|hom(f)|2|γi(f)|2

1

N

∑
f

|hom(f)|2|γi(f)|2|x(f)|2 + Ca

. (6)
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3.2. Local linearization of the MFCCs

In our experiments, the mel-frequency cepstral coefficients (MFCCs)17 were used since

they are the most commonly used acoustic features. The MFCCs are defined as

c(q) =
M−1∑
m=0

ln

{N−1∑
n=0

x(n)Hm(n)

}
cos

{
q[m− 1

2
]
π

M

}
, q = 1, · · · , Q, (7)

where x(n) is the periodogram, Hm(n) is the m’th triangular mel-filter, m is the filter index,

M is the number of triangular bandpass filters used, and Q is the number of cepstrum

coefficients.

Sec. 2.2.2 introduced the matrix A that characterizes the local relation between the

features and the signal x. For the MFCCs, the matrix A is

Aqn =
M−1∑
m=0

cos

{
q[m− 1

2
]
π

M

}
Hm(n)∑N−1

n=0 x(n)Hm(n)
. (8)

3.3. Overview of the Algorithm

We now outline the computation of the measure of proximity to isometry. Given an

unlabeled database of speech, we compute for each of a large set of frames the periodogram

x. We compute the sensitivity matrix DΥ(x) using Eq. (6). We also compute the sensitivity

DΓ(x) matrix Eq. (4) using the Jacobian A of Eq. (8). For each frame we then create a

large number of small random perturbations x̂ of x and evaluate Υ(x, x̂) using Eq. (2) and

Γ(x, x̂) using a corresponding equation. Finally we evaluate Eq. (1) for all perturbations

and all frames simultaneously.

4. Experimental results

This section examines the plausability of the linearity assumption used in the perturba-

tion method and verifies the robust performance of the selected feature sets. All experiments

were performed on MFCCs.

The MFCCs were extracted from the AURORA218 database, sampled at 8 kHz, using
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Fig. 1. Scatter plots of the estimated δc’s vs. δctrue’s for the first and second MFCC,

respectively.

a Hamming window of 25 ms with an overlap of 12.5 ms. The DFT dimensionality was 256

and the number of filters used was 23. A set of 12 conventional MFCCs was extracted.

4.1. Range of linearity

The range of validity for the linearization assumption between the cepstrum and the

speech was examined first. The speech was distorted with i.i.d. Gaussian noise at different

SNRs ranging from 30 to 90 dB with a step of one.

Fig. 1 shows the change in the features computed from the linearized relation Eq. (3)

versus the true difference between the cepstra of the original and distorted signals, for the

first and second MFCC, respectively. The linearity assumption is reasonable at a scale that

is meaningful for sound discrimination. The outliers result from regions where the power of

the signal is low, as can be seen from Eq. (8).

4.2. Speech recognition experiments

We performed recognition experiments on features derived from the standard set of 12

MFCCs. We compared five types of feature sets for identical dimensionalities n < 12. The

first set of features results from the auditory-model based feature selection (amfs) method

introduced in this paper (we use Gaussian perturbations with |Mj| = 100 and an SNR

of 100 dB). The second set of features was obtained using standard (homoscedastic) linear

discriminant analysis (lda)4. The third set of features was obtained using standard het-

eroscedastic linear discriminant analysis (hlda)5. The average performance of five randomly

selected MFCC feature subsets is displayed as 5-rsfs. The fifth and final set is simply the

set of the first n MFCCs, denoted as initial.

Note that lda and hlda have two advantages over amfs : i) they are dimension-reduction
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methods, rather than subset-selection methods and ii) they require classified data as training

input. The amfs method has as advantage that it can rely on knowledge inherent in the

auditory periphery.

To build the recognizer we used the HTK19 toolkit. The digits were modeled as whole

word HMMs with 16 states (HTKs notation is 18 states including the beginning and end

states) and three Gaussian mixture components per state. To minimize modeling artefacts,

the results are for full covariance matrices, but the use of diagonal covariance matrices

gives essentially the same results. An initial model with global data means and covariances,

identical for each digit, was used and 16 iterations were used to build the final model.

Table 1 shows the recognition accuracy for training and testing on clean data for dimen-

sionality n = 8 and for n = 4. The caption of the table provides the MFCC subsets selected

by amfs. For the experiments we added the energy feature “+E”. We also performed the ex-

periments with feature sets that were augmented with their velocity (“+V”) and acceleration

(“+A”). For clarity we note that the subset-selection and dimension-reduction operations

were always performed on the static features. Training was performed on the clean training

set of 8440 sentences and the testing on the 4004 clean data of test set A.

For clean data the amfs selected feature set performs similarly to the lda and hlda feature

sets and to the initial set of MFCCS. All these features sets perform significantly better than

the average of randomly selected feature sets 5-rsfs. It is interesting to note that multiple

distinct MFCC subsets perform well. Consistent with the recognition results shown in Table

1, the score of the measure of proximity to isometry, given by Eq. (1), is similar for the set

initial and for the amfs selected features.

Table 2 shows the recognition accuracy for noisy data. Again the table caption provides

the MFCC subsets selected by amfs. The training was performed on the multi-conditioned

noisy training set consisting of 6752 files and the testing on the 24024 noisy data of test

set A. The results shown in Table 2 are averaged over subway, babble, car, and exhibition

additive noise for several SNR values. The 5-rsfs configuration is the same as for the clean

case (the same MFCCs subsets were considered).
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For the noisy data, the performance of the amfs subsets are in all cases better than lda,

hlda and 5-rsfs. The performance of initial is similar to that of amfs, although it does not

consistently use the same subset. The results indicate that the new amfs method is more

robust to environmental noise than lda and hlda. This increased robustness was confirmed in

other experiments where we trained and tested on different environmental conditions. This

result is not unexpected as amfs is based on an auditory periphery that is robust over a

large range of environmental conditions. In contrast, lda and hlda must rely on the training

data only.

Our results indicate that the natural ordering of the MFCCs is perceptually highly

relevant. In both Table 1 and Table 2 the initial set of MFCCs, initial performs as well as

the amfs selected set and significantly better than a typical randomly selected set. While

amsfs does, in general, not simply select the initial set of MFCCs, it always includes the low

quefrency MFCCs, indicating that they represent an important component of the perceived

information.

5. Conclusions

We conclude that the selection of speech features based on human perception results

in robust features that perform well for speech recognition over a range of environmental

conditions. Our results suggest that the method results in features that are more robust

to noise than either homoscedastic or heteroscedastic discriminant analysis. This implies

that effective dimension reduction of feature sets for speech recognition is possible without

knowledge of the meaning of the signal (without the availability of classified data). Our re-

sults indicate that the human auditory periphery has a parsimonious output representation,

as significant redundancy would have made the measure of proximity to isometry, Eq. (1),

ineffective for classification.
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Table 1. AURORA2 clean training results. The amfs selected coefficients with indices

1,2,3,4,9,10,11,12 for n=8 and 1,2,3,12 for n=4, respectively.

Data Test Set A

feature set clean 1 clean 2 clean 3 clean 4 avg.

12+E full,static 98.1 97.6 97.7 98.1 97.9

12+E+V+A full,dynamic 98.9 99.1 98.8 99.2 99.0

8+E amfs 97.8 97.6 97.1 97.8 97.6

lda 98.3 97.8 98.4 98.3 98.2

hlda 98.7 98.1 98.5 99.0 98.6

5-rsfs 95.8 95.7 95.5 96.0 95.8

initial 97.5 97.3 97.6 97.9 97.6

8+E+V+A amfs 99.1 98.9 98.8 99.2 99.0

lda 98.4 98.1 98.2 98.6 98.3

hlda 98.6 98.5 98.5 99.1 98.7

initial 98.9 98.9 98.8 99.1 98.9

4+E amfs 96.9 96.5 96.6 97.3 96.8

lda 96.3 95.5 95.7 96.7 96.1

hlda 95.9 95.0 96.0 96.5 95.9

5-rsfs 85.5 85.3 85.6 85.6 85.5

initial 97.0 96.5 96.7 97.3 96.9

4+E+V+A amfs 98.6 98.9 98.7 99.0 98.8

lda 98.3 97.9 98.2 98.2 98.2

hlda 98.7 98.3 98.3 98.9 98.6

initial 98.6 98.8 98.6 99.2 98.8
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Table 2. AURORA2 multi-conditioning noisy training results. The amfs selected coefficients

with indices 1,2,3,4,5,6,11,12 for n=8 and 1,2,3,4 for n=4, respectively.

Data Test Set A

feature set 20 dB 15 dB 10 dB 5 dB 0 dB

12+E full,static 94.8 93.1 88.4 75.0 47.4

12+E+V+A full,dynamic 97.4 96.5 94.0 86.0 59.6

8+E amfs 93.6 91.4 85.7 65.1 34.9

lda 84.0 78.1 63.2 40.8 17.8

hlda 85.0 80.9 71.7 55.7 33.2

5-rsfs 88.0 84.6 75.6 53.0 24.6

initial 93.1 91.0 86.0 69.2 38.1

8+E+V+A amfs 97.1 96.0 93.4 84.1 56.8

lda 94.4 92.8 87.8 76.5 52.0

hlda 94.8 93.4 89.4 79.3 58.4

initial 97.5 96.1 92.9 83.1 53.2

4+E amfs 91.1 87.4 76.9 50.9 20.9

lda 40.5 32.5 19.6 9.9 7.7

hlda 44.0 38.8 28.6 16.6 8.4

5-rsfs 66.3 59.3 43.6 24.0 11.9

initial 91.1 87.4 76.9 50.9 20.9

4+E+V+A amfs 96.0 94.6 90.9 79.4 50.1

lda 93.6 92.1 86.3 73.9 48.9

hlda 94.2 92.8 88.9 78.8 58.5

initial 96.0 94.6 90.9 79.4 50.1
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