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Abstract
During the early stages of language acquisition, young infants
face the task of learning a basic vocabulary without the aid of
prior linguistic knowledge. It is believed the long term episodic
memory plays an important role in this process. Experiments
have shown that infants retain large amounts of very detailed
episodic information about the speech they perceive (e.g. [1]).
This weakly justifies the fact that some algorithms attempting
to model the process of vocabulary acquisition computationally
process large amounts of speech data in batch. Non-negative
Matrix Factorization (NMF), a technique that is particularly
successful in data mining but can also be applied to vocabulary
acquisition (e.g. [2]), is such an algorithm. In this paper,we
will integrate an adaptive variant of NMF into a computational
framework for vocabulary acquisition, foregoing the need for
long term storage of speech inputs, and experimentally showits
accuracy matches that of the original batch algorithm.
Index Terms: Computational models, Machine Learning, Lan-
guage Acquisition, Developmental Psychology.

1. Introduction
The process of language acquisition by young infants is ulti-
mately based on the detection and learning of word-like units
from the speech signal. The discovery of these word-like units
is based on the search for recurrent word-like segments in the
speech signal, such that representations are hypothesizedand
updated when more stimuli are processed. Young infants learn
that auditory stimuli such as segments of speech are not ar-
bitrary sounds, but instead are patterns that can be associated
with concepts (e.g. with objects and events in the environment).
Normally this development process results in representations
of what linguists call ‘words’. This word discovery process
is particularly interesting since infants start without any lexical
knowledge and the speech signal does not contain clear acoustic
cues for boundaries between words. The conventional interpre-
tation is that infants must ‘crack’ the speech code ([3]) andthat
the discovery of word-like entities is the first step towardsmore
complex linguistic analyses ([4]).

Several computational models of the language acquisition
process have been proposed (e.g. [5]). Most of them use multi-
modal stimuli as input and search for repeating word-like units
by cross-modal association. They assume that the behaviour
of infants can be adequately described by a search for word-
concept associations that statistically ‘stand out’ across situa-
tions. This process is also referred to as ‘grounding’. Another
recently proposed technique that adheres to these principles, is
Non-negative Matrix Factorization (NMF) ([2], [6]). Due toits
computationally and conceptually attractive properties,it has

been successfully applied in machine learning and data mining.
In the NMF approach, the discovery of structure is mathemat-
ically represented as a decomposition of rich high-dimensional
inputs into a low-dimensional parts-based representation. In the
context of modelling language acquisition, the NMF approach
is interesting because it is able to find structure without any a
priori given top-down information. It is able to find statisti-
cally relevant parts of the speech signal, based on regularities
and irregularities in sound sequences (see [2]), similar towhat
real babies do. A few months old, infants can discriminate de-
tails such as differences between vowels and consonants (e.g.
[7]). At an age of about 7 months infants can perform tasks that
are similar to word segmentation (e.g. [8],[9]). However, when
viewed from a cognitive perspective, the use of NMF in its orig-
inal form (see [10]) in the context of language acquisition is not
indisputable. It requires large numbers of speech utterances to
be kept in memory, in order to converge towards appropriate
matrix decompositions. This way of data presentation conflicts
with the idea of language acquisition being a process of online
reinforcement learning, in which new input is only observed
once in order to initialize or update internal representations of
speech.

In this paper, we discuss a computational model of the lan-
guage acquisition process in anadaptiveway, where the focus
lies on thegradual emergence of word-like units. In section
2, we will briefly review the NMF-algorithm and elaborate on
the necessary extensions for adaptivity. In section 3, we will
describe and discuss the results of an experiment that compares
the accuracy of adaptively trained word models with word mod-
els trained in batch. Finally, a discussion follows in section 4.

2. Structure discovery by NMF
NMF is a member of the family of machine learning approaches
in which the discovery of structure is based on matrix decom-
position. It is a factorization algorithm that decomposes a(typ-
ically large) data matrixV , of sizeM × N , into the product of
two (much smaller) matricesW andH , such that

V ≈ W · H (1)

This approach differs from other matrix factorizations such as
Principal Component Analysis or eigenvalue decomposition:
V , W andH are constrained to only containnon-negativeele-
ments. Because of this, the NMF-decomposition can be physi-
cally and conceptually interpreted. The columns ofW are the
non-negative parts that can best approximate the columns ofV
by a weighted addition. In our context the columns ofV are
speech utterances, that are composed of words, representedin
the columns ofW . The factorization can be solved by minimiz-



ing a metric used to assess the difference between theobserved
matrix V and itshypothesized reconstructionWH . In this pa-
per, we applied the Kullback-Leibler divergence betweenV and
WH :

DKL(V ‖WH) =
X
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which can be minimized by iteratively applying the multiplica-
tive updates (see [10]):

for N iterations do
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X
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• Normalize the columns ofW (3b)
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(3c)

It can be shown that this converges towards a solution with max-
imum likelihoodL(V |W, H) ([11], [12]).

2.1. Adaptive NMF

If a NMF-based decomposition technique is to be applied in
a computational model of word discovery that is conceptually
close to a real-life learning situation, where speech inputis pre-
sented one utterance at a time, online adaptivity of that tech-
nique becomes a very interesting feature. It allows for small
incremental updates towards an optimal solution without resort-
ing to storing and processing large amounts of past input data.
To achieve this adaptivity, Bayesian updating can be used in
a similar way as in [13]. Suppose that there is a sequence of
epochs, in each of which an input matrixV (n) is presented to
the algorithm, consisting of a small number of columns from
V . The columns ofW , which are assumed to contain Dirichlet
distributed probabilities, can then be reestimated in eachepoch
based on this input. Concretely, NMF in epochn can be solved
as a maximum likelihood problem:

(W (n)
, H

(n)) =

arg max
W,H(n)

log
“

L(V (n)|W,H
(n))

”

+ γ log
“

g(W |κ(n−1))
”

(4)

in whichL() is the likelihood.g(W |κ(n−1)) is the prior distri-
bution ofW , which is assumed to be Dirichlet with(κ(n−1)+1)
a matrix containing its hyperparameters, estimated on the inputs
from the(n − 1) previous epochs. Note that we have assumed
H(n) to be independent from past inputs. This is done because
in the context of this paper, the columns ofW are envisaged
as estimations of the word models, which are the same in ev-
ery epoch, unlike the columns ofH , which will estimate word
activations that change along with the input dataV (n). The pa-
rameter0 ≪ γ < 1 is introduced to assign a slightly smaller
weight to the past information than to the current information.

Applying this Bayesian updating principle in practice yields

the following updates in each epochn:

for N iterations do
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• Normalize the columns ofW (n) (5b)
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The matrixW (n) is initialized with the values ofW (n−1) at
the end of the previous epoch (after N iterative updates). The
matrix H(n) is initialized with random values. At the end of
each epoch,κ is updated as follows:

κ
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whereκ(0) is initialized as a matrix containing all ones. Note
that the input in a certain epoch cannot influenceW indefinitely
into the future. The inclusion ofγ in equation 6 ensures that this
influence will exponentially decay over time. Also, as a side
effect, elements ofκ can not increase without bounds.

3. Experiments
3.1. Experimental Setup

For our experiments we made use of a database that was
recorded for the ACORNS-project1. It consists of 4000 En-
glish sentences with a simple syntactic structure, spoken by
two male and two female speakers. Each of these utterances
contains a single keyword, chosen from the following set: ‘An-
gus’, ‘Ewan’, ‘bath’, ‘book’, ‘bottle’, ‘car’, ‘daddy’, ‘mummy’,
‘nappy’, ‘shoe’ and ‘telephone’ (example: “Look at daddy”).
Environmental information from other modalities than speech
that accompanies each utterance is represented in a simplified
way as a tag that corresponds with the keyword in that utterance.
The model does not know anything about lexicon, morphology,
phonetic realisations of words and of carrier phrases, but must
learn to detect and update internal acoustic representations of
word-like units.

3000 utterances were used in the train set, 1000 in the test
set. Equal amounts of data from all four speakers were present
in both sets. Each utterance is converted to a sequence of static,
∆- and∆∆-labels, by means of vector quantization. The code-
book sizes were 150, 150 and 100 respectively. Histograms of
VQ-label cooccurrences at time lags of 20ms, 50ms and 90ms
were combined into high-dimensional vectors of fixed size, that
were placed in the columns of the data-matrixV . This is the
HAC-representation of the data (Histogram of Acoustic Cooc-
currences), which is more extensively described in [2]. Since
the HAC-representationaccumulatescooccurrence counts, the
cooccurrence statistics of words (columns ofW ) contribute ad-
ditively to the cooccurrence statistics of utterances (columns of
V), thereforeV ≈ WH . A condition is thatW has enough
columns to accomodate all keywords and some extra columns
to model everything unrelated to any of them (e.g. the words
in the carrier sentences). TheW -matrix in our experiments had
20 columns (twice the number of keywords).

1http://www.acorns-project.org



Utterance level (grounding) information (i.e. the tag that
represents the keyword) is added to the originalV -matrix,
which we will henceforth callVHAC , in the form of a word
identity matrixVg. The row dimension ofVg is equal to the
number of different possible keywords and its elements are

Vg(i, j) =



1 if utt. j contains keyword i
0 otherwise

The NMF decomposition in training then looks like:
»

Vg

VHAC

–

≈

»

Wg Gg

WHAC GHAC

–

·

»

Hw

GH

–

(7)

in which Wg is initialized as a matrix with large elements on
its diagonal and very small elements elsewhere.Hw is equal to
Vg andWHAC is initialized with random numbers, as are the
garbage matricesGg, GHAC andGH .

If we denote the data-matrix containing the utterances of the
test setV (test)

HAC , and the trainedW -matrix obtained from equa-
tion 3a (or in the adaptive case equation 5a)W (train), the accu-
racy of this trainedW -matrix can be tested in batch as follows:
we update a randomly initialized matrixH(test) until conver-
gence (30 iterations), applying equation 3c such that

V
(test)

HAC ≈
h

W
(train)
HAC G

(train)
HAC

i

· H(test) (8)

The activations of the keywords by the utterances of the testset
can then be calculated as

A = W
(train)
g · H(test) (9)

Since there is only one keyword to be detected in each utterance,
it suffices to find the maximal element in each column ofA, to
determine a keyword error rate (KER).

3.2. Results with batch NMF

Training is performed until convergence according to formu-
las 3a, 3c and 7. In practice, this is reached after 200 itera-
tions. To accommodate for the random elements inW andH
at initialization time, which can affect the outcome of the de-
composition, the entire training was performed five times. Of
these five different decompositions, only the one with the low-
estDKL(V ‖WH) was used for testing. Applying the testing
method from section 3.1, using equations 8 and 9, yielded a
KER of 0.3%.

3.3. Results with adaptive NMF

In this experiment, not only do we use the sameV -matrices
during training and testing as in section 3.2, but we also usethe
same random initializations ofW andH that was eventually
selected there. In each epochn a number of columns fromV ,
V (n), is presented to the algorithm in order to update theW -
matrix:

V
(n) ≈ W

(n) · H(n)

whereH(n) contains the corresponding columns of the initial
H-matrix. In our experimentsV (n) andH(n) only contained a
single column fromV andH respectively (representing a sin-
gle utterance from the train set). 10 Iterations per epoch were
performed as a trade-off between computational complexityand
adequate convergence of the algorithm. Once every 20 epochs,
we used theW -matrix to determine the KER on the test set,
as described in section 3.1. The experiment was repeated for

γ=1 (no forgetting),γ=0.999,γ=0.99 andγ=0.9. The perfor-
mance with batch processing on the same amount of training
data was also determined. The results are shown in figure 1.
Note that the KER ofbatch NMF on low amounts of data is
slightly above that of the adaptive NMF. A possible explanation
is that the batch algorithm is more troubled by local optima than
the adaptive one.
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Figure 1: The evolution of KER on a test set for the models
with differentγ-values, when training is done one utterance at
a time. The KER obtained with batch training is also indicated.

In a second experiment, we decided to pass through the
training data in the same way as before, training on one utter-
ance at a time and testing after every 20 utterances. However,
after processing all training data once, the grounding vector was
flipped (matricesVg and Hw in equation 7) upside down af-
ter which the training data was presented a second time. This
forced the algorithm to adapt the models in theW -matrix to
these changes in the input. For instance, the word model for
“telephone” had to be adjusted to model the word “Angus”, the
model for “nappy” had to change into “shoe” etc. . . The results
are shown in figure 2.

3.3.1. About the influence ofγ

As can be seen in figure 1, the KER on the test set steadily de-
creases towards an average level, that is dependent ofγ. This
is not surprising, sinceγ essentially determines the memory’s
longevity, which is proportional to 1

1−γ
. The shorter the mem-

ory, the less previous data the models are actually trained on,
thus the higher the average KER. It is also clear this difference
only becomes visible when the number of previous utterances
(epochs) exceeds this memory length. The similarity of the al-
gorithm’s performance in this experiment whenγ = 0.999 as
opposed to whenγ = 1 can be explained by the fact that the
memory length is in the same order of magnitude as the length
of the database.

Not only does memory effect overall performance, it also
influences the speed with which the word models can adapt to
changes in the input. The shorter the memory, the faster models
are expected to adapt. This can clearly be observed in figure 2.
From this figure, we can also determine the memory length to
be approximately around1

1−γ
utterances. At that point, there is

a tipping point after which the models become more sensitive
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Figure 2:The KER on the test set during incremental training of
W . After 3000 utterances, the algorithm is forced to radically
change its internal models

to new inputs than to the old ones.

4. Discussion

It is very difficult to make strong claims about the long term
memory of infants. The general consensus is that babies retain
very distinct detailed memories of perceived speech (see [1]). It
is therefore possible that at any given time during the first stages
of acquiring language skills, a large number of such episodic
memories is profusely processed upon by the baby’s brain to
hypothesize potential word-like representations. This assump-
tion supports the cognitive plausibility of computationalmod-
els that requirebatchprocessing of speech data. In the adaptive
experiments above, however, we carefully avoided making this
assumption. At any point in time, one and only one utterance
is processed to refine the word representations stored in long
term memory (i.e. theW -matrix), abolishing the need to store
large amounts of speech. This does not imply that the detailed
memory in real infants serves no purpose at all in the processof
language acquisition. In fact, since the adaptive NMF-algorithm
can be seen as a state machine, changing its internal state based
on an input and its previous state, the presentation of the same
speech utterance at different times can have very different(ben-
eficial) effects on the word models inW . This means that the
reiteration of past speech utterances stored in memory may be
crucial for success in more complex learning environments.In
our experiments, however, this proved to be unnecessary, since
the adaptive algorithm was capable of producing word models
as accurate as those obtained by batch training on the same data,
without taking any training utterance as input more than once.

Another property of the adaptive NMF-algorithm that is
tractable from a cognitive point of view, is that it providesan el-
egant model for forgetting. The experimental results show that
due to this forgetting property, the algorithm can even adapt to
extreme changes in the input data and that recent training data
dominates over data that was presented more than1

1−γ
epochs

ago. Analogies can be drawn with real infants adapting to e.g.
speaker-specific pronunciations of words.

5. Conclusion
In this paper, we introduced a computational framework for ac-
quiring a vocabulary in an adaptive way. The utilized algorithm
was NMF, extended with the idea of Bayesian updating, pro-
posed for PLSA in [13]. Some improvements were proposed
to allow a better emulation of certain properties of the human
brain, such as forgetting. Furthermore, we have experimentally
shown that the word models trained by this adaptive algorithm
are comparable to models trained in batch, in terms of accuracy.
This means a computational model of word acquisition based
on NMF does not need to rely on long term episodic memory.
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