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Abstract 

In order to avoid global parameter settings which are locally 

suboptimal, this paper argues for the inclusion of more 

knowledge (in particular procedural knowledge) into 

automatic speech recognition (ASR) systems. Two related 

fields provide inspiration for this new perspective: (a) 

‘cognitive architectures’ indicate how experience with related 

problems can give rise to more (expert) knowledge, and (b) 

‘case-based reasoning’ provides an extended framework which 

is relevant to any similarity-based recognition systems. The 

outcome of this analysis is a proposal for a new approach 

termed ‘Case-Based ASR’. 

Index Terms: speech modelling, case based reasoning, 

exemplar-based systems 

1. Introduction 

It has become apparent that the performance of state-of-the-art 

automatic speech recognition (ASR) systems is approaching 

an asymptote at a level that falls well short of that which is 

desirable for many advanced applications [1] let alone being 

comparable with the capabilities of a human listener [2].  As a 

consequence, a number of researchers are exploring the field 

of human speech recognition (HSR) in order to both better 

understand the nature of speech and to investigate the 

possibility that a simulation of the human speech recognition 

system might lead to more competitive and robust ASR [3]. 

One of the key research areas to emerge from this link 

between ASR and HSR is the instance/exemplar-based 

approach [5][6][7]. The interest in such systems stems from 

the fact that these detail-retaining systems are able to exploit 

fine-acoustic and -phonetic detail [8]. However, some 

important detailed information is missing even in exemplar-

based systems, such as the knowledge which information is the 

most salient for a particular comparison.   

It is argued in this paper that answers to these questions 

may lie outside of mainstream ASR and/or HSR research and, 

in particular, may be found in more general research fields 

such as ‘cognitive architectures’ and ‘case-based reasoning’. 

By opening ASR towards these two research fields it is shown 

how exemplar-based models that exploit increasing amounts 

of detail can be expanded to include model parameters and 

settings currently used in any contemporary ASR model.  

2. Knowledge in contemporary ASR systems 

Learning in ASR models is highly restricted. For example, for 

hidden Markov models (HMMs), the ‘knowledge’ that is 

learned is the mean, variance and mixture weight of each of 

the Gaussians, as well as the state transition probabilities. 

Every other type of knowledge is not learned by the system, 

but set globally by the designer of the system. Such parameters 

for an HMM/GMM include for example number of states and 

number of Gaussians per state, amongst others. In an example-

based system such empirically set knowledge is also manifold. 

For example in the ‘temporal episodic memory model’ 

(TEMM) [7] such parameters are the power factor (or kernel 

width) and the optimal feature normalisation techniques.    

Such knowledge is usually set globally to optimise 

performance over a particular evaluation set, as it is known 

that optimal settings depend on the precise task, usually seen 

as analogous to the database used. However, the true 

implication is that such settings are dependent on precise 

(local) structures of the problem, and thus setting these 

parameters globally implies that they may be set suboptimally 

locally. This conclusion is reminiscent of the observation that 

is a basis of the new-found interest of some of the ASR 

[5][6][7] and HSR [9][10][11] researchers in ‘exemplar 

based’ approaches. The main reason for this rise in interest is 

that the flexibility and robustness exhibited by HSR is not able 

to be modelled adequately with an architecture based on pre-

abstracted representations. An exemplar-based approach offers 

a mechanism for retaining and accessing the ‘fine phonetic 

detail’ [8] that is discarded in purely abstract representations 

such as hidden Markov models (HMMs): in order to maximise 

classification performance, experience with a related (i.e. 

similar) classification problem is of the essence. 

 The similarity is a factor which sets the system’s centre of 

attention. Attention mechanisms are very influential in HSR; 

attention however is not static, but dynamic. Attention 

mechanisms are influenced by knowledge of where the most 

relevant (or salient) information for a task lies 

[12][13][14][15], and may lead to categorical perception [16]. 

In cognitive psychology, information about how to 

perform a particular task is referred to as ‘procedural 

knowledge’. Procedural knowledge (i.e. the knowing how) is 

generally distinguished from ‘declarative knowledge’ (i.e. the 

knowing that1). Episodic, as well as semantic knowledge are 

seen as types of declarative knowledge. In a living system, 

procedural knowledge is acquired (internalised) through 

interaction with the environment; it is not an external setting. 

All contemporary ASR approaches lack such detailed 

procedural knowledge. 

3. Knowledge in cognitive architectures 

The field of ‘cognitive architectures’ (CAs) addresses the 

creation and understanding of synthetic agents that support the 

same capabilities as human beings, i.e. the underlying 

infrastructure of intelligent systems. CAs are very general, 

covering aspects that are constant over time and across 

different application domains, thereby unifying findings across 

a range of different research fields.   

Of particular interest here, are the knowledge sources 

generally identified for such CAs [17]. Of these, some can be 

readily associated with knowledge types used in ASR. Table 1 

lists the knowledge sources mentioned in [17] and, where 

applicable, identifies their ASR counterparts. 

                                                                 

 
1 For example knowing that Berlin is the capital of Germany 



Table 1. Knowledge sources in CAs (left column) and their 

counterparts in ASR (right column). 

 

Knowledge types in              

cognitive architectures … 

… and their  

counterparts in ASR 

knowledge from past (through 

remembering) 

retainment of training 

data, even if in generalised 

form (e.g. after training) 

knowledge from past (through 

learning) 

optimization of 

parameters  

knowledge about the 

environment  

(learned via perception) 

test input, once 

associated with meaning (e.g. 

after classification, or once 

related to stored data) 

knowledge of the implications of 

the current situation (gained 

from planning, reasoning and 

prediction) 

e.g. language model 

 

knowledge can be learned via 

communication 

- 

 

There are a number of observations that can be made from 

Table 1. First, almost all knowledge sources listed in CAs are 

also represented in ASR systems. Second, while it is possible 

to argue for the existence of counterparts in ASR, they are 

highly limited in nature and very simple. However, the fact 

that almost all knowledge sources identified in CAs can be 

said to be approximated in ASR systems offer an indication 

that, in order to build more robust and well performing ASR 

systems, it is necessary to increase the ‘intelligence’ associated 

with each knowledge source - and one way to do this is 

through the use of ‘case-based reasoning’. 

4. Case-based reasoning 

4.1. Background 

Case-based reasoning (CBR) [18][19] is a research field in 

Artificial Intelligence that is related to expert-based systems. 

CBR solves new problems by adapting previously successful 

solutions to similar problems, and is hence seen to link 

strongly with the process of abstraction in human beings. CBR 

has been shown to be a part of human problem solving 

[20][21] and is thus seen as an AI technique that is founded in 

human cognition.  

In essence, a ‘case’ in CBR denotes a problem situation, 

which has been learned and solved in such a manner that it can 

help solve future problems.   

The CBR process consists of a four-stage cycle: 

• Retrieve the most similar cases 

• Reuse the cases to attempt to solve the problem 

• Revise the proposed solution, if necessary 

• Retain a new solution as a part of a new case 

 

In practice, the revision in current CBR is usually done by a 

human interacting with the system rather than automatically. 

Learning is a natural by-product of problem solving in 

CBR systems [19] and, naturally, CBR systems favour 

learning from past experiences. However, as noted by Aamodt 

& Plaza [19] “effective learning in CBR requires a well 

worked out set of methods in order to extract relevant 

knowledge from the experience”. 

4.2. Relevance of CBR to ASR 

In theory, CBR is applicable to any problem solving, including 

speech recognition. Much of CBR research addresses 

solutions to very specific applications; for speech, however, 

such specific knowledge has been studied in great detail in the 

field of ASR, but not in the field of CBR. Additionally, CBR, 

with its core principle of generalising reuse based on 

similarity, has strong links with minimum-distance approaches 

to classification. All such systems assess the similarity of the 

current problem to stored examples, and these known 

examples are effectively reused to find the relevant answer to 

the current problem. By use of a similarity comparison, CBR 

(just as minimum-distance classifiers) sets a ‘centre of 

attention’1 (COA). The COA is therefore a fundamental, 

shared property between CBR and exemplar-based minimum-

distance systems. The difference is that CBR may retain more 

information, including procedural knowledge, on which to 

base its decision of COA. As a result, CBR’s mechanism to 

find a concrete solution can depend on varied, distinct 

processes. Thus, experience how to best address a particular 

problem can be incorporated. This allows for an optimal use of 

available data for a particular problem.  

It is believed that ASR would benefit from such additional 

knowledge as well. What CBR can lend to ASR is its general 

insight into the supporting framework which would allow the 

reuse of multiple sources of knowledge, such as procedural 

knowledge. Such a proposed framework for ASR is termed 

‘case-based ASR’. 

5. Instance-based minimum-distance 

classifier: natural correlation with CBR 

As already mentioned, instance-based minimum-distance 

classifiers are can be said to naturally include a rudimentary 

concept of attention, referred to as COA. In effect, the COA is 

set in two dimensions (Figure 1). Dimension one addresses 

which traces in memory are those that are the most relevant for 

classifying the current input (where traces denote a stored unit 

of speech, for example a frame). This is referred to as vertical 

COA. The second dimension addresses which part(s) of the 

speech signal (i.e. which features) is (are) the most relevant for 

classifying the current input. This will be referred to as 

horizontal COA.  

 

Figure 1: Innate attention mechanisms in an instance-

based minimum-distance classifier. A trace stands for 

a stored unit of speech. 

                                                                 

 
1 COA is used here to refer to a specialised application of some of the 

known behaviours of human attention mechanisms for ASR, and is 

not intended to reflect any of the questions addressed in human 

attention research. 



COA in such systems is defined globally by the chosen 

similarity (or activation) function as well as by the process of 

normalisation. Vertical COA is defined via the similarity 

function, and horizontal COA is set via ‘normalised 

weighting’. Normalised weighting (different to normalisation) 

does not mean equal importance of features, but instead means 

the importance of features based on their salience for the 

particular speech task at hand. This means that instead of 

normalising features, an ASR system should focus on (i.e. pay 

attention to) features that are important for correct 

classification. Conventional normalisation will lead to 

suboptimal use of the relevant information. 

5.1. Experience: from language-universal to 

language expert 

In order to use the supplied information (i.e. features) to 

the fullest, experience is necessary. When an infant is born, its 

perception is language universal; it can discriminate equally 

well the phonetic details of any language [22]. Through 

linguistic experience, a child’s perception is altered over time, 

and they become language experts [22]. Language experts 

know which parts of the sound input are those that are the 

most relevant, where attention should be centred on, resulting 

in categorical perception [16]. In this context, linguistic 

experience can be seen to reflect not only the fact that the 

infant has been exposed to language, but also that it has 

acquired knowledge and skill in dealing with a particular 

language.  

Clearly, in order for an ASR system to achieve similar 

performance as a human listener, it needs to become a 

‘language-expert’ system. This means that such a system must 

acquire and store experience that symbolises expert knowledge 

(which is largely procedural).  

5.2. Knowledge in the new framework 

A framework that incorporates knowledge along the lines 

mentioned above should be able to address many of the 

weaknesses of current ASR systems. In particular, such 

additional knowledge would address: 

• horizontal attention (i.e. knowledge of feature 

importance), which should improve discrimination of 

most likely competitors in the system by focussing on 

those features most salient to the distinction between 

these classes 

• the best parameter settings (e.g. power factor or kernel 

width) locally, based on previous experience (i.e. 

learning) 

• the choice of similarity function locally, based on 

previous experience 

Further weaknesses of current ASR systems which could be 

addressed with such a framework include: 

• Strengthening the top-down influence by extending its 

influence on the vertical attention process 

• New knowledge can be incorporated:  

         - Knowledge of the world, including 

         - Hierarchies of knowledge 

 

Such knowledge, in particular procedural knowledge, brings 

such a system closer to the performance of a language expert, 

naturally including a more sophisticated form of attention 

mechanism.  

6. Case-based ASR 

It is argued that ASR has simplified important knowledge 

sources to a point where the knowledge retained can no longer 

address a particular (local) problem optimally. In order to 

create systems that can perform speech recognition as well as 

humans, more (expert) knowledge must be retained. For 

example, in a minimum-distance classifier how is each trace 

best separable from very similar neighbouring members of 

another class? In order to address this question in the ASR 

system an analysis of following information is necessary:  

 

Vertical COA: 

• Which other traces are very similar to the trace in 

question? Which are their classes? 

• Which classes are the most relevant competitors? 

• What is the prior probability of this trace being of a 

certain class? 

 

Horizontal COA: 

• Where is the most relevant difference in features 

between the most relevant traces of the various most 

likely classes? 

• Which context information may be used best to 

distinguish highly likely competitors? 

 

These questions help assess the requirements of a case-based 

framework for ASR. In an ASR database, examples are given 

as well as the word classes each contains. In order to supply 

additional sources of knowledge, the system needs to perform 

a deeper analysis of the available data, in particular to answer 

the points above.  

Such an analysis can be performed in a more or less 

supervised fashion. One way would be that the system has a 

robust learning mechanism and can derive a high level of 

insight: all further information is learned by the system 

without external ‘experience sharing’.  

Another, simpler form of learning, would be to give the 

system a) the knowledge how to find optimal local parameters 

for particular functions and b) a choice of alternative functions 

to optimise the use of data in a particular problem. Here, the 

system only needs to analyse (offline, in the learning phase) 

which are its optimal system settings for a local problem. The 

goal of the system during such a learning phase is to maximise 

certain system criteria. Such system criteria could be i) finding 

the correct class and ii) increase the confidence of the best- 

and decreasing the confidence for the second-best class.  

Such analyses of the data provided to the system via the 

database could be triggered 1) as a batch process when the 

database is first integrated into the ASR system; and/or 2) as 

corrective training when the system learns of a wrong 

assessment of an input, or when the system’s certainty of a 

solution is not confident enough The difference to current 

corrective training procedures is that more/new knowledge 

types are corrected. Corrective training, different to the batch-

training in 1) addresses a particular problem situation, 

concentrating on maximising the criteria for that particular 

case, until the understanding is such that the criterion that 

triggered the analysis is fulfilled. 

This newly learned (expert) knowledge is then stored for 

reuse, in CBR fashion (i.e. based on the association of new 

knowledge types with particular COA’s in the bottom-up 

data). This framework implements the four CBR steps (added 

in brackets) as follows:  



• (CBR: learning, possibly revise) a learning algorithm to 

find optimal local handling of data  

• Storage of such extended knowledge that does not fit the 

criteria to be stored in (CBR: retain) the traces, for 

example procedural knowledge  

• A mechanism for (CBR: retrieve) access and (CBR: 

reuse) use of such extended knowledge. 

 

The resulting framework suggestion is shown in Figure 2. 

Note that the graph does not include the learning step. 

 

Figure 2: Proposed framework: an input triggers a 

first analysis of the similarity to the known traces. The 

found activations of the traces activate the relevant 

information about a) the higher knowledge of the 

world and b) procedural knowledge. Stored 

experience can then help improve assessment of the 

data in the current step and/or future steps. 

7. Conclusions 

This paper puts forward the position that current ASR systems 

handle many knowledge sources in a too simplified way by 

setting them to one global value. This leads to suboptimal 

handling of local problems. It is argued that in order to 

maximise performance locally, parameters should be set 

locally. Such maximised handling of a local problem is 

inspired by human processing. Humans possess not only 

declarative knowledge, but also procedural knowledge, and 

such knowledge needs to be acquired and stored in order to 

maximise local performance. Instead of setting parameters 

globally, such as the number of Gaussians per states or the 

number of states in an HMM, such optimal local settings 

should be learned by the system. One simple type of such a 

learning algorithm would be the learning of optimal 

parameters from alternatives in order to maximise system 

performance goals.  

The need to enrich available knowledge sources, in 

particular procedural knowledge, in an ASR system is seen as 

generally applicable to the field of ASR. As such knowledge 

should be applied locally, it lends itself to combine multiple 

types of knowledge in a system via ‘cases’. Such a system is 

thus referred to as case-based ASR. Cases are particularly 

incorporated in instance-based minimum-distance systems, 

which are highly related to CBR, with their core of 

exploitation of detail and setting of a COA via the distance 

metric.   
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