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Abstract
This paper introduces a computational model that automati-
cally segments acoustic speech data and builds internal repre-
sentations of keyword classes from cross-modal (acoustic and
pseudo-visual) input. Acoustic segmentation is achieved using
a novel dynamic time warping technique and the focus of this
paper is on recent investigations conducted to enhance the iden-
tification of repeating portions of speech. This ongoing research
is inspired by current cognitive views of early language acqui-
sition and therefore strives for ecological plausibility in an at-
tempt to build more robust speech recognition systems. Results
show that an ad-hoc computationally engineered solution can
aid the discovery of repeating acoustic patterns. However, we
show that this improvement can be simulated in a more ecolog-
ically valid way.
Index Terms: early language acquisition, automatic segmenta-
tion, dynamic time warping, speech perception

1. Introduction
There is a growing consensus, within the speech technology
field, that gaining a deeper understanding of current cognitive
views of early language acquisition and attempting to model
these behaviours will help improve the robustness of speech
recognition systems. Currently, state-of-the-art systems can
achieve very accurate recognition when used in their optimal
environment [1]. However, performance drastically deteriorates
in the case of mismatching test and training conditions [2].

Not only do newborns tackle the daunting task of language
acquisition with ease, but they are also very quick to build ro-
bust speech representations of their native language. Current
literature within the developmental field suggests that language
learning has already started before birth. The fetal auditory sys-
tem is already functioning by the 25th week of gestation and ob-
servations by [3] has shown evidence of fetal memory as early
as 32 weeks, through classical conditioning. It is thought that
the existence of memory in utero is to help recognition and at-
tachment to the mother [4, 3]. Nazzi et al. [5] hypothesise that
this may be a vital property of early language acquisition. They
carried out experiments showing that newborns, as early as five
days old, had a preference for the rhythm class of their mother’s
native language.

Although fetal hearing starts at such an early stage of de-
velopment, there is a substantial difference between fetal and
adult hearing. Sound is strongly filtered by the maternal tis-
sues, amniotic fluid and immature auditory system which act
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Figure 1: Fetal, newborn and adult frequency-specific thresh-
olds as speculatively characterised by Lasky and Williams [7]
to represent current views of fetal and newborn hearing.

as a low-pass filter. The frequency response of this filter is
gradually increased, exposing the infant to ever more complex
speech sounds until adult-like hearing is achieved by the end of
the first year post birth. However, as Saffran et al. [6] note, it
is not until early childhood, around 6 years of age, that audi-
tory processing has matured to allow adult-like speech percep-
tion. Figure 1 displays Lasky & Williams’ [7] characterisation
of the frequency-specific responsiveness of the fetus compared
to newborns and adults. Lasky & Williams assert that this is
a speculative depiction of current views of fetal and newborn
hearing, as conclusive data does not yet exist. We hypothesise
that this gradual unfolding of the auditory environment allows
the developing language learner to obtain a coarse grounding
for its native language, from which it is then able to bootstrap
finer representations with experience.

The work reported here takes inspiration from current
anatomical, functional and cognitive views of early speech per-
ception during early language acquisition. We begin by intro-
ducing a cognitively motivated computational model of early
word learning abilities in preverbal infants. The model derives
word meanings by automatically segmenting acoustic speech
data into word-like units and mapping them onto discrete vi-
sual tags through cross-stuational observations. This model
does not begin life with any pre-specified linguistic knowledge,



unlike current Automatic Speech Recognition (ASR) methods
which are traditionally trained using a lexicon with phonetic
transcriptions in terms of a fixed set of phone-like units. Instead
the sharpening of internal representations arises as an emergent
property of the cross-modal environment of the system. Seg-
mentation of the acoustic speech signal into word-like units is
carried out using a novel dynamic time warping technique. Sim-
ilar dynamic programming methods have been developed to dis-
cover repeating portions of music, with the aid of ad-hoc image
processing filtering techniques by reducing the acoustic detail
(such as [8, 9]). It is thus interesting to speculate whether such
computational solutions can be used to help bootstrap the pat-
tern discovery process in early language learning.

This paper reports the results of an investigation into a com-
parison of an ecologically inspired approach with an ad-hoc
image-processing solution for enhancing repeating portions of
speech on a keyword detection task. Results are compared to
a baseline system which uses full fidelity acoustic speech data.
It is hypothesised that the word error rate should decrease us-
ing the implementation of the filtering techniques as the sys-
tem should be able to find a greater number of longer and more
meaningful lexical tokens.

2. A computational model for discovering
keywords

Word-like units are learnt in a semi-supervised fashion through
the association of co-occurring cross-modal (acoustic and
pseudo-visual) events. The learning algorithm (LA) is set
within an interactive framework where the caregiver (CA) is
able to communicate with LA in a realistic and controlled envi-
ronment. The following represents a briefly outline of the com-
putational model, and the reader is referred to [10] for a more
detailed description. Figure 2 illustrates this interactive envi-
ronment along with LA’s memory architecture, as inspired by
current psycholinguistic research [11]:
CA: Provides LA with cross-modal stimuli, which consists of
an utterance of sampled acoustic data presented in parallel with
an abstract visual tag. This tag is distinct and represents a
higher-level perception of the stimulus object within LA’s en-
vironment. For example, the utterance ‘Look at the round ball’
is associated with the tag ball. It is also important to note that
this tag does not give any positional or linguistic information
about the keyword within the utterance.
Perception: Converts the acoustic signal into a representation
similar to the human auditory system, using Mel-frequency cep-
stral coefficients as used for conventional ASR (12 MFCC’s,
energy, delta and delta-delta features).
STM/Working Memory: Stores a limited number of the past n
utterances in a short term memory (STM) for carrying out cross-
modal associations (n = 10 for the reported experiments).
LTM: The cross-modal associations are stored in long term
memory (LTM). Acoustic units are mapped to visual tags, al-
lowing LA to build internal representations of its environment.
VLTM: All past utterances are stored in the very long term
memory (VLTM). Future work will include additional sleeping
processes, allowing LA to re-organise internal representations.

2.1. Automatic segmentation

Automatic segmentation is carried out with the Acoustic DP-
ngram algorithm [12]. This method uses a popular dynamic pro-
gramming (DP) technique - dynamic time warping (DTW) - in
order to accommodate temporal distortion present in the acous-
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Figure 2: Diagram of the model framework. The memory archi-
tecture is based on current views of memory [11].

tic speech signal (similar approaches include [13, 14]). Through
an accumulative scoring mechanism, this method is able to de-
tect similar portions of speech that commonly re-occur within
utterances (such as phones, words and sentences) whilst taking
into account noise, speech rate and pronunciation variation. The
discovered sub-sequence portions are termed local alignments
and, once mapped to visual tags in memory, they are termed lex-
ical tokens. An additional property of the accumulative quality
score is that longer, more meaningful local alignments produce
a higher final quality score, thus allowing the system to list lexi-
cal units in order of importance. The three steps of the segmen-
tation process are outlined below.
Step 1: Two utterances (utt1 and utt2) are fed to STM as
two sets of MFCC feature vectors (A,B) where the Euclidean
Squared Distance between each pair of frames d(vi, vj) for
each coefficient c (n = 39) is calculated using

d(vi, vj) =

nX
c=1

(Aip −Bjp)2 (1)

to give the local-match distance matrix D.
Step 2: D is then used to calculate the accumulative quality
scores for successive frame steps within A and B using the re-
currence defined in Eq. 2 to give the global quality score matrix
Q. Higher local quality scores qi,j are achieved by the accu-
mulation of successive local-matches, therefore the score for a
local-match must be positive, and scores for both insertions and
deletions must be negative in order to penalise temporal distor-
tion (Eq. 3).

qi,j = max

8><>:
qi−1,j−1 + (s(ai, bj) · d(vi, vj)),
qi,j−1 + (s(φ, bj) · |d(vi, v−j)− 1| · qi,j−1),
qi−1,j + (s(ai, φ) · |d(v−i, vj)− 1| · qi−1,j),
0

(2)
where,

s(ai, bj) = +1 (local-match score)
s(φ, bj) = −1 (insertion score)
s(ai, φ) = −1 (deletion score)
qi,j (local quality score)

(3)

Backtracking pointers p are maintained at each step of the re-
cursion

pi,j =

8><>:
(i− 1, j − 1), (local-match)
(i, j − 1), (insertion)
(i− 1, j), (deletion)
(0, 0) (initial pointer)

(4)



Step 3: Finally, the optimal local alignment is discovered within
Q by backtracking from the highest quality score max(qi,j)
until qi,j equals 0. Multiple local alignments are discovered
by repeating this process while max(qi,j) is greater than the
quality threshold (qthresh).

2.2. Word-to-world mapping

The mapping of local alignments to visual tags is carried out
through cross-modal association, as suggested by [15]. The
Acoustic DP-ngrams discovers local alignments by comparing
two different utterances (utt1 and utt2). Therefore, all local
alignments can be associated to two different tags (t1 from utt1
and t2 from utt2). This allows LA to infer that any local align-
ment with the same t1 and t2 can be hypothesised to be key-
word t, and if LA does not yet have an internal representation
for t then a new keyword class is created for it in LTM. With
increasing exposure to incoming data, each keyword class be-
comes more robust as more lexical tokens with greater variation
are obtained.

3. Enhancing repeating acoustic patterns
The basic acoustic DP-ngram algorithm described above per-
forms pattern discovery directly on a full fidelity acoustic sig-
nal. This is equivalent to a horizontal frequency response lying
at 0Db SPL in figure 1. This configuration is referred to as the
’baseline’ system. However, full fidelity frequency resolution
can be too fine for the system to detect repeating portions of
speech which have a large amount of variation. Therefore, two
techniques were investigated for smoothing the variation: an en-
gineering solution using a diagonal filter, and an ecologically-
inspired approach using a model of an infant’s developing audi-
tory system.

3.1. Diagonal filter

An image processing filtering technique commonly used for
smoothing and sharpening two-dimensional images was imple-
mented to highlight repeating acoustic patterns. Areas of high
correlation within D are expected to occur along the diagonals,
revealing repeating portions of speech from the two utterances
being compared. An appropriate filter H is thus specified as

H =

0BBBB@
1 0.5 0 0 0 0 0 0 0 0

0.5 1 0.5 0 0 0 0 0 0 0
0 0.5 1 0.5 0 0 0 0 0 0
0 0 0.5 1 0.5 0 0 0 0 0
0 0 0 0.5 1 0.5 0 0 0 0
0 0 0 0 0.5 1 0.5 0 0 0
0 0 0 0 0 0.5 1 0.5 0 0
0 0 0 0 0 0 0.5 1 0.5 0
0 0 0 0 0 0 0 0.5 1 0.5
0 0 0 0 0 0 0 0 0.5 1

1CCCCA
(5)

which is optimised for highlighting phone-like repetitions of
75ms and allows for a single insertion/deletion, which is pe-
nalised by a 0.5 weighting. The two-dimensional convolution
(C) of H and D is specified as

c[m,n] = d[m,n]⊗ h[m,n] (6)

However, due to the large amount of variation present in speech,
there is significant deviation from a perfectly linear diagonal
correlation.

3.2. Developing auditory system

A more ecologically valid method for highlighting repeating
portions of the acoustic speech data is to model the develop-
ing auditory system as characterised by [7] in figure 1. The

increasing frequency-specific threshold for each developmental
stage (S1 - Fetus 25 wks, S2 - Fetus term, S3 - Newborn 30 wks
and S4 - Adult) is modelled with four 50-channel gammatone
filterbanks (gs). A standard off-the-shelf implementation of the
Patterson-Holdsworth auditory filter [16] was used to create the
filterbanks by modifying the amplitude gains at different fre-
quencies. It is important to note that the amplitude gains of the
frequency-specific thresholds from figure 1 have been shifted
so that the minimum point of the filters lie on 0dB SPL. The
gammatone filter is described by the equation

gs(t) = ast
n−1cos(2πft+ φ)e−2πbt (7)

where as is the frequency-specific amplitude for each of the
four stages of development, f is the frequency, φ is the phase
carrier, n is the filter’s order (4), b is the filter’s bandwidth, and
t is time.

4. Data and results
The data used for training consisted of 300 single speaker ut-
terances, each of which contained one of 10 different keywords
that LA had to learn (each keyword occurred 20 times). The
accuracy of LA’s internal keyword representations was mea-
sured throughout development with a keyword detection task.
LA was only presented with the acoustic part of the utterance
and had to recognise the keyword within it, replying with the
corresponding visual tag. This was carried out as a probing
moment, where LAs internal state was temporarily frozen and
tested on 100 unobserved utterances. Probing moments occured
more frequently during the early stages of development (every
five utterances), allowing the emergence of internal representa-
tions to be analysed in finer resolution.

It was hypothesised that the addition of smoothing tech-
niques would aid the automatic segmentation discover a greater
number of longer, more meaningful local alignments. There-
fore, internal representations were expected to emerge at a faster
rate and handle greater variation in the speech due to the larger
repository of exemplar tokens.

Table 1 shows the total number of exemplar tokens stored in
memory for all internal classes for each LA setting during dif-
ferent stages of development. It is clear that the diagonal filter
has accrued the most exemplar tokens, followed by the audi-
tory filters S1 and S2. Each of these configurations discovered
more patterns than the baseline system. It is interesting to see
auditory filters S3 and S4 hinder the segmentation process, both
discovering fewer local alignments than the baseline, S3 yield-
ing the least. This is because S3 is optimised for frequencies
∼ 8kHz, therefore processing speech with the greatest varia-
tion.

Figure 3 displays the word error rate (WER) as a function

Table 1: Total number of exemplar tokens stored in LTM for
different LA settings.

Probe Moment
50 100 150 200 250 300

Base 58 134 196 264 334 418
DiagFilt 290 696 1056 1378 1722 2072

S1 144 324 516 698 870 1090
S2 65 144 200 292 370 458
S3 42 98 136 196 250 294
S4 49 126 180 246 316 372



of utterances observed, for the different filtering techniques im-
plemented, against the current baseline. The plots show that
both the diagonal filter and the first stage of the auditory system
(S1) decrease the WER from the baseline during the early stages
of development (probe moment <= 100). During this period,
both the diagonal filter and S1 achieve an average decrease in
WER of 9%. However, stages S2, S3 and S4 are much slower
to develop reliable internal representations; S2 and S4 produc-
ing an average increase in WER, over the baseline, of 1% and
3% respectively for probe moments >= 100. S3 performs the
worst, with an average increase in WER of 10% over the base-
line for the same period. The probability of a correct guess is
90%, and is plotted as the discontinuous plot.
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Figure 3: Comparing keyword WER for the four different stages
of the developing auditory system, from fetal to adult-like hear-
ing.

5. Conclusions
This paper has introduced a novel computational model of
early language acquisition, that is able to build accurate inter-
nal representations of word-like units with no pre-defined lex-
ical or phonetic information. The experiments show that post-
processing image filtering techniques implemented to force the
appearance of acoustic repetitions can be achieved in a more
ecologically valid way. The keyword detection results show that
smoothing the acoustic pattern helps the model significantly
during the early stages of development. However, there seems
to be a point at which a larger repository of exemplar tokens,
with greater phonetic variation, begins to impede the learn-
ers recognition abilities. The advantage of using a frequency-
bandwidth limited auditory filter is that the underlying structure
of the speech signal is not being distorted in an arbitrary man-
ner (there is always the possibility that the diagonal filter may
delete important information from the speech).

A potential disadvantage of the current model is that it is
limited to exemplar based recognition. This means that the sys-
tem is not able to run on a large data-set, as the number of lexical
units can increase indefinitely. Therefore, in order to create an
efficient and robust speech recognition system, it seem neces-
sary to employ more than just exemplar-based recognition. Cur-
rent developmental theories suggest that although infants begin
life using exemplar representations, they then swiftly adapt to
more prototypic units (i.e. an average of the exemplars in mem-

ory) [17, 18]. Work is currently being undertaken to try and
model this behaviour by first discovering the most efficient units
of the native language and then creating appropraite statistical
models (e.g. hidden Markov models).
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