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Abstract
Using a spectral auditory model along with perturbation based
analysis, we develop a new framework to optimize a set of fea-
tures such that it emulates the behavior of the human auditory sys-
tem. The optimization is carried out in an off-line manner based
on the conjecture that the local geometries of the feature domain
and the perceptual auditory domain should be similar. Using this
principle, we modify and optimize the static mel frequency cep-
stral coefficients (MFCCs) without considering any feedback from
the speech recognition system. We show that improved recognition
performance is obtained for any environmental condition, clean as
well as noisy.
Index Terms: MFCC, auditory model, ASR.

1. Introduction
An automatic speech recognition (ASR) system comprises two
main tasks: feature extraction and pattern recognition. The fea-
ture extraction stage is designed to transform the incoming speech
signal into a representation that serves as the input to a later pat-
tern recognition stage. Feature extraction is a dimensionality re-
duction problem where the output representation should preserve
the important aspects of the input speech signal relevant for speech
recognition in any environmental condition, clean as well as noisy.

Different feature sets have been proposed in the literature, but
the solutions remain ad hoc. We propose to define the features
based on a perceptually relevant objective criterion. The human
peripheral auditory system enhances the input speech signal for
further processing by the central auditory system of the brain. Pre-
processing of the input speech signal by the human auditory pe-
riphery forms a useful basis for designing an efficient feature set.
Commonly used features use knowledge of the auditory system in
anad hocmanner. For example, several feature extraction methods
perform auditory frequency filtering on a perceptually motivated
frequency scale than a linear scale. Another example is the use of a
logarithmic function to approximate the non-linear dynamic com-
pression in the auditory system, which allows us to cover the large
dynamic range between hearing threshold and uncomfortable loud-
ness level. Using these two auditory motivated signal processing
techniques, MFCCs were designed a few decades ago [1]. They
are still universally used due to their computational simplicity as
well as good performance. Importantly, the MFCCs do not use
up-to-date quantitative knowledge of the auditory system.

Several attempts have been made to use quantitative auditory
models in a practical ASR system processing chain [2]-[7]. In
these techniques, the input speech signal is first processed through
a readily available auditory model and then the output signal of
the auditory model is formatted to use as an input to the pattern
recognition stage of the ASR system. The direct use of an audi-
tory model was shown to provide better speech recognition perfor-

mance, but at the expense of higher computational complexity. In
recent years, the research in quantitative modeling of the complex
peripheral auditory system has reached a high level of sophistica-
tion [8]-[13], and it is appealing to use a sophisticated auditory
model for designing efficient features. The feature set should not
incur the higher computational complexity associated with a full
auditory model.

In this paper, instead of the direct on-line use, we investigate
the use of an auditory model to design improved MFCCs through
off-line optimization. The optimized MFCCs are referred to as
modified MFCCs(MMFCCs). The off-line approach helps to re-
tain the computational simplicity of MMFCCs. Also, it avoids the
difficulty of formatting the output of the auditory model for recog-
nition. Comparing to traditional MFCCs, the MMFCCs have a
similar structure as well as computational simplicity.

In our approach, the feature set is optimized in such a way that
it emulates the behavior of the human auditory system. The imple-
mentation of our method relies on perturbation theory and does not
consider any feedback from the ASR system. We conjecture that
human-like classification of speech sounds is facilitated by simi-
larity between the local geometries of two domains, the feature do-
main and the perceptual domain. For improved classification, the
preservation of the data geometry near the class boundaries is most
critical. This means that ‘small’ Euclidean distances must be simi-
lar in the two different domains, except for an overall scaling. The
focus on small distances allows a complex perceptual distance to
be reduced to a quadratic distance measure using a sensitivity ma-
trix based analysis. The sensitivity matrix based analysis was first
developed in the context of source coding [14]. In [15], the sen-
sitivity matrix was used to simplify an auditory distance measure
for audio coding. Here, we extend the sensitivity matrix paradigm
to optimize a feature set. Using HTK, the optimized MMFCCs are
shown to provide better recognition performance than traditional
MFCCs for both clean and noisy acoustic conditions.

2. Maximizing Similarity between Spaces
Improvement in sound classification requires a feature representa-
tion that provides a good separation of sound classes in the feature
space. Noting the high human recognition performance, it can be
expected that the output of a sophisticated auditory model provides
good separation of sound classes. Therefore, we optimize a feature
set to better describe the inter-sound distances of a state-of-the-art
auditory model. We conjecture that if the Euclidean distance be-
tween two acoustic features approximates the corresponding per-
ceptual distortion for two different speech sounds, then the use of
that acoustic feature generally leads to better classification in an
ASR system. Ideally, this implies an isometry between the per-
ceptual and feature domains. The mapping from the perceptual to
feature domain would then be distance preserving.



2.1. Distance Preserving Measure
In practice, it is not be possible to design a feature set that leads to
an accurate distance-preserving mapping from perceptual domain
to feature domain. However, it is not required to preserve all the
distances. For good classification, the preservation of the data ge-
ometry near the class boundaries is most critical. More generally,
the preservation of small distances (reflecting the local geometry)
near the classification boundary is important, whereas the preser-
vation of large distances (reflecting the global geometry) is not re-
quired. In principle, to achieve better sound classification, we then
simply desire to have the same small distances for the auditory do-
main and for the feature domain.

A feature set is a function of an input speech signal segment
(or frame) and some adjustable design parameters. For example,
to design MMFCCs, these design parameters can be the frequency
warping parameter to change the shape of a filter bank (such as
heights, widths, center frequency of filters), a parameter to change
the shape of a compressing function (like logarithmic function),
etc. The objective is to obtain a feature set with optimum param-
eters for which any small perturbation of the input speech signal
segment leads to a Euclidean distance in the feature domain that
best approximates the perceptual distortion indicated by the au-
ditory model. Naturally this criterion has to hold for all speech
segments. To measure the similarity of the auditory model distor-
tion and the feature domain distance, a suitable objective measure
needs to be designed that will provide a means of ensemble averag-
ing over all speech segments and all perturbations. By optimizing
the parameters, a higher similarity, through evaluating the objective
measure, leads to a better feature set.

We now define an objective measure that relates between the
perceptual and feature domains. Let us denote the signal vector for
thej’th speech frame asxj ∈ R

N , wherej ∈ J ⊂ Z, and the per-
ceptual domain representation ofxj asy : R

N → R
K . We also

denote the design parameters of a feature set by a vectorp ∈ R
S .

Then, we can denote theQ-dimensional feature derived fromxj

usingp asc : R
N ×R

S → R
Q. The perceptual domain distortion

is defined through a mapping asΥ : R
K × R

K → R
+, whereR

+

is the set of non-negative reals. For thej’th speech frame, let us
denote thel’th perturbed signal aŝxj,l. Often the perceptual distor-
tion measure is based on theL2 norm of the difference between the
perceptual domain signaly(xj) and its distorted versiony(x̂j,l).
In that case,Υ(xj , x̂j,l) = ‖y(xj) − y(x̂j,l)‖

2. Using theL2

norm, we can define a distance measure for the featurec(xj ,p) as
Γ(xj , x̂j,l,p) = ‖c(xj ,p) − c(x̂j,l,p)‖2. Now, considering the
finite sequence of speech framesj ∈ J and a finite set of acous-
tic perturbationsl ∈ Lj , the objective is to minimize a measure
of dissimilarity between perceptual domain distortion and feature
domain distortion with respect to the parameter setp. To satisfy
this objective, a suitable norm based measure can be defined as

O =
X

j∈J

X

l∈Lj

[Υ(xj , x̂j,l) − λ Γ(xj , x̂j,l,p)]2 , (1)

where

λ =

P

j∈J

P

l∈Lj
Υ(xj , x̂j,l) Γ(xj , x̂j,l,p)

P

j∈J

P

l∈Lj
(Γ(xj , x̂j,l,p))2

. (2)

Hereλ is the necessary scaling to eliminate the effect of a scale
mismatch between perceptual domain and feature domain. So, the
objective is to minimize the norm based distanceO with respect to
the parameter vectorp.

2.2. Perturbation Analysis
While it is possible to minimize the objective measure of eq. (1)
even for complex distortion measures, this can be computationally

expensive. Since we are interested in small distances, we can ap-
proximate the perceptual and feature domain distortion measure
using simpler quadratic measures, leading to a significant reduc-
tion in computational complexity and an increase in mathematical
tractability. This approach is based on the sensitivity matrix frame-
work [14], [15].

Let us omit the subscripts for notational brevity where no am-
biguity exists. We assume thatΥ(x, x̂) is analytic andΥ(x,x) =
0. Then, for a sufficiently small perturbation̂x − x, we can write

Υ(x, x̂) ≈
1

2
[x̂ − x]T DΥ(x) [x̂ − x], (3)

where DΥ(x) is the sensitivity matrix whose elements are
DΥ,ij(x) = ∂2Υ(x,x̂)

∂x̂i ∂x̂j

˛

˛

˛

x̂=x
. In certain cases, such as the spectral

auditory model of section 2.3,Υ(x, x̂) andDΥ(x) are known.
Next, we consider a simplification of the distortion in the fea-

ture domain i.e.,Γ(x, x̂,p). If the mappingc(x,p) is analytic
in x, then we can use the Taylor series expansion to make a local
approximation aroundx as

c(x̂,p) = c(x,p) + A(p) [x̂ − x], (4)

where A(p) is a Q × N -dimensional matrix asA(p) =
∂c(x,p)

∂x̂

˛

˛

˛

x̂=x
. We can then write the distortion in the feature do-

main as

Γ(x, x̂,p) = ‖c(x,p) − c(x̂,p)‖2

= [x̂ − x]T A(p)T A(p) [x̂ − x].
(5)

2.3. A Spectral Auditory Model
In this paper, we optimize the MMFCCs to minimize the norm
based measure of eq. (1). The MMFCCs are designed using the
power spectrum of the input speech signal. Therefore, for opti-
mization, we use the spectral auditory model developed by van de
Par, et al. [13] which is referred to as the van de Par auditory
model (VAM). The VAM is a psycho-acoustic masking model that
accounts for simultaneous processing of sound signals with differ-
ent frequencies. To use the VAM, we consider the input signalx

as the power spectrum of a speech frame. The VAM consists of
several frequency channels, in each of which the ratio of distortion
power to masker power is calculated. Then, the ratios of all the
frequency channels are combined together to account for the spec-
tral integration property of the human auditory system. LetH be
a diagonalN -dimensional matrix whose diagonal is formed by the
frequency response of the outer and middle ear filter. In the same
fashion, a diagonalGi is defined, so that the frequency response
of the i’th channel Gamma-tone auditory filter forms its diagonal.
For the VAM, the diagonal sensitivity matrix is

DΥ(x) ≈ 2
CsLe

N

X

i

[Gi H]T [Gi H]
1
N

[Gi Hx]T [Gi Hx] + Ca

, (6)

whereCs andCa are constants calibrated based on measurement
data, andLe is a constant to account for the influence of temporal
integration time in the human auditory system on frame duration.

It is important to mention that each speech frame is indepen-
dently analyzed in the VAM. Therefore, the use of VAM is appro-
priate for optimizing a static feature. Note that due to the inabil-
ity to model the auditory response across speech frames, the use
of the VAM is inappropriate for optimizing the temporal dynamic
features, such as velocity and acceleration. However, it is possi-
ble to compute the dynamic features from any static feature using
standard regression method.



3. Modified MFCCs
We first generalize the definition of the MFCCs to render a set of
features with adjustable parametersp. We refer to this new set of
features asmodified MFCCs(MMFCCs). Let theN -dimensional
vectorx = [x0 x1, · · · , xn, · · · , xN−1]

T be the power spectrum
of a Hamming windowed speech frame. Then the steps of evaluat-
ing the MMFCCs are as follows:

1. Calculation of the energy in each channel:

zm = xT wm(α)

=

N−1
X

n=0

xn × wm,n(α) , 0 ≤ m ≤ M − 1,
(7)

where wm(α) is the N -dimensional vector denoting
the triangular filter of them’th channel and satisfies
PN−1

n=0 wm,n(α) = 1. M is the total number of channels
with a typical value ofM = 26. The shape of a triangu-
lar filter depends on the extent of frequency warping. The
warped frequency scale [16] is given as

fwarp = 2595 × log10 (1 + (f/α)) , (8)

whereα is the warping factor andf is the frequency in Hz.
An increase inα leads to a decrease in the extent of warping.
For the MMFCCs,α is a parameter to optimize to achieve
better recognition performance. In the case of MFCCs, the
triangular filters are designed using themel frequency scale
whereα = 700 [16].

2. Compression of the dynamic range of the energy in each
channel:

sm = log10

"

R
X

r=1

br (zm)r

#

, 0 ≤ m ≤ M − 1, (9)

where
PR

r=1 br = 1 andbr ≥ 0. For the MMFCCs, we
optimize the polynomial coefficients{br}

R

r=1. In the case
of MFCCs,R = 1 andb1 = 1 [1]. We note that eq. (9) im-
plies that our results are scale dependent and require proper
normalization.

3. De-correlation using the DCT to evaluateQ-dimensional
MMFCC feature vector:

cq =

M−1
X

m=0

sm × cos
h

q (m + 0.5)
π

M

i

, 1≤q≤Q. (10)

A typical value of feature vector dimension isQ = 12.

3.1. Optimization of the MMFCCs
The parameters that we optimize to obtain the MMFCCs arep =
h

α, {br}
R

r=1

i

. To optimize the parameters, we need to minimize

the objective measureO of eq. (1). This objective measure is a
function of the sensitivity matrix based perceptual domain distor-
tion of eq. (3) and the feature domain distortion of eq. (5). To
evaluate the perceptual domain distortion, we need a closed form
sensitivity matrixDΥ(x) which is given by the VAM as shown in
eq. (6). We also need a closed formA(p) for evaluating the fea-
ture domain distortion. For an MMFCC feature, the elements of
the matrixA(p) are

Aqn =
∂cq

∂xn

=
∂cq

∂sm

∂sm

∂zm

∂zm

∂sn

=
PM−1

m=0 cos
ˆ

q (m + 0.5) π
M

˜

×

PR

r=1 r br (zm)r−1

ln 10 ×
PR

r=1 br (zm)r
wm,n(α).

(11)

Table 1: Phone recognition accuracy (in%) of static 12-
dimensional MFCC and MMFCC features using TIMIT

Feature Number of Gaussian mixtures/state
1 2 4 6 8 10 12 14

MFCC 43.19 47.00 48.63 49.57 50.38 51.04 51.60 51.96
MMFCC 45.13 48.63 50.16 51.28 52.10 52.63 52.92 53.30

It is interesting to jointly optimize all the parameters through
a closed-form/iterative solution, such as using gradient descent
search technique. This requires a closed form gradient expres-
sion dO

dp
, which is not easy to evaluate due to the intricate relation-

ship existing between the measure ofO and the parameter vector

p =
h

α, {br}
R

r=1

i

. Therefore, we use a simple increment-based

linear search technique and optimize the parameters one by one.
We first optimize{br}

R

r=1 and thenα. For both the cases of wide-
band (sampling frequency 16 kHz) and narrow-band (sampling fre-
quency 8 kHz) speech, we use a 32 ms Hamming windowed speech
frame with 10 ms frame shift. To evaluate the MMFCCs, we use
M = 26 and Q = 12. The power spectrum of each frame is
computed using a standard DFT based periodogram technique and
the power spectrum is perturbed with i.i.d Gaussian noise at differ-
ent SNRs ranging from 120 to 130 dB. Using an increment-based
linear search, we evaluate the minimum value of the measure of
eq. (1) and find that a polynomial order ofR = 2 is sufficient; the
values of the polynomial coefficients areb1 = 0.1 andb2 = 0.9.
Next we search for the optimumα. For wide-band speech and
narrow-band speech, we find the optimum values areα = 900
andα = 1100, respectively. We note that standard MFCCs use
b1 = 1 andα = 700 irrespective of the sampling frequency of in-
put speech, choice of the window length and shift, and the feature
dimension (Q) and number of channels (M ) [1], [16].

4. Recognition Results
Using the HTK toolkit, we performed phone and word recognition
experiments to compare between MFCC and MMFCC features.
The static 12-dimensional MFCC feature set was extracted using
the same setup as that used to extract the 12-dimensional MMFCC
feature set. Using the standard approach, 39-dimensional feature
vectors were evaluated. To the static features, we appended the log
energy of a speech frame and the velocity and acceleration of the
features.

We first compared the performance of 12-dimensional static
features through a clean speech phoneme recognition experiment.
In this case, we used the TIMIT database where the speech is sam-
pled at 16 kHz. HTK training and testing were performed using the
training set and the test set of TIMIT respectively. The TIMIT tran-
scriptions are based on 61 phones. Following convention, the 61
phones were folded onto 39 phones as described in [17]. To train
the HMMs, we used three states per phoneme and the performance
is shown in Table 1 for a varying number of Gaussian mixtures per
state. We used Gaussian mixtures with diagonal covariance ma-
trices. From Table 1, it can be noted that MMFCCs outperform
MFCCs for any number of mixtures. In case of the 39-dimensional
feature vectors, the performance improvement of using MMFCCs
over MFCCs was always positive, but small for clean speech phone
recognition.

Next we considered the 39-dimensional feature vectors for ro-
bust word and phone recognition experiments where clean speech
training and noisy speech testing were performed. For the robust



Table 2: Robust word recognition accuracy (in%) of 39-dimensional MFCC and MMFCC features using Aurora 2
Feature Test Set a Test Set b Test Set c

set 1 set 2 set 3 set 4 set 1 set 2 set 3 set 4 set 1 set 2
Subway Babble Car Exhibition Restaurant Street Airport Train-Station Subway Street

SNR = 20 dB
MFCC 95.46 96.67 96.12 94.88 96.87 96.28 96.78 96.33 93.28 94.41

MMFCC 96.49 97.49 97.08 96.42 97.73 97.04 97.58 97.04 94.96 95.62
SNR = 10 dB

MFCC 85.05 86.49 83.39 81.70 87.69 83.89 87.50 84.45 74.88 76.00
MMFCC 87.07 88.51 87.00 85.25 87.81 86.06 87.77 87.84 79.49 78.36

Table 3: Robust phone recognition accuracy (in%) of 39-
dimensional MFCC and MMFCC features at 10 dB SNR

Feature Performance in Accuracy
Clean White Pink Babble Volvo

MFCC 68.11 37.03 40.51 46.25 59.71
MMFCC 68.34 43.65 46.67 48.94 61.91

recognition, we used cepstrum mean and variance normalization
(CMVN) on the feature sets [18]. For the robust word recognition
experiment, we used the Aurora 2 database where the speech is
sampled at 8 kHz and the sub-datasets of test set are corrupted by
different noise types at varying SNRs. The standard configuration
of the HTK setup was used where HMMs were trained using 16
states per word and three Gaussian mixtures per state (diagonal co-
variance matrices). The robust word recognition performance for
39-dimensional MFCCs and MMFCCs are shown in Table 2 at the
testing conditions of 20 dB and 10 dB SNRs. We note that MM-
FCCs perform better than MFCCs for all the sub-datasets corrupted
with different noises. In the case of clean speech word recognition,
the improvement of 39-dimensional MMFCCs over MFCCs was
small like in the case of clean speech phone recognition.

Finally, we consider a robust phone recognition experiment
where the clean test speech database of TIMIT was corrupted with
additive noise. We used the following noise types from the NoiseX-
92 database: white, pink, babble and car (volvo) noise. The test
speech database was corrupted by adding each noise at 10 dB SNR.
The HMMs consisted of three states per phoneme and 20 Gaussian
mixtures per state. The robust phone recognition performance for
MFCCs and MMFCCs are shown in Table 3 and we note that MM-
FCCs perform better than MFCCs for all noise types.

5. Conclusions
Our development of MMFCCs shows that the use of a sophisti-
cated auditory model can lead to a simple feature set that provides
improved speech recognition performance for any environmental
condition. The success of our perceptual-distance preserving mea-
sure in optimizing features suggests that the auditory system pro-
vides as output a signal representation that is ‘efficient’ for speech
recognition. As we developed the static MMFCCs using a static
spectral auditory model, further investigation should consider the
optimization of dynamic features using a spectro-temporal auditory
model, such as that presented in [11].
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