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Abstract 

An efficient method for pattern discovery from discrete time 

series is introduced in this paper. The method utilizes two 

parallel streams of data, a discrete unit time-series and a set of 

labeled events, From these inputs it builds associative models 

between systematically co-occurring structures existing in both 

streams. The models are based on transitional probabilities of 

events at several different time scales. Learning and recognition 

processes are incremental, making the approach suitable for on-

line learning tasks. The capabilities of the algorithm are 

demonstrated in a continuous speech recognition task operating 

in varying noise levels. 

 

Index Terms: speech recognition, pattern discovery, time 

series analysis 

1. Introduction 

Current state-of-the-art approaches in automatic speech 

recognition (ASR) are based on Hidden-Markov Models 

(HMM; [1]). Although the performance of HMM based 

recognizers is very good in many applications, they require 

large amounts of training with annotated speech material. Also, 

mismatches between training data and the actual signal and 

speaker conditions during recognition impose serious problems, 

making the recognizers fall far behind humans, e.g., in terms of 

noise robustness. These are central reasons why a major body 

of ASR research is focused on improving existing HMM 

algorithms for higher noise robustness, faster learning, speaker 

adaptation, etc. 

Contemporarily, new methods and architectures have been 

studied in order to complement and challenge the prevailing 

HMM approaches in different types of speech recognition tasks 

(e.g., artificial neural networks, [2], or Non-Negative Matrix 

Factorization, [3-5]). Additionally, it has been suggested that 

systems capable of self-driven structure discovery may be 

required for more human-like performance in many speech 

recognition and artificial intelligence tasks (see, e.g., [6]). By 

discovering and memorizing associations between internal 

states of a system and multimodal external input streams, in a 

process called grounding [7], the system can form information 

structures that can be referred to as meanings. When a familiar 

pattern is perceived the associative links, and thereby the 

meaning, becomes activated: the input is recognized. This 

viewpoint is different from traditional HMM-based approaches 

where models of pre-defined units are trained from data in a 

process that uses expert knowledge in natural language theory, 

engineering, and phonetics.  

In this paper a novel approach for associative pattern 

discovery in time series is introduced. This method, called the 

concept matrix (CM) approach, combines information from two 

input streams in order to find co-occurrence relations between 

them. It learns recurring structures in similar contexts, and 

recognizes them from new input. Contrary to HMM, CM does not 

make the Markov property assumption regarding independence of 

the subsequent states, making it capable of finding structures 

between non-adjacent events and robust against temporally local 

distortions. We demonstrate the capabilities of this method in a 

weakly supervised word learning and recognition task using 

continuous speech. However, it should be noted that the algorithm 

is not theoretically limited to speech recognition and can be 

utilized for any kind of pattern discovery from time-series that 

can be expressed as discrete sequences (e.g., image recognition or 

medical signal processing).  

2. The concept matrix algorithm 

2.1 Inputs 

Input to the system consists of a time series of discrete elements 

or sampled spatial information to form 1D-sequences, and in the 

training phase, tags specifying some events associated with the 

sequences.  

The first information source consists of time-series of basic 

elements called labels. In the simplest case they may refer to 

items in a vector quantization (VQ) codebook, or they can be 

produced by discretization of time-series or images. In a more 

complex case they may refer to some higher-level representation 

of information, e.g., events or items possibly reflecting clear 

qualitative properties.  

The other information source is represented by a set of so-

called concept tags c. Tags are integer values that represent 

invariant outputs of another process that are concurrently 

activated with the time-series input (e.g., a categorization process 

performed in another modality like visual or haptic perception in 

case of speech recognition, or some other group of manually 

defined events that should be associated with the time-series; see 

also [8]). 

The mechanism may work also in the opposite direction; an 

acoustic event may serve as a tag to learn visual patterns. One 

modality may form tags to other modalities to help learning. More 

generally, the method allows construction of statistical 

associations between different modalities. This is one of the key 

issues regarding the modeling and understanding of the formation 

and learning of meanings (by agents and humans).  



2.2 Training 

When a set of tags c = {c1, c2, …, cn} and a label sequence s is 

represented, the algorithm starts to collect frequency data 

regarding the occurrences of label pairs in the sequence at 

distances l = {l1, l2, l3,…, ln}. This data is stored into histogram 

tables Tl,c specified by the lag l and c, i.e., a separate table 

exists for each tag at each lag, yielding a total of Nl *Nc tables  

where Nc is the total number of all possible tags, Nl is the 

number of used lags. The original labels can be used as pointers 

to T when the number of occurrences of the corresponding 

label pair is required. This first step shares similar properties 

with the HAC-model used in [3].  

After frequency data from s are collected, data from every 

Tl,c are normalized to an activation matrix Pl,c of size Nq x Nq, 

where Nq is the size of the label codebook. For notational 

simplicity, elements of matrices Pl,c and Tl,c are denoted in the 

form P(ai, aj|l,  c) and T(ai, aj|l, c), where the first two variables 

ai and aj define matrix element indices of the labels (transition 

from ai to aj), whereas l defines the lag (number of non-

specified labels between ai and aj, i.e., l = j-i) and c defines the 

concept (tag number) under consideration.  

The first step is to normalize the transition probability from 

each label to all other labels (right stochastic matrix) by having:  
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where Nq is the label codebook size. Next, the probability that a 

specific transition occurs during the presence of a tag instead of 
all other possible transitions is added cumulatively to 
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Finally, the probability that a specific transition occurs during 

the presence of a concept ck instead of any other concepts is 

incorporated in the final activation matrix Pl,c by normalizing 

values over all possible tags, i.e., having: 
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In other words, the cumulative probability of a transition from 

ai to aj in the case of tag c is divided by the sum of probabilities 

of the same transition occurring during all possible tags c. If a 

transition becomes equally probable for all concepts, therefore 

containing no information value, it would have a probability of 

1/Nc. Therefore, each element in all matrices has 1/Nc 

subtracted from its original value in order to have zero 

activation for the fully random case and a negative value for 

transitions that occur on average more often during other 

concepts. 

Now each matrix Pl,c keeps a record of normalized 

transition probabilities from label s[t-l] to s[t] in the input 

sequence s when an external information source, called concept 

c, is activated. Since values of P are not classical probabilities in 

the range [0, 1] due to a three-stage normalization process, values 

of P will be referred to as activation values and P will be referred 

as an activation matrix.  

2.2 Recognition 

During recognition, label transitions in a new input sequence are 

used as pointers to the activation matrices P. The activation level 

of a concept ci at time t given a new input sequence s can be 

computed by summing over the transition probabilities at 

different lags, expressed mathematically as: 
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In order to do pattern recognition, this activation is computed in 

parallel for all concepts ci that are included in the search space in 

order to see what concept is most likely given the present input. 

This provides a temporally local activation estimate for each 

concept candidate. However, in many applications it is useful to 

examine the activation output in a larger temporal window since 

the events that are being recognized spread over several 

subsequent time frames. One possible way to do this is to first 

low-pass or median filter the activation curves in a larger 

temporal window. In speech recognition experiments the best 

results were obtained by recursively accumulating the activation 

level frame by frame with a decay factor ! (5), and then filtering 

the outcome with a median filter.  
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Once temporal filtering has been performed, a winning concept ci 

for each time frame is chosen by selecting the one with the 

highest activation level. For speech recognition, a median filter of 

250 ms and ! = 6 were found to be effective.  

It should be noted that the algorithm can be run in parallel for 

several input streams in order to incorporate several sources of 

information (e.g., prosody features or some other contextual data). 

This transforms frequency and activation matrices into the form 

T"(ai,aj|l,c) and P"(ai,aj|l,c), where " denotes the number of the 

input stream being processed. Training is performed similarly to 

the single stream condition in order to build separate concept 

matrices for each concept at each lag and for each stream. In the 

testing phase, the probability output from all streams is combined 

to have a probability of a concept ci at time t of: 
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where #" is a weighting factor defined for each input stream. 

Since only the transitions that are informative in relation to a 

specific concept receive values above zero, the inclusion of 

additional streams should not bias or degrade the recognition 

process. However, no such parallel stream processing was used in 

the experiments reported in this paper. 



3. Experiments 

3.1 Material and evaluation 

The material used in the experiments consisted of the 

TIDIGITS corpus [9] that contains continuously spoken digit 

sequences (1-7 digits per utterance) in different dialects of 

American English by 225 different speakers (111 males, 114 

women, fs = 16 kHz). Training material consisted of the original 

male and female training set of TIDIGITS, except for the noise 

experiments that were trained using only male data (N = 4235 

utterances) due to practical issues. Test data consisted of the 

full test set, except for noise experiments where N = 650 

utterances were chosen randomly from speakers in the test/male 

set. 

Audio signals were converted into label sequences using 

vector quantization. MFCCs (N = 12 coefficients) were 

extracted every 10 ms using a 20 ms Hamming window. In 

addition, speech was segmented into phone-like segments using 

a blind segmentation algorithm [10] and segmental MFCCs 

were extracted using features only from segment center points. 

A k-means VQ codebook of size Nq = 150 was created from a 

subset of the training data using only segmental MFCCs and the 

Euclidean distance as a distance metric. All utterances were 

then quantized using the obtained codebook with the full 

temporal resolution of MFCC vector every 10 ms. Concept tags 

related to each utterance were extracted directly from the signal 

annotation, one for each digit, yielding a total of Nc = 11 

different tags including “oh” and “zero”. As an outcome, each 

utterance was described as one VQ-sequence and an unordered 

set of tags related to the words in the utterance.   

Evaluation was performed by having the algorithm provide 

an ordered set of N words, where N was the true number of 

words in each utterance. The word hypotheses were the N most 

activated models (cumulative sum over an entire utterance), and 

their temporal location was defined as the point where the mean 

of their cumulative activation sum was reached. This is a 

simplification of a real speech recognition task, but a necessary 

one since the current implementation does not have an activity 

based decoding mechanism for word strings, i.e., it does not 

know whether a very brief but large activation of a model can 

be a target event being recognized. This type of knowledge 

about word string length has been shown to increase the HMM 

recognition rate by approximately 2 % [11] in the same task in 

noise. Since a lack of temporal decoding leads to an inability to 

differentiate between subsequent repetitions of a single word 

and a long pronunciation of the same word, utterances with 

repetitions of a same word (like “six-six-nine-two”) were 

excluded from the test set.  

3.2 Results 

Development of the algorithm has shown that for speech, 

results can be improved by extending the lags from zero up to 

250 ms, and this was confirmed with the test material. Increases 

beyond 250 ms do not seem to have a significant effect. 

Therefore, lags from 10 ms up to 250 ms were used in the 

experiments. A median filter of 250 ms and ! = 6 were used in 

the post-processing of concept activations. With these settings, 

clean speech word recognition accuracy in the digit recognition 

task was 94.34 % for the TIDIGITS test set.  

An example of the recognition process is shown in fig. 1, 

where the utterance “three-four-one-two-six” is being analyzed.  

 

 
Figure 1: Top: cumulative activation curves of all 11 recognizers 

in recognition of utterance “three-four-one-two-six”. Middle: 

activation after median filtering and inhibition. Bottom: 

Association Response Table (ART) showing the activations with 

concepts at different rows.  

 

Activation curves after cumulative activation (5) (top) and median 

filtering (middle) are shown. Also, a very convenient way to 

visualize concept specific activations is shown at the bottom. We 

call this an Association Response Table (ART). 

As can be seen from the top figure, very salient activations of 

correct models emerge during the presence of the target word. 

Other models sharing sub-word structure with the correct words 

also gain activations temporarily, whereas activations of non-

related parts are below zero. Additionally, the temporal 

boundaries between concepts (fig. 1, middle) seem to provide an 

accurate word and/or morpheme segmentation of the input. This 

was noted by a manual inspection using English and Finnish 

continuous speech. 

Noise robustness was tested using white Gaussian noise 

(WGN) and non-stationary factory noise taken from NOISEX 

[12]. Figure 2 displays the results as a function of SNR. The 

effect of WGN is shown separately for a clean training condition, 

where VQ-codebook and CM models are trained with clean 

signals, and for a matched condition, where training is performed 

in similar noise conditions as testing. The CM algorithm performs 

relatively well at a SNR of 20 dBseg in all cases, but recognition 

starts to degrade with an increasing rate below that level. 

However, the recognition rates at low SNRs are still very well 

comparable to the results reported with continuous density 

HMMs, without and with noise compensation (e.g., [13,14]), 

although the task here is simplified since the correct number of 

words is known beforehand. As expected, once the noise 

conditions in training and testing are matched, the recognition rate 

is significantly better and is still nearly 75 % at a SNRseg of 0 dB 

in WGN. Figure 3 shows an example of speech corrupted by 

factory noise (SNR = 0 dB) where recognition has still been 

successful.  



 
Figure 2: Recognition in noise. Training performed with clean 

speech (dashed line with squares) and noisy speech (dashed 

line with circles) are shown separately for white noise. The 

effect of factory noise is shown with a solid line. 

 
Figure 3: Top: Logarithmic spectrogram of the clean utterance 

“nine-oh-three-five-six”. Middle and bottom: corresponding 

spectrogram and CM output with a factory noise of 0 dB 

SNRseg. 

5. Conclusions 

It was shown that given a set of discrete unit sequences and a 

set of informative tags for each sequence, the CM algorithm is 

able to create structural models that associate the presence of a 

specific tag with specific parts of the time-series. This model 

can be used for recognition of similar patterns in future input, 

and can handle large amounts of variability and noise in the 

sequences. This is since CM does not make the Markov 

property assumption, i.e., it does not attempt to pack all the 

information of the past states to the current state of the system, 

but instead integrates information over larger temporal 

windows. This makes it robust against local distortions in the 

input.  

From the perspective of speech recognition, CM is able to 

learn statistical models for separate words from continuous 

spoken language and recognize them with high accuracy. Noise 

robustness of CM is also comparable to existing noise-

compensation approaches used in HMM algorithms [13,14], 

although it does not employ any kind of special mechanism for 

dealing with noisy input. However, since CM in its basic form 

lacks a mechanism for detecting and decoding speech specific 

word-like units, the recognition task was slightly simplified. 

Development of such a decoding mechanism tailored especially 

for word or phone recognition would bring the system closer 

towards real speech recognition applications where the number of 

words cannot be assumed beforehand.  

From a computational complexity perspective the algorithm is 

efficient. This is especially true for recognition, where post-

quantization steps only include the retrieval and summation of 

activation values from memory and the temporal filtering of the 

obtained activation curves. However, the memory requirements 

for storing activity and frequency matrices may become 

problematic with a large number of concepts or with very large 

codebooks. Still, the statistics are very sparse and the memory 

requirements can be reduced with proper compression.  

Finally, it is important to note that the learning and 

recognition processes are purely incremental, making it possible 

to perform recognition and further learning simultaneously all in 

real time. This also opens up new possibilities for further 

improvements of the algorithm, e.g., for reinforcement learning 

and refinement of the models based on feedback from 

recognition.  
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