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Abstract 
In this paper, a bottom-up, activation-based paradigm for 
continuous speech recognition is described. Speech is 
described by co-occurrence statistics of acoustic events over 
an analysis window of variable length, leading to a vectorial 
representation of high but fixed dimension called “Histogram 
of Acoustic Co-occurrence” (HAC). During training, 
recurring acoustic patterns are discovered and associated to 
words through non-negative matrix factorisation. During 
testing, word activations are computed from the HAC-
representation and their time of occurrence is estimated. 
Hence, words in a continuous utterance can be detected, 
ordered and located.  
Index Terms: speech recognition, information discovery, 
non-negative matrix factorisation, co-occurrence statistics 

1. Introduction 
Hidden Markov Models (HMMs) have dominated automatic 
speech recognition (ASR) research for many decades. They 
have shown to be fairly adequate models for speech, but 
recent research has also uncovered some of their weaknesses 
such as poor robustness to pronunciation variation, co-
articulation, assimilation and noise. Psycholinguistic studies 
on human speech recognition (HSR) [1] have also revealed 
differences with the way current ASR systems work. To deal 
with the intrinsic variation that is found in speech, ASR 
systems are based on statistical models that are learned from 
examples. However, the model structure is still hardwired and 
engineered: sentences are built of words, which are built of 
phonemes, which map to different allophones, which have 
statistical models. One of the goals of the ACORNS project 
[2] is to discover the structure in speech from data, much like 
a baby does not need linguistic theories to understand lan-
guage. Although still outperformed by HMMs, this contri-
bution presents encouraging results along this line. 

The HAC-model (histogram of acoustic co-occurrence) 
with its associated learning algorithm based on non-negative 
matrix factorisation (NMF) [3] is able to discover recurring 
acoustic patterns in speech without supervision [4] or with 
weak supervision [5]. In the former case, the algorithm will 
identify which acoustic patterns reappear and therewith find 
the elements or latent structures that speech is composed of, 
and this without any guidance. With weak supervision, the 
utterances are accompanied by unordered information that 
relates to the spoken words, much like a baby receives e.g. 
visual and tactile information that relates to the audio. This is 
a weaker form of supervision than is used in the training of  
HMM-based ASR systems, where utterances are described 
hierarchically in terms of word sequences down to HMM 
state sequences. 

Once the HAC-models are trained, they can be used to 
decompose utterances in terms of the discovered latent 
structures, which will be words in this paper, but could also 
be phone-like units. This is a bottom-up process: acoustic 

inputs activate words which compete, much like in the 
Shortlist model [6] of HSR. (There are differences with this 
model such as the absence of a pre-lexical level and “possible 
word constraints”). In this paper, HAC-models are extended 
to not only detect which words an utterance is composed of, 
but also in which order the words occur. 

This paper is organized as follows: section 2 recaptures 
the ideas behind HAC-models, showing how words can be 
detected. In section 3, it is explained how the detected words 
can be ordered in time. Section 4 expands on the idea to build 
an activation-driven decoder. In section 5, the HAC-model is 
discussed and related to human speech recognition. 

2. HAC-models 

2.1. Histograms of acoustic co-occurrence 

In the present bottom-up approach, recognition is driven by 
the co-occurrence of acoustic events. In general, these events 
are the occurrence of specific patterns in the time-frequency 
plane, ranging from patterns with a local time and frequency 
extent, such as the patches described in [7], to fullband 
patterns that span several 100ms like phones or even syllable-
sized units. Specifically, in previous work [5], phones as well 
as vector-quantised (VQ) fullband spectra were used. The 
acoustic events are represented by discrete symbols from a set 
Σ, such as phone identities or a VQ labels, their time of 
occurrence and an estimate of their posterior probability. In 
[4], acoustic events are represented as the edges in a directed 
acyclic graph, because it is then easy to define the distance or 
lag τ between edges α and β as the minimal number of ver-
tices that need to be visited to travel from α to β, as well as 
the joint weight pαβ of the edge pair (α,β) as the sum of the 
posterior probabilities of partial paths starting with edge α
and ending with edge β. An alternative lag measure could 
simply be the difference in time of occurrence of the acoustic 
events, which would eliminate the need to represent them in a 
lattice. However, for notational convenience, the lattice will 
be maintained below. 

Next, all pairs of acoustic events (A,B) ∈ Σ×Σ are con-
sidered and the weight of all edge pairs with lag τ and 
carrying symbols A and B respectively is accumulated over 
the graph. Mathematically, the n-th utterance is characterized 
by 

��
(�,�) i

in p
∈Θ

= �V  (1) 

where Θi is the set of edge pairs with lag τ and labels A and B 
respectively. The index i is a one-to-one mapping of all com-
binations (A,B) to the integers 1 … |Σ|2. In other words, a co-
occurrence histogram of all possible acoustic event pairs is 
constructed. This results in a shift-invariant representation of 
fixed dimension (the square of the number of different 
symbols), independent of the length of the analysis window, 
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which will be referred to as HAC (histogram of acoustic co-
occurrence) or simply histogram.  

In this paper, the acoustic events will be quantised full-
band spectra computed at regular time instants or frames. The 
lattice of acoustic events then degenerates to a chain where 
each arc carries a VQ label with unity posterior probability. 
The HAC-representation is then the number of times all VQ 
symbol label pairs are observed τ frames apart. 

For a given segment of speech, a unique high-dimensional 
HAC representation can be computed. Both the actual acous-
tic events occurring in the utterance as well as their order 
affect the HAC-representation. Conversely, a HAC represent-
tation does however not map to a unique symbol sequence or 
symbol lattice. For example, the histogram of the symbol 
sequence ABCDA and ABCDABCDA differ only by a 
scaling factor. The histograms of ABCDA and its (almost) 
cyclic permutation BCDAB are identical. In general, order is 
weakly represented in the HAC-model, much like a bigram 
language model only weakly represents grammar. Taking this 
analogy further, histograms over more than two symbols 
could alleviate this weakness at the cost of complexity. It will 
however be shown below that even with histograms of co-
occurrence pairs, encouraging speech recognition results can 
be obtained. HAC-models are different from convolutional 
NMF [8], which describes traces in the acoustic space by an 
impulse response, a very rigid model for word-sized units. 

2.2. Matrix factorisation for pattern discovery and 
recognition 

If utterances are composed of one or more out of R recurring 
acoustic patterns such as words, the histograms have a 
linearity property that is essential in the proposed method: 
each such acoustic pattern is characterized by a HAC and 
hence the HAC of each utterance will be a (integer) linear 
combination of histograms. Define Θir as the subset of Θi that 
originates from the r-th acoustic pattern. Then: 
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where Hrn is the number of times pattern r occurs in utterance 
n and column Wir is the histogram of acoustic co-occurrences 
for the r-th pattern. In matrix form: 

V �W H (2) 

Given their interpretation, all entries of W and H are 
constrained to be positive or zero. Because of these 
constraints, equation (2) is known as Non-negative Matrix 
Factorisation (NMF) [3]. Since the observed symbols are 
subject to variability and uncertainty, equation (2) is only 
approximate and W and H are estimated as the positive 
matrices that minimize the divergence metric 
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An algorithm for finding W and H given V based on multi-
plicative updates is given in [3]. This way, a small vocabulary 
can be discovered without supervision in a collection of 
utterances of continuously spoken words [4]. 

Without additional constraints, W (and therefore H) is 
determined within a positive R-by-R scaling matrix S with a 
positive inverse: W H = W S S-1 H. Examples of such scaling 
matrices are diagonal matrices with a strictly positive diagonal 

(scaling of the columns of W) and permutation matrices. To 
address scaling, the constraint that each column of W sums to 
unity is imposed, while permutation will not affect the results. 

Once W is estimated on a training set, new utterances can 
be analysed with factorisation (2) by estimating H, whose 
columns reveal the degree to which each discovered acoustic 
pattern is present in each new utterance.  

2.3. Supervised learning 

If it is known which words occur in each utterance, this 
information can be exploited to associate each column of W
to a word identity. Therefore, the  M × N grounding  matrix G
is formed, which holds in its m-th row and n-th column the 
number of times the m-th word occurs in the n-th utterance. 
Here, M is the number of word identities and N is the number 
of utterances available for supervised training. Subsequently, 
compute:

g

v

	 
	 

≈ � �� �

 �  �

WG
H

WV
 (4) 

which expresses that word identity needs to be explained 
jointly with the acoustic data by common model activations 
H. The common dimension R is chosen R ≥ M. Experiments, 
not reported in this paper, have shown that overestimation of 
R is an acceptable strategy. The resulting columns of Wg will 
be zero, i.e. be associated with acoustic events that have no 
relevance to grounding, e.g. to a model for silence or filler 
words. 

After supervised training, i.e. computing factorisation (4), 
recognition on unseen data is achieved by first computing �
in V � Wv � using only the acoustic co-occurrence data and 
with fixed Wv. The presence of words or their activation (i.e. 
an estimate of the grounding information: typically 1 for a 
word that is present and 0 if it is absent) in the test utterances 
is subsequently estimated as: 

ˆ ˆ
g=G W H  (5) 

Notice an important difference with an HMM-based 
speech recogniser: each column of the matrix � will reveal to 
which extent each trained word is present in the corres-
ponding test utterance. However, it will say nothing about the 
order in which the words occur in the utterance, a problem 
that is addressed in the next section and forms the first 
novelty of this paper. 

3. Word order and timing 
The method of section 2 uses a “bag of words” approach, in 
that words can be discovered at training time, linked to word 
identities and subsequently can be spotted in given test utter-
ance. However, word order, which is essential in language, is 
not modelled. A mechanism to find out in which order words 
occur in the test utterance is required. 

3.1. Time-scaled histograms 

Next to the histogram of acoustic co-occurrences, the 
edge pair weights are also multiplied with the time of 
occurrence of the first arc tα (e.g. its ending time) and are 
accumulated over the lattice. Hence, with the notations of 
equation (1): 

� ��
(�,�) i

in t p
∈Θ

= �T  (6) 

2555



With a similar reasoning as the one of section 2.2 for 
histograms, these time-scaled histograms (6) of an utterance 
are shown to be composed of the time-scaled histograms of 
acoustic patterns, but the weighting time is offset by the 
starting time of the pattern. Then: 

� �� ,
1 (�,�) 1 1ij

R R R

in ir rn v ir rn
j r r

t p
= ∈Θ = =

= = +� � � �T X H W U  (7) 

where Xir is the time-scaled histogram of the r-th pattern 
when aligned to some reference time and Urn is the time offset 
of the r-th pattern in the n-th utterance. Hence, for supervised 
learning mode: 

g

v

v
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G W 0
H

V W 0
U

T X W
 (8) 

The estimation of X in (8) appears to be a non-trivial 
problem. Only with knowledge of the time of occurrence of 
the words within the training utterances, an accurate estimate 
of X was obtained. In order to avoid to have to resort to 
exploiting additional (timing) information, the following 
approximation was considered: if the time-scaled histogram of 
the utterance is modelled as the sum of the time-scaled histo-
grams of the acoustic patterns, but where event occurrence 
time tα is approximated by the word occurrence time, X will 
equal Wv after normalisation. Accepting an offset in U, (8) 
can be replaced by (supervised mode) 

g

v

v
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G W H
V W H
T W U

 (9) 

Rather than estimating Wg, Wv, H and U jointly on the 
training data using (9), slightly better results were obtained 
when training the W-matrices from (4). This is not surprising 
since the approximation in the lower partition (T) negatively 
influences the factorization of V. During testing, H and U  are 
estimated separately with fixed Wv and the time of occurrence 
of a pattern is found as U./H (element-wise division). 

3.2. Multiplicity 

If a word occurs twice or more within an utterance, its number 
of occurrences as well as its times of occurrence will be added 
in one value for H and U and hence, the estimated time of 
occurrence for the pattern will turn out to be an estimate of 
the “average” occurrence time of the pattern, which makes 
ordering the words impossible. Although the multiplicity of a 
word can in principle be determined by inspecting H (or in 
case of supervised learning G), the patterns cannot be 
separated. This is intrinsically related to the property that 
HAC-models do not make an explicit segmentation of the 
data. The problem will be partially solved in section 4, where 
a method for handling disjoint repetitions of a word will be 
described.  

3.3. Experiments 

The training speech data are taken from the TI-DIGITS 
corpus which contains recordings of 55 male and 57 female 
US-American adults, downsampled to 16 kHz. Since include-
ing examples of the words in isolation would simplify the 
problem of discovery of acoustic patterns, the isolated digit 

strings were removed from training and test, totaling 6159 
connected digit sequences of length 2 through 7 for training.  

For the acoustic information, 12 MFCC’s plus log-energy 
are computed at a 100 Hz frame rate. A codebook of respect-
tively 150, 150 and 100 for static, velocity and acceleration 
parameters is trained on the training set using the K-means 
algorithm. All training utterances are then processed resulting 
in a VQ-label for static, velocity and acceleration features per 
10 ms analysis frame. Per utterance, the label co-occurrence 
histograms for the three streams are computed with a lag 
value τ = 5, resulting in a 22500-dimensional vector for the 
static and the velocity stream and 10000-dimensional vector 
for the acceleration stream. To improve discrimination 
between speech and non-speech, leading and trailing silence 
were stripped off each training utterance with an energy-based 
voice activation detector and considered as additional training 
utterances. Hence, a (very sparse) 55000 × 12318 data matrix 
V is obtained. T is obtained similarly. The VQ histogram 
counts are divided by a fixed constant (100) such that the 
acoustic and grounding information have roughly the same 
weight in the cost function in supervised learning. Experi-
ments have shown that the value of this constant is not 
critical: it can be changed over several orders of magnitude 
without significant impact. Subsequently, factorisation (4) is 
computed for R = 12 and Wv and Wg are stored for 
recognition.  

In this first evaluation, recognition and subsequently 
ordering of digits is attempted on a per-utterance basis. 
However, as outlined in section 3.2, it is not straightforward 
to locate multiple occurrences of the same word within a 
sentence, since (roughly) their average time of occurrence 
would be estimated. For consecutive repetitions of a digit, this 
is not a problem for order estimation. Therefore, utterances 
with non-adjacent repetitions of any digit were removed for 
testing, resulting in 4163 utterances. For example, “998” is 
retained, but “989” is removed as a test utterance. Given the 
number Kn of different digits occurring in the n-th test 
utterance, the Kn candidates with highest activation according 
to equation (5) are selected, yielding a word error rate of 
2.83% and an unordered string error rate of 8.62%. Notice 
that this recognition result is unordered, so word error rate is 
defined as the sum of the number of incorrect digits that end 
up in the top Kn, divided by the sum of Kn over the complete 
test set. A string is incorrect if it contains any incorrect digit.  

The recognised digits of each utterance are subsequently 
ordered by their estimated time of occurrence, i.e. H and U
are estimated based on equation (9) and the digit position 
U./H is formed. For the n-th utterance, the recognised top Kn
candidates are ordered according to their estimated time of 
occurrence. This yields an ordered string error rate of 
11.72%. Hence, only in 3.1% of the strings, the ordering 
process introduced additional errors.  

4. A sliding window decoder 
The approach of section 3 takes a holistic approach to 
recognition in the sense that a complete utterance is analysed 
in terms of the components (words) it is made of and 
subsequently those components are located in time. At no 
point there is an attempt to break down the utterance in 
segments. For long utterances, one can expect that unmixing
the components becomes ill-conditioned. 

In this section, a more local implementation of the same 
idea is examined. A sliding window of 400ms is moved over 
the utterance in steps of 50ms, word activation is computed 
and location of the best candidate is performed. This single 
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best decoding strategy is viable only because no grammatical 
constraints need to be taken into account here. The candidate 
is accepted if its activation is higher than 0.25 and if its 
estimated location is within 40ms of the window center. 
Examples of the activation levels and estimated times of 
accepted candidates by this process are shown in Figure 1. If 
in subsequent 50ms frames, the same word is detected, it is 
considered as a continuation of the same word and not a as 
repetition of it. However, when the same digit is repeated, this 
often – but not always – fails to produce an interruption in the 
activation of candidates, hence leading to deletion errors. 
Thus, the detection of adjacent repetitions of the same word is 
error-prone and not attempted in the sequel: adjacent repeti-
tions of the same digit are mapped to a single occurrence in 
reference and in hypothesis during scoring.  

This decoder is evaluated on a subset of the TI-DIGITS 
test set containing 6214 digit strings of length 2 through 7. As 
such, the algorithm leads to a word error rate of 7.40% 
(4.41% insertions, 2.19% deletions and 0.81% substitutions). 
It is observed that “oh” is often inserted after “zero”, which is 
not unexpected, since the former is the last phone of the latter 
and the decoder does not have a constraint to find complete 
words. Invariantly, the word “oh” receives a large activation 
when the sliding window reaches the end of “zero”. 
Therefore, all occurrences of “zero oh” were mapped to 
“zero”. Similarly, “six” is often inserted before “seven” and 
“zero” and was only accepted in this context if its activation 
exceeds 0.5. This leads to a word error rate of 5.57% (2.56% 
insertions, 2.23% deletions and 0.78% substitutions). For 
comparison, a discrete density HMM was trained and tested 
on the same material, using the same VQ data and 7 states per 
digit (3 for silence). This yields 3.75% word error rate (1.53% 
insertions, 1.19% deletions and 1.02% substitutions). The 
lower performance of the HAC-model is mainly caused by 
insertions and deletions, which is not surprising given its 
extremely simple decoding strategy based on word activation 
without dynamic programming. 

Figure 1: activation level versus center position of 
analysis window (x) and estimated location (.) for the 
utterance “139oh”. The activation of each digit is 
plotted in a different colour.   

5. Discussion and conclusions 
The present approach shows some remarkable similarities 
with models of human speech recognition (HSR). Most 
remarkable is that in HAC-models the speech data are not 
segmented, but that a window of speech is considered. Words 
are activated and compete, much like is the case in the 
Shortlist model [6] of HSR. A holistic match of speech with 
high-dimensional models is made, which differs strongly from 

the approach taken in HMMs. The implicit segmentations that 
are generated in HMMs lead to sharp boundaries between 
words, a concept that is not so clear in HSR and that also 
might explain our insensitivity to strong cross-word 
coarticulations. However, HAC’s failure to detect or even 
hypothesise word boundaries also leads to the problems with 
word multiplicity mentioned above. Progress on this front can 
probably be made if words are described as a sequence of 
subword units, which are then located and hence detect word 
beginnings and endings. This will be explored in further 
research. 

Notice also that at no point any order information in the 
training data was exploited. At best, the presence/absence of 
words in the training data was used in supervised mode, 
though the NMF-based pattern discovery method can even 
work without supervision [4]. Eventually, it is capable of 
recognising and ordering the discovered acoustic patterns. 

The current implementation contains only a single layer of 
representations, mapping the acoustic level directly to the 
lexical level. In ASR as well as in most models of HSR [6], 
[9], [10], [1], a pre-lexical (e.g. phonemic) level is assumed. 
This level is required for building larger vocabularies, since 
re-use of acoustic representations (phonemes) can then be 
achieved for learning parsimonious lexical representations 
that require less storage and which can be learned from a 
small number of examples. A pre-lexical level, however, 
could also helps decreasing the ambiguity of the decoding 
process by imposing possible word constraints [6], [1].  
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