
Improving the Multigram Algorithm by using Lattices as Input

Joris Driesen, Hugo Van hamme

Dept. ESAT, K.U.Leuven, Leuven, Belgium
joris.driesen@esat.kuleuven.be, hugo.vanhamme@esat.kuleuven.be

Abstract
The multigram algorithm is a statistical technique that can be
used for extracting recurring patterns from a sequential input.
When provided with a symbol sequence representing a speech
signal, it is able to extract word-like patterns from it, despite the
large amount of subsequences that can represent a single word.
For this, it uses statistical information derived from the entire
input. However, due to the abstraction of speech to symbols,
much of the information originally present in the signal is no
longer available to the algorithm.

In this paper we propose a way of using a richer abstrac-
tion of the signal in the form of a lattice. Furthermore, a way
of grounding recurring patterns to concepts in other modalities
will be presented. Finally, the information learned by the algo-
rithm using both kinds of input is tested in a recognition experi-
ment. This will show that the use of lattices leads to a significant
improvement in terms of recognition rate.
Index Terms: Machine Learning, Language Acquisition, Pat-
tern Discovery, Lexical Models.

1. Introduction
Humans are all born without any knowledge about language.
In the first years of their life, they learn their mother tongue
without the use of any prior lexical knowledge, in a weakly su-
pervized way compared to HMM training. Presumably, they do
this by gradually remembering meaningful segments of acoustic
information and linking them to concepts they observe in other
modalities than speech.

When implementing such a mechanism in automatic sys-
tems, the first challenge is the pattern discovery step. This is not
an easy task, since speech signals often have random variations
like background noise, or variations that are hard to model, like
speaker dependencies. Due to these difficulties, pattern discov-
ery techniques that perform very well on cleaner signals, like
music ([1]), are not suitable for speech. The multigram algo-
rithm [2] is a classic pattern discovery algorithm that seems to
meet all the requirements to a satisfactory degree. However, it
can only detect meaningful patterns in a symbolic representa-
tion of the speech signal, in which the amount of variability is
reduced, not directly in the speech signal itself. Even in this sta-
ble symbol sequence every single word is still represented by a
large amount of possible symbol strings. The multigram algo-
rithm has to determine which subsequences are generated by the
same underlying word and which are not. This is done by mak-
ing use of statistical information in the entire input. However,
since the input sequence contains only a part of the statistical
information present in the original speech signal, those decision
making capababilities are not optimal.

The organisation of this paper is as follows: in section 2, a
review of the multigram algorithm will be given. In section 3
we will introduce a way to cope with uncertainty in the input.

In section 4 we will propose a way of relating discovered pat-
terns in the sequence to information present in other modalities
than speech, a process that is also referred to as grounding. Fi-
nally, in section 5, we will describe the results of a recognition
experiment using an automatically acquired lexicon.

2. The Multigram Algorithm
The multigram algorithm is based on the assumption that the in-
put sequence is the product of a probabilistic generative frame-
work, as depicted in figure 1. At the highest level, there is a se-
quence Z of word-like concepts zi, also known as multigrams,

Figure 1: The generative framework. Each element of sequence
Z yields a symbol string in S. Together, they make up the ob-
served input O.

all of which are elements of a finite set Z = {z1, z2, . . . , zm}.
Each of these multigrams generates symbol strings (of variable
length) according to some random process. In this paper, this
process will be described by an HMM. The sequence of sym-
bol strings, each of which is generated by an element of Z, will
be referred to as S. The input sequence, O, is then formed by
removing the pattern boundaries from S. The goal of the multi-
gram algorithm is to determine the set of multigrams Z that
maximizes the likelihood of the observation. Formally:

Z∗ = argmax
Z

L(O|Z)L(Z) (1)

in which L() is the likelihood.
Assuming that the occurrence of zi in Z does not depend

on the context, but only on a prior probability p(zi), the first
part of this equation can be rewritten as:

L(O|Z) =
X

(S,Z)

L(O, S, Z|Z) =
X

(S,Z)

c(S,Z)Y

t=1

p(s(t)|zit)p(zit)

(2)
Here, t is the segment index, c(S, Z) is the number of segments
in S (fig. 1) and it is the multigram index of the t’th segment.
We maximize this likelihood by making use of the help function

Accepted after peer review of full paper
Copyright © 2008 ISCA

September 22-26, Brisbane Australia2086

(see [3]):

Q(k, k + 1) =
X

(S,Z)

p
(k)(S, Z|O,Z)·

logL(k+1)(O, S, Z|Z)

in which k is the index of the current iteration. It is straight-
forward to see that this leads to two separate cost functions
that can be iteratively optimized: one over p(zi), the other over
p(s(t)|zi). These cost functions are

mX

i=1

X

(S,Z)

c(zi|S, Z,Z)p(k)(S,Z|O,Z) log p
(k+1)(zi) (3)

and

X

(S,Z)

p
(k)(S, Z|O,Z)

c(S,Z)X

t=1

log p
(k+1)(s(t)|zit) (4)

Here c(zi|S, Z) is the number of times the multigram zi occurs
in Z. Optimizing equation 3 yields an iterative update formula
for p(zi):

p
(k+1)(zi) =

X

(S,Z)

c(zi|S, Z)p(k)(S, Z|O,Z)

X

j

X

(S,Z)

c(zj |S, Z)p(k)(S, Z|O,Z)

≈
c(zi|S

∗, Z∗)

c(S∗, Z∗)
(5)

in which S∗ and Z∗ are the most likely S and Z, given the
observation. Optimizing equation 4 is tantamount to a training
pass over the observed input sequence of the generative models
associated with each multigram.

The second part of equation 1, L(Z), also needs to be op-
timized in every iteration. Since the exact value of this part
cannot be calculated, this is not a trivial task. One possible way
would be to find out how many patterns are present in the in-
put and then determine the likelihood of the input, for every
possible subset of the entire pattern set with the correct number
of elements. The set that yields the highest likelihood is then
the optimal one. Needless to say, this would be a process of
prohibitive computational complexity. In most cases, the new
pattern set is heuristically determined by removing all patterns
whose probabilities p(zi) fall beneath a certain threshold.

3. Using Lattice Input
At any point in time the acoustic signal is only represented by
a single symbol in the input. Often, it is better to have several
alternative possibilities, accompanied by a confidence measure.
Effectively, this means that the input of the algorithm should be
a lattice. An example is shown in figure 2. We would like to

A(1.0) B(0.8)

F(0.3)

E(0.7)

D(0.2)C(0.2)

Figure 2: An example of a lattice. The symbols representing the
speech signal, along with their probabilities, are on the arcs.

maximize the likelihood of the original acoustic waveform x.
This waveform can be represented by a large number of symbol
sequences, each of which can be seen as a path through the lat-
tice. The chosen path then becomes another hidden variable of
the model, which we will call P . We can then rewrite equation
2:

L(x|Z) =
X

(S,Z,P)

L(x,S, Z, P |Z)

=
X

(S,Z,P)

L(x|S, Z, P,Z)L(S, Z, P |Z)

=
X

P

L(x|P)
X

(S,Z)

c(S,Z,P)Y

t=1

p(zit)p(s(t)|zit) (6)

Using a similar reasoning as in section 2, we arrive at two cost
functions:

mX

i=1

X

(S,Z,P)

c(zi|S, Z, P,Z)·

p
(k)(S, Z, P |x,Z) log p

(k+1)(zi) (7)

and

X

(S,Z,P)

c(S,Z,P)X

t=1

p
(k)(S, Z, P |x,Z)·

log p
(k+1)(s(t)|zit) (8)

Maximizing for instance cost function 7 yields

p
(k+1)(zi) =

X

(S,Z,P)

c(zi|S, Z, P,Z)p(k)(S, Z, P |x,Z)

mX

j=1

X

(S,Z,P)

c(zj |S, Z, P,Z)p(k)(S, Z, P |x,Z)

≈

X

P

c(zi|S
∗

P , Z
∗

P , P)p(P |x,Z)p(k)(S∗, Z∗|P, x,Z)

X

j

X

P

c(zj |S
∗

P , Z
∗

P , P)p(P |x,Z)p(k)(S∗, Z∗|P, x,Z)

≈

X

P

δP · c(zi|S
∗

P , Z
∗

P , P)p(P |x,Z)

X

j

X

P

δP · c(zj |S
∗

P , Z
∗

P , P)p(P |x,Z)
(9)

with

max
(S,Z)

p
(k)(S, Z|P, x,Z) = p

(k)(S∗, Z∗|P, x,Z) ≈ δP

δP is assumed to equal either a constant independent of P , or
zero. Zero occurs when the (zi)-sequence cannot be aligned
with P . Thus, δP can effectively be seen as a lexical constraint.

The remaining aligned paths through the symbol lattice can
be represented as a new lattice in which every arc is a concate-
nation of arcs in the symbol lattice and corresponds to a single
pattern zi. The probability of such a pattern arc can be calcu-
lated:

p(nk, nk+1, . . . , nk+N) = p(nk, nk+1)·

p(nk+1, nk+2)P
i
p(i, nk+1)

· . . . ·
p(nk+N−1, nk+N)P

i
p(i, nk+N−1)

(10)

2087

where the pattern arc starts at node nk and ends at node nk+N in
the symbol lattice.

P
i
p(i, n) is the sum of the probabilities of

all symbol arcs arriving in node n and will be further referred to
as its node weight. If we name a path throug this pattern lattice
Q, and an arc on this path aQ, the numerator of equation 9 can
be rewritten as
X

Q

X

aQ

δi,a p(Q) =
X

a

δi,a

X

Qa

p(Qa)

=
X

a

δi,ap(a)
` X

QL,a

p(QL,a)
´
·
` X

QR,a

p(QR,a)
´

=
X

a

δi,ap(a)pL(a)pR(a) (11)

In all probabilities, the condition on x and Z has been left out
for the sake of brevity. δi,a is 1 if arc a corresponds to zi and
0 otherwise. QL,a is a path from the start node of the pattern
lattice to the start node of arc a, QR,a a path starting from the
end node of that arc, to the end node of the pattern lattice. Their
respective summations pL(a) and pR(a) can be efficiently cal-
culated using a forward-backward algorithm. Equation 9 can
then finally be rewritten as

p
(k+1)(zi) ≈

P
a

δi,ap(a)pL(a)pR(a)P
a

p(a)pL(a)pR(a)
(12)

If we not only keep track of zi on each of the arcs in the pattern
lattice, but also of its symbol string s(t), i.e. the symbol arcs
from which it was formed, we can maximize equation 8 in a
similar way.

4. Grounding
Knowing the patterns that make up the acoustic signal is only
the first step in language acquisition. In order to receive the in-
formation that a speaker is trying to convey, it is necessary to
know what every spoken word or word group means. In order
to learn this without the aid of prior knowledge, a form of as-
sociative learning can be applied, like a baby presumably does.
For instance, if a baby is often presented a ball upon hearing
the word “ball”, it will gradually learn its meaning. Of course,
this requires the baby to visually detect the ball and pay atten-
tion to it, to separate it from all the other stimuli it receives.
Since attention mechanisms and sensory detection of different
stimuli are difficult problems in their own right, we will make
abstraction of them here, and simply have multimodal informa-
tion accompany each speech utterance in the form of a number
of relevant so-called multimodal tags. There is no one-to-one
link between the speech signal and the multimodal informa-
tion, so any connection between the two must be probabilis-
tic, which can be written either as p(zi|tagk) or as p(tagk|zi).
The calculation of these measures can only be accomplished by
making use of cooccurrences of patterns in the segmented in-
put and tags. Since in every utterance there are many possible
pattern-to-tag mappings, only one of which is correct, both of
these measures are distorted by noise. However, since the av-
erage utterance contains more words than multimodal tags, be-
cause of filler words that have no clear ecological significance,
p(zi|tagk) is noisier than p(tagk|zi). It is therefore more sen-
sible to use the latter. Moreover, if the assumption is made that
multimodal tags are generated by the multigrams in Z, the ap-
plication of the maximum likelihood criterion straighforwardly
leads to simple formulas to calculate this probability, the deriva-
tion of which will not be given here due to lack of space. For

the single sequence input:

p(tagk|zi) =

PT

l=1 δk,lc(zi|S, Z,Z)
PT

l=1 δk,l

Pm

j=1 c(zj |S, Z,Z)
(13)

and for the lattice input:

p(tagk|zi) =

PT

l=1 δk,l

P
a

δi,ap(a)pL(a)pR(a)
PT

l=1

P
a

δi,ap(a)pL(a)pR(a)
(14)

in which T is the number of different tags and δk,l is equal to
1 if the utterance is accompanied by tagk, 0 otherwise. The
appropriate tag for every discovered pattern then becomes

tagi = argmax
k

p(tagk|zi) (15)

5. Experiments
To test the multigram algorithm in a language learning con-
text, a simple language acquisition agent was built, which is
schematically shown in figure 3. The input consists of utter-

Figure 3: A schematic overview of a simple word learning agent

ances from the TIDIGITS database which contains a total num-
ber of eleven different words. Utterances that contain only a
single word are left out, leaving a total of 6159 in the train
set and 6214 in the test set. Each utterance is then augmented
with an unordered set of multimodal tags, each of which cor-
responds with a single word in that utterance. Every utterance
is abstracted to a single phone sequence by using a phone rec-
ognizer, yielding an average phone error rate of approximately
25%. Lattices on the same speech input are deduced by the
first layer of the FLAVOR framework [4]1. They are the same
lattices that were used in [5]. When processing a corpus of ut-
terances, equations 5, 12, 13 and 14 require summing over all
utterances in their numerator and denominator.

5.1. Training

The pattern set is initialized by taking all subsequences present
in all input sequences of the train set, up to a maximum length of
five phones. The probability of each pattern is initialized as its
relative number of occurrences. Only if this initial probability is
above 0.001, it is added to the initial set. The generative model
associated with each of these patterns is then initialized as fol-
lows: each phone is converted to an HMM-state in which the

1The phone recognizer is used to abstract the speech signal into a
symbol sequence. Since we want to concentrate on the lexical discov-
ery problem, the choice of phones is for convenience of interpretation.
Other abstractions could be envisaged (e.g. VQ or temporal decompo-
sition)

2088

TS rS iS

D D

0.10

0.10

0.80

0.10

0.80

11

0.10

Figure 4: The model associated with the pattern “Tri”. The
dummy-states are labelled with a ‘D’.

probability of emitting that phone is 0.5. The rest of the prob-
ability mass is evenly distributed over all other phones. From
each state there is a transition with probability 0.80 to go to the
next state. It is also possible to skip the next state with a proba-
bility of 0.10. Finally, it is possible with a probability of 0.10 to
jump to a so-called dummy state before going to the next state.
The emission distribution of the dummy states are initialized
uniformly. Initializing the models like this not only accounts
for substitutions but also single insertions and deletions. An
example is shown in figure 4.

Next, a total of 10 training passes is performed on these
newly generated HMM’s. For the single sequence input this
means we will just perform 10 Viterbi passes over the inputs
and update the HMM’s and the prior probabilities of the known
patterns accordingly. For lattice input, a training pass entails
the calculation of a pattern lattice in each utterance, and an up-
date of the HMM’s and prior probabilities as explained above.
In the end the set of multigrams is once more pruned with a
probability threshold of 0.001, after which we can start from
the beginning. This is repeated 4 times, after which recognition
performance is unchanged. Grounding is performed at the same
time. This means that in every iteration, we apply equation 13
for the single sequence input, and equation 14 for the lattice in-
put. The end result is a set of trained HMM’s, all of which are
statistically linked to a multimodal tag.

5.2. Testing

Finally, speech input from the test set is presented to the learn-
ing agent, without multimodal tags. The learning agent will
make use of the information acquired in the training to gener-
ate the tag sequence it has understood from the input. With the
single sequence input this is simply a Viterbi alignment of the
input sequence in which every segmented pattern is substituted
for its corresponding tag as determined in section 4. For the lat-
tice input, we derive pattern lattices from the symbol lattices as
explained in section 3 after which we seek the best path through
them. This, too, provides us with a segmentation that can be
converted to a tag sequence. By comparing this tag sequence to
the oracle solution, which in this case is no longer an unordered
bag, but a strictly ordered sequence, it is easy to determine the
tag error rate as

TER = TDR + TIR + TSR =
D + I + S

T
· 100%

with D, I and S respectively the total number of deleted, in-
serted and substituted tags, and T the total number of all tags.
The results of this experiment are given in table 1. It is clear
that the use of lattices yields a substantial improvement over
the single sequence input.

sequences lattices
substitutions 2.58 3.32
deletions 2.11 0.59
insertions 5.25 3.09
total 9.94 7.00

Table 1: The tag error rate, given in percents.

6. Conclusion and future work
In this paper we have presented an extension to the multigram
algorithm, that allows it to utilize uncertainties in the input. We
also described a way of mapping patterns discovered by this
algorithm to information from other modalities which is sym-
bolized by tags presented along with each speech utterance.
This mechanism was cascaded with the multigram algorithm
to form a rudimentary framework for modeling language acqui-
sition. By training and testing this framework on the TIDIGITS
database, we have shown that the use of lattices significantly
improves its performance.

Future work will include an attempt at making an abstrac-
tion of the acoustic signal without resorting to an acoustic model
or any other knowledge of prelexical level. Also, where the
present paper focuses on the influence of lattices on recogni-
tion accuracy, we would also like to explore its influence on the
noise robustness of the algorithm. The experiment presented
here already showed that a symbol error rate of 25% can be
dealt with quite easily, but these limits need to be explored fur-
ther. Furthermore, the influence of the initialization parameters
will be investigated. Finally, an analysis of several HMM ini-
tializations is in order. The present models, wich account for
single insertions and single deletions, are adequate for process-
ing phone recognition results, but this needs to be verified for
other kinds of input.

7. Acknowledgments
This research is part of the ACORNS project, funded by the
European Commission under contract number FP6-034362.

8. References
[1] J.-L. Hsu, C.-C. Liu, and L. Chen, “Discovering nontriv-

ial repeating patterns in music data,” IEEE Transactions on
Multimedia, vol. 3, no. 3, pp. 311–325, 2001.

[2] S. Deligne and F. Bimbot, “Inference of variable-length
liguistic and acoustic units by multigrams,” Speech Com-
munication, vol. 23, pp. 223–241, 1997.

[3] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-
likelihood from incomplete data via the em algorithm,”
Journal of the Royal Statistical Society, vol. 39, no. 1,
pp. 1–38, 1977.

[4] K. Demuynck, T. Laureys, D. Van Compernolle, and
H. Van hamme, “Flavor: a flexible architecture for lvcsr,”
in Proc. Eurospeech, pp. 1973–1976, 2003.

[5] V. Stouten, K. Demuynck, and H. Van hamme, “Automati-
cally learning the units of speech by non-negative matrix
factorisation,” in Proc. European Conference on Speech
Communication and Technology, pp. 1937–1940, 2007.

2089

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index

	Abstract Book
	Abstract Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Also by Hugo Van hamme
