
Spoken Digit Recognition using a Hierarchical Temporal Memory

Joost van Doremalen, Lou Boves

Centre for Language and Speech Technology, University of Nijmegen, the Netherlands
{j.vandoremalen, l.boves}@let.ru.nl

Abstract
In this paper we explore the feasibility of the Memory-
Prediction Theory, implemented in the form of a Hierarchical
Temporal Memory (HTM), for automatic speech recognition.
Up to now HTMs have almost exclusively been applied to image
processing. However, the underlying theory can also be used as
an approach to active perception of audio signals. Using the
software platform under development by NUMENTA

� we im-
plemented a system for isolated digit recognition, the speech
recognition task that can be most easily cast in a form similar
to image recognition. Our results show that the HTM approach
holds promises for speech recognition. At the same time it is
clear that the present implementation is not ideally suited for
processing signals that encode information mainly in dynamic
changes.
Index Terms: Memory-Prediction Theory, Hierarchical Tem-
poral Memory, Speech Recognition

1. Introduction
Recently it has been argued that the prediction of future sensory
input from salient features of the current input is the keystone of
intelligence [1]. Current sensory input patterns activate stored
traces of previous inputs that then generate top-down expec-
tations. These expectations are verified against the bottom-up
input signals. If the verification succeeds, the predicted pattern
is recognized. This theory explains how animals can cope with
previously unseen inputs in a latency-free manner that is needed
for survival in the real world. Parts of this theory known as the
Memory-Prediction Theory (MPT) are modelled in the Hierar-
chical Temporal Memory or HTM technology developed by a
company called NUMENTA

� [2].
In this model, spatial and temporal relations between fea-

tures of the sensory signals are formed in a hierarchical memory
architecture during a learning process. Learning can be super-
vised or unsupervised. When a new pattern arrives, the recogni-
tion process can be viewed as choosing the stored representation
that best predicts the pattern. HTMs have been successfully ap-
plied to the recognition of relatively simple images [2]. The
system shows invariance across several transformations and is
robust with respect to noisy patterns.

It has long been believed that Hidden Markov Modelling
(HMM) in automatic speech recognition will fail to reach the
performance levels that are needed for a wide range of appli-
cations [3]. HMM approaches have problems dealing with the
unexpected events that abound in natural speech. Therefore, the
generalization capabilities of the model presented in [2] also
seem interesting for automatic speech recognition (ASR) sys-
tems, because these systems have to be robust against unex-
pected behaviour of the speakers and background-noise.

In this research we applied the concept of HTM as imple-
mented by NUMENTA

� to speech recognition. Since this soft-

ware had only been applied to image recognition, we designed
a task that resembles image processing as closely as possible.
Therefore, we built and tested a system that learned to recog-
nize the 11 words in the TIDIGITS corpus [4].

2. Hierarchical Temporal Memory

An HTM is a collection of linked nodes, organized in a tree-
shaped hierarchy (cf. Fig.1). HTMs consist of several layers or
levels of nodes, with one node at the top level. HTMs operate in
two stages: the learning stage and the inference stage. During
the learning stage, the network is exposed to training patterns
and it builds a model that maps these patterns to the categories.
During inference the network will generate a belief distribution
over these categories for usually unseen test patterns. All of the
nodes (except the top node) process information in roughly the
same way and consist of two components: a spatial pooler and
a temporal pooler. Understanding an HTM node boils down
to understanding the operation of these poolers during both the
learning and training stage.

2.1. Operation of nodes during learning

During the learning stage, the spatial pooler learns to map input
data to a number of quantization centers or coincidences. The
output of the spatial pooler (and input to the temporal pooler)
is in terms of its coincidences and as such can be seen as a
preprocessing step for the temporal pooler, simplifying its input.
The temporal pooler learns temporal groups, which are groups
of coincidences that frequently occur close in time.

2.1.1. Spatial pooler

Spatial poolers of input nodes receive raw data from the sensor,
spatial poolers of higher nodes receive the outputs from their
child nodes. The input of the spatial pooler in higher layers is
the fixed order concatenation of the output of its children. This
input is represented by row vectors and the role of the spatial
pooler is to build a matrix (the coincidence matrix) from input
vectors that occur frequently. There are multiple spatial pooler
algorithms, i.e. Gaussian and Product. The Gaussian spatial
pooler algorithm is used for nodes at the input layer, whereas
the nodes higher up the hierarchy use the Product spatial pooler.

Gaussian spatial pooler The Gaussian spatial pooler algorithm
compares the raw input vectors to the existing coincidences in
the coincidence matrix. If the Euclidean distance between this
input vector and an existing coincidence is small enough, the
input is considered to be the same coincidence and the count
for that coincidence is incremented and stored in memory. The
distance between an input vector �x and an existing coincidence

Accepted after peer review of full paper
Copyright © 2008 ISCA

September 22-26, Brisbane Australia2566



Figure 1: A layer of input nodes and a
top node are depicted for a two-layer
network. The spatial pooler of Node
1 has learned 4 coincidences. During
inference, it communicates a belief dis-
tribution over these coincidences to the
temporal pooler. The temporal pooler
has learned 2 temporal groups. It
outputs a belief distribution over these
groups using the belief distribution over
the coincidences. All the other nodes
in this layer are similiar. The outputs
of these nodes together form the in-
put to the top node. Its spatial pooler
has learned 3 coincidences and outputs
a belief distribution to the supervised
mapper. The supervised mapper com-
putes a belief distribution over the cate-
gories it has seen during training.

�w is computed using

d2(�x, �w) =
D∑

i=1

(xi − wi)
2

(1)

where D is the dimensionality of the vectors. The thresh-
old for pooling an input vector with an existing coinci-
dence is the parameter MAXDISTANCE. In other words, if
∀�w(d2(�x, �w) >MAXDISTANCE) the input vector �x is stored
as a new coincidence, otherwise it is pooled with the closest
existing coincidence. Thus, the operation of a Gaussian spa-
tial pooler is similar to conventional vector quantization and
MAXDISTANCE can be regarded as a vigilance parameter.

Product spatial pooler Because the Product spatial pooler is
always part of a node higher up the hierarchy, it receives the
concatenation of the outputs of its child nodes. This vector is
divided up into N portions, which is the number of children
of the node. These portions are belief distributions over the
temporal groups formed by the child nodes. The Product spatial
pooler sets the highest value in each of these N distributions to
1. The other values are set to 0. These new vectors are stored in
the coincidence matrix, and the counts of the coincidences that
already exist are incremented.

2.1.2. Temporal pooler

The temporal pooler tries to find groups of coincidences that oc-
cur frequently together close in time, so called temporal groups.
To this goal, it builds a time-adjacency matrix, from which after
learning can be derived how likely certain transitions between
coincidences are. When a new input vector is presented during
learning, the spatial pooler represents it as one of its learned co-
incidences i. It increments element (j, i) of the time-adjacency
matrix with (TRANSITIONMEMORY−t + 1) (when > 0) if co-
incidence j was seen t timesteps back. TRANSITIONMEMORY

is a parameter that can be varied. After the learning stage, the
temporal pooler uses this matrix to create the temporal groups.
The following algorithm is used for creating these groups:

1. Pick the most frequently seen coincidence i and pool it
with a temporal group.

2. Pick the N coincidences j on row i of the time-adjacency
matrix having the highest value and pool them to the

same temporal group. N is a parameter called TOP-
NEIGHBORS and thus governs how many coincidences
are added here each time.

3. Call the coincidences j i and repeat step 2 for each of the
coincidences i.

It is likely that in step 2 coincidences that are most temporally
connected are already part of the same temporal group. When
no coincidences can be added the process is terminated and re-
peated until no coincidences are left ungrouped. Additionally,
a weight matrix is formed. It has as many rows as temporal
groups and as many columns as coincidences. Every element
(i, j) represents the row-normalized frequency of coincidence
j in group i. This matrix is used during inference.

2.1.3. Training procedure

The nodes are trained from bottom to top. That is, first the bot-
tom nodes are trained on the whole training set, then these nodes
are set to inference mode (which we will explain below) and the
nodes one level up in the hierarchy are trained in a similar way.
The top node is trained differently because it has a supervised
mapper instead of a temporal pooler. For every training pattern,
the supervised mapper receives two inputs during learning: the
coincidence found by the spatial pooler and the category of the
input pattern. It has a mapping matrix, which stores how many
times a coincidence i belongs to a category c by incrementing
element (c, i) everytime it receives these inputs together.

2.2. Operation of nodes during inference

After training a node, it is set to inference mode. When the
whole network is trained, all nodes are in inference mode and
the network is able to perform inference. When an input pattern
arrives, it will generate a belief distribution over the categories
it has seen during learning.

2.2.1. Spatial pooler

The Gaussian and Product spatial pooler work differently dur-
ing inference, but they both convert an input vector to a belief
vector over coincidences.

Gaussian spatial pooler In the Gaussian spatial pooler algo-
rithm, the distance between an input vector �x and every one of

2567



the learned coincidences is computed using Eq. 1. This distance
is converted into a belief vector by seeing �x as a random sample
drawn from a set of multi-dimensional Gaussian probability dis-
tributions all centered on one of the learned coincidences. All
these probability distributions have the same variance uniform
across all dimensions, the parameter σ, which is the square root
of the variance. Each element i of the belief vector �y represent-
ing the belief that the input vector �x was generated from the
same cause as coincidence i, is computed using

yi = exp

{
−d2(�x, Wi)

2σ2

}
(2)

where d2 is defined in Eq. 1 and Wj is the jth coincidence in
the coincidence matrix W .

Product spatial pooler The Product spatial pooler algorithm
portions the input vector into the outputs of each of its children,
takes the dot product with the corresponding portions of coin-
cidence i and then calculates the product of these numbers to
give element bi of the belief vector over all coincidences in the
coincidence matrix.

2.2.2. Temporal pooler and Supervised Mapper

The temporal pooler receives a belief vector over coincidences
from the spatial pooler. It will then calculate a belief distribution
over groups using the weights matrix formed during learning. If
we call this weights matrix W and the input vector �y, then the

belief vector�b is computed using

bi =
∑

j

Wijyj (3)

In the top node, the supervised mapper also receives a belief
vector over coincidences from the spatial pooler. It calculates
a belief distribution over these categories using the mapping
matrix formed during learning. First, the mapping matrix is
column-normalized. Then, if we call this new matrix C and the
input vector �y, the belief vector�b is computed using

bi =
∑

j

Cijyj (4)

3. Method and Materials
3.1. Test- en Train data

The dataset used in this research is obtained from the TIDIG-
ITS corpus [4]. We extracted the utterances of isolated digits
sampled at 8kHz. The data was already separated in proper
train- and test sets. The train set consists of 2412 utterances of
each digit from 1206 male and 1206 female speakers. The test
set consists of 1144 utterances, also equally divided into female
and male speakers.

3.2. Auditory Preprocessing

We produced auditory feature vectors from the raw signal which
we used to train and test the HTM. Fundamentally, HTM is a
model of the neocortex. Therefore, we want our feature vectors
to have some form of physiological and psychological validity.
At the least, they must be tonotopical mappings of the speech
signal. That is, sounds which are close to each other in fre-
quency must be represented in topologically neighbouring fea-
tures. This is necessary to infer spatial relations apparent in the

pattern. To produce the auditory feature vectors, we processed
the data in the following stages using a MATLAB toolbox (the
AUDITORY TOOLBOX [5]):

• ERB-spaced Gammatone Filterbank
• Averaging energy over a time window
• Decimation
• Quantization

Gammatone filter modelling is a physiologically motivated
method. It models the cochlea by a bank of gammatone fil-
ters. The impulse response of the gammatone filter resembles
the impulse response of cochlea filters [6]. We used a gamma-
tone filterbank consisting of 16 filters. The filters are equally
placed on the ERB or Equivalent Rectangular Bandwidth scale
from 100Hz to 4000Hz. The ERB is a nonlinear rescaling in
the frequency domain designed to resemble human frequency
selectivity [7]. Furthermore, we averaged energy over an ex-
ponential time window after the signal has gone through the
filterbank. Next, the signal is decimated to lower the amount of
data. To decimate the signal, it is low-pass filtered to maintain
the Nyquist criterion and downsampled with a factor 100. Fi-
nally, all values in the feature vectors are quantized with 4 bits
to lower the amount of data, resulting in values between 0 and
15. Furthermore, we also calculated deltas by simply subtract-
ing consecutive preprocessed feature vectors. In this way we
obtained feature vectors with 32 elements.

3.3. HTM Design and Implementation

We used NUPIC, an API for implementing HTMs, developed
by NUMENTA

� [2], to implement our HTM network. To im-
plement an HTM two steps have to be taken: creating the archi-
tecture and training it with a set of training patterns. After we
created an architecture and trained the network on the TIDIG-
ITS train set, we tested the HTM with the test set.

Architecture Our HTM consists of 3 levels. The input level
consists of 16 nodes, each receiving a feature and the corre-
sponding delta. Level 2 consists of 4 nodes, each receiving the
output of 4 input level child nodes. Level 3 consists of one top
level node.

Training During the training stage we fed the feature vectors of
all training utterances to the HTM, separated by a zero vector.
The HTM uses this zero vector to detect the end of an utterance
and resets the history of the temporal pooler. In addition to the
feature vector, we also fed the category label of the utterance to
the supervised mapper of the top level node.

Testing After training, the feature vectors of all the test utter-
ances were fed to the HTM, but without the category label of
the utterance. The HTM output consists of belief distributions
(or belief vectors) over the 11 categories for every feature vector
calculated from every test utterance. We calculated the ‘win-
ning digit’ by normalizing every belief vector of the utterance
so that its elements sum to one, adding the logs of these vec-
tors and taking the element index with the largest value of the
resulting vector.

4. Results
We investigated the effect of the parameters MAXDISTANCE

and SIGMA on the Word Error Rate (WER) and the average
number of coincidences and temporal groups learned in the
bottom level nodes. The other parameters (TRANSITIONMEM-
ORY and TOPNEIGHBOURS) were set to 5 and 1 respectively.

2568



Figure 2: Inproducts of the mean belief vectors of /six/ and the
other digits for timepoints 1 to 10.

MAXDISTANCE SIGMA WER(%) #coincs #groups

1 1.00 10.00 50.00 25.00
3 1.73 8.57∗ 34.31 20.00
6 2.45 15.47 17.94 11.88
9 3.00 18.86 12.20 7.45

Table 1: WER and average number of coincidences and tempo-
ral groups learned in the 16 bottom nodes for different values
of MAXDISTANCE and SIGMA.

These are default values and other values had a negative effect
on the performance of the system. We varied across different
values for MAXDISTANCE and set SIGMA to the square root of
MAXDISTANCE. This is a reasonable starting value for SIGMA,
because distances between coincidences are calculated as the
squared Euclidean distance instead of the standard Euclidean
distance. Of course, these values for SIGMA could be optimized.
The results are in Table 1. The lowest WER (8.57%) was ob-
tained with an intermediate value for MAXDISTANCE of 3. This
might indicate that with a lower value of MAXDISTANCE, the
HTM will see variations in input patterns due to noise as dif-
ferent coincidences. On the other side, when MAXDISTANCE

is higher than the optimal value, the spatial pooler will pool to-
gether patterns that have different causes. The confusion matrix
for this best performing system is in Table 2.

If we denote the unit length mean belief vector for the
known category c label (0-11, where 0 corresponds to /oh/, 1

to /one/ etc. and 11 to /zero/) at time t as �bt
c (derived from the

inference results on the test set), we can define an 11× 11 ma-
trix Φt with elements Φt

ij = �bt
i · �bt

j . We would expect these
inproducts to be high at points in time t where similar phones
are uttered. For example, we would expect the inproducts of the
mean belief vectors of /six/ and /seven/, both beginning with /s/,
to be high at beginning time points b. In other words, Φb

67 will
be high. Looking at Figure 2 this seems to be the case. The
overlap of /six/ and /seven/ is relatively high in the beginning of
the utterance when, approximately, /s/ is uttered, but later be-
comes less and less apparent. Furthermore, the overlap with a
digit starting with a similar phone like /th/ in /three/ also over-
laps with /six/ when /s/ is spoken.

oh one two three four five six seven eight nine zero

oh .90 .01 .00 .00 .03 .01 .00 .02 .00 .01 .02
one .00 .92 .00 .00 .07 .00 .00 .00 .00 .01 .00
two .00 .00 .93 .01 .00 .00 .01 .00 .00 .00 .04
three .01 .00 .10 .90 .00 .00 .00 .00 .00 .00 .00
four .04 .03 .00 .00 .93 .00 .00 .00 .00 .00 .00
five .03 .02 .00 .00 .00 .89 .00 .00 .00 .07 .00
six .00 .00 .03 .00 .00 .00 .90 .03 .00 .00 .03
seven .00 .03 .00 .00 .01 .02 .00 .89 .00 .02 .05
eight .01 .01 .02 .00 .00 .00 .00 .00 .94 .00 .01
nine .02 .06 .00 .00 .00 .02 .00 .00 .00 .89 .01
zero .00 .01 .00 .00 .00 .00 .01 .00 .00 .01 .97

Table 2: Confusion matrix of the best performing system.

5. Discussion and Conclusion
Our results show that the HTM approach holds promises for
speech recognition. The system we developed was previously
only applied to image recognition, but with a few minor changes
can be applied to a simple speech recognition task. This system
has reasonable results and behaviour. Furthermore, it could be
further optimized in several ways with respect to the the input
representation, HTM parameters and architecture.

At the same time it is clear that the present implementation
is not ideally suited for processing signals that encode informa-
tion mainly in dynamic changes. Some design choices made in
the development of the algorithms could be suboptimal. In the
learning stage, these could be the algorithms for learning co-
incidences and learning (unordered) temporal groups. During
inference, it is likely previously seen input data should be taken
into account in the form of top-down feedback. In the MPT
top-down feedback and previous sensory input is used to gener-
ate predictions. This type of feedback is not yet implemented,
while these predictions could be crucial for succesfully learning
and recognizing temporal patterns.

6. References
[1] J. Hawkins & S. Blakeslee, On Intelligence. New York:

Henry Holt, 2004.

[2] D. George & B. Jaros, The HTM Learning Algorithms,
Numenta, 2007.

[3] R.K. Moore, “A comparison of the data requirements
of automatic speech recognition systems and human lis-
teners,” in Proceedings of the 8th European Conference
on Speech Communication and Technology, Eurospeech
2003: Genève, pp 2582-2584, 2003.

[4] R.G. Leonard, “A database for speaker-independent digit
recognition,” in Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing,
vol. 3, pp 42114214, 1984.

[5] Malcolm Slaney, Auditory Toolbox: A MATLAB toolbox
for sound, 1994, Apple Technical Report #45.

[6] E. de Boer and de H.R. Jongh, “On cochlear encoding: po-
tentialities and limitations of the reverse-correlation tech-
nique,” JASA, vol. 63, pp. 115-135, 1978.

[7] B.C.J. Moore, R.W. Peters and B.R. Glasberg, “Auditory
filter shapes at low center frequencies,” JASA, vol. 88, pp.
132-140, 1990

2569


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	------------------------------
	Abstract Book
	Abstract Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	Search
	------------------------------
	Also by Joost van Doremalen
	Also by Lou Boves
	------------------------------

