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Abstract
We present an unsupervised algorithm for the discovery of
words and word-like fragments from the speech signal, with-
out using an upfront defined lexicon or acoustic phone models.
The algorithm is based on a combination of acoustic pattern
discovery, clustering, and temporal sequence learning. Itex-
ploits the acoustic similarity between multiple acoustic tokens
of the same words or word-like fragments. In its current form,
the algorithm is able to discover words in speech with low per-
plexity (connected digits). Although its performance still falls
off compared to mainstream ASR approaches, the value of the
algorithm is its potential to serve as a computational modelin
two research directions. First, the algorithm may lead to anap-
proach for speech recognition that is fundamentally liberated
from the modelling constraints in conventional ASR. Second,
the proposed algorithm can be interpreted as a computational
model of language acquisition that takes actual speech as in-
put and is able to find words as ’emergent’ properties from raw
input.
Index Terms: speech analysis, pattern classification, pattern
clustering methods, unsupervised learning, word discovery.

1. Introduction
The methodology of discovering words from the raw speech
signal is an interesting issue in two different but conceptually
related research areas. First, babies and young infants detect
words from continuous speech. Psycholinguistic research ([13],
[8] and references therein, [6a]) shows that babies can use the
statistical cooccurrence of sound sequences as a cue for word
segmentation. In this way, segmentation of the speech sig-
nal is possible when speech is presented as a single modality.
When the input is multimodal (e.g. speech plus vision), experi-
ments ([12], [11]) and computational models (such as the CELL
model, [7b], and references therein) indicate that the process of
word learning can be improved compared to learning from uni-
modal input.
Also for automatic speech recognition (ASR), techniques that
learn to decode speech while avoiding the necessity of an up-
front specified lexicon and phone models are interesting. Con-
ventional methods for ASR are able to decode an unknown
speech signal in terms of a sequence of predefined items from a
closed vocabulary. Basically, the recognition of speech interms
of items outside the vocabulary is impossible. The classical
limitations for defining and modelling words and phonemes in
ASR might be radically reduced by exploring alternatives for
data-driven word learning, for example by episodic approaches
in ASR. In ‘episodic’ models of speech processing, the de-
coding of speech is facilitated by the availability in memory
of explicit traces (episodes) of previously observed speech, in
which a large amount of acoustic detail is stored ([4], [18]). It
is therefore of considerable interest to investigate recognition

approaches that circumvent the necessity of an a priori defined
lexicon. This paper addresses one of such methods.
The focus of this paper is on the discovery of words and word-
like speech fragments from multimodal input without using a
lexicon and without any pre-existent phone-models. The multi-
modal input consists of a sequence of utterances in combination
with abstract representations. Each utterance is associated with
an abstract representation that indicates the presence of acer-
tain word in the utterance. This representation does not specify
information which word, the acoustic realisation of the word or
its position in the utterance. This abstract modality can becom-
pared to e.g. the a high-level abstraction of the visual modality
during language learning. For example, it flags the visual pres-
ence of a physical ’ball’ that is visible during the realisation of
the utterance ’look at this nice ball’. In section 2.3 below,this
modality is discussed in more detail.
Our word discovery method exploits two types of patterning in
speech. First, the statistical properties of repetitive structure
within the speech modality is used to hypothesize speech frag-
ments and a labelling of these segments. Second, cross-modal
associations are used to hypothesize words and to graduallyim-
prove the word representation when more and more input has
been processed. Our method will be referred to as statistical
word discovery (SWD).
SWD is comparable to the word discovery method described
in Park & Glass ([7]), in which the primary goal was to address
the out-of-vocabulary-problem in speech decoding. The method
proposed here and the method described in [7] have two steps
in common: first, the similarity between speech fragments is
evaluated by a dynamic time-warp (DTW) like algorithm, af-
ter which a clustering technique is applied to define symbolic
representations. The important difference beween SWD on the
one hand and [7] and [7b] on the other is that it does not rely
on the availability of a phonetic recogniser to transcribe speech
fragments in terms of phone sequences.

The method has remote links with older research carried out
in the nineties by Bacchiani, Ostendorf and others, in whichthe
focus was to automatically improve the transcription of words
in the lexicon [1]. The difference between that research andthe
current research is the bootstrapping: here, we do not assume
the availability of any word or subword model.

The remainder of this paper is organized as follows. In sec-
tion 2 the SWD method is explained. In section 3, we present
experimental details and results. A final discussion is presented
in section 4.

2. The SWD method

The SWD method consists of three stages (details are speci-
fied below in the subsections). Each stage has a more symbolic
character than the previous stage. Stage 1 comprises a feature
extraction followed by a data-driven segmentation of the speech
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Figure 1: Frame-frame similarity matrix between two utter-
ances. The left-top and right-bottom corner correspond to the
starts and ends, respectively, of the utterances. Black cells indi-
cate high similarity (i.e. a small distance).

signal. Its output is a vectorial representation of the utterance
in combination with hypothesized speech segment boundaries.
The second stage reads in these segments and performs ak-
means clustering. The result is an abstract label for each seg-
ment (inherited from the cluster it belongs to). In the thirdstage,
the utterances and hypothesized labels are input for the statisti-
cal word discovery algorithm. It is in this third stage wherethe
parallel abstract representation is used.

2.1. Stage 1: Automatic segmentation

Recently, several approaches for data-driven segmentation have
been proposed (e.g. [14], [15]). The method that is adopted
here is an extension of the one used in [15]. First, feature vec-
tors are calculated (12 MFCCs, log energy, delta and delta-delta
features). Each output frame is based on an analysis window of
0.032 sec (so e.g. 256 points for 8 kHz files) with 25 percent
overlap between consecutive analysis windows. The distance
between two framesv1 andv2 is defined by (t indicating trans-
pose):

d(v1, v2) = arccos(vt
1v2/(v

t
1v1v

t
2v2)

1/2) (1)

As an example, figure 1 presents a plot of the frame-to-
frame similarity matrix obtained for two files from the clean
part of the Aurora 2.0 database ([5]). A high similarity corre-
sponds to a small distance and vice versa. One utterance, dis-
played downward along the vertical axis, contains the word se-
quence ’one three’ surrounded by silences, the other utterance
(along the horizontal axis) ’one seven two’, also surrounded by
silences. Black (resp. white) cells correspond with high (resp.
low) similarity values.

Next, segment boundaries are searched by using a sliding
window. A boundary is hypothesized if a distance function that
measures the difference between the average feature vectors be-
fore the boundary and after the boundary attains a local maxi-
mum which is above a certain thresholdδ. In the current im-
plementation, we use a window of 2 frames to either side of the
boundary. Furthermore,log(E) is used as a weighting factor,
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Figure 2: Result of automatic segmentation and labelling. The
utterance is ’one eight one seven four’. The solid line presents
the function at the left-hand side in Eq. 2. The vertical barsare
located at the peaks of this function and indicate the hypothe-
sized boundaries. For the labels see the text.

modifying the differences measured on the basis of the MFCC
feature vectors, to avoid the flagging of many speech segments
during the silent (low-noise) portions. The eventual criterion
reads

log(E) · d((vi−2 + vi−1)/2, (vi+1, vi+2)/2) > δ (2)

When compared to human labelling, this text-independent
segmentation method yields a boundary accuracy of around 80
percent (using a tolerance of 25 ms to either side of the bound-
ary). On a Dutch database of read speech, about 80 percent
of all manual boundaries were correctly detected within 25 ms
([15]). On a subset of TIMIT, a boundary accuracy of 76 per-
cent within 20 ms has been obtained ([16]).
On the 4220 utterances from male speakers in the clean part of
the Aurora 2.0 speech database ([5]), stage 1 results in 45356
boundaries (41136 segments).

2.2. Stage 2: Labelling of segments

The labelling of the resulting segments is performed in stage
2. The 41136 segments defined by the hypothesized boundaries
were input for ak-means clustering algorithm (Matlab). In this
clustering step, the segment-to-segment distance betweenany
two segmentsS1 andS2 is exactly defined by a conventional
DTW operating on the Trellis matrix (spanned byS1 andS2)
in which the local frame-to-frame distances are consistently de-
fined in the same way as in stage 1.
In practice, this clustering was not directly applied on theen-
tire set. To initialise the clustering, a subset of 4100 (first 10
percent) was processed. In subsequent steps, more segments(in
steps of 10 percent) were added and the clusters updated until
all segments were taken into account. Since differentk-means
runs often yield different clusters, it was verified that theresult-
ing clustering did not essentially depend on the initial set.
The number of eventual clustersNc was a user-defined param-
eter. The value ofNc is to be defined such that the resulting
clustering still provides sufficient information to distinguish the



Table 1: Each utterance is associated with abstract information
that indicates the presence of a word, but not its acousticalrep-
resentation or its position in the utterance. This table shows two
abstract tags, related to the occurrence of ’two’ and ’six’.

Audio file contains Tag 1 Tag 2
One three two six yes yes

Two three five oh four yes no
Six six no yes

Two six three nine yes yes
Oh three three no no

relevant speech fragments. IfNc is too small, too few clus-
ters remain and the eventual labelling is coarse. The value of
Nc, which broadly approximates the number of ’phones’ in the
speech data, was optimized so as to capture sufficiently many
details in the speech signal.Nc = 25 appeared to be an ade-
quate value (understandably, this value is a little bit higher then
the number of identifiable phonemes in this database, which is
around 20). After clustering, each group was labelled by assign-
ing a unique positive integer to each cluster, and each segment
in the group then inherits the label of the cluster it belongsto.
In figure 2, the result of thek-means algorithm is shown for one
specific utterance. The wavefile (’one eight one seven four’)is
shown at the bottom. The vertical bars at the top indicate the
automatically placed segment boundaries. The numbers at the
top of each bar indicates the index of the resulting cluster to
which the corresponding segments belongs. The transcription
at the bottom of each vertical bar is a broad phone-like tran-
scription of the found segments. In general, the segments are
phonetically interpretable. However, in this case segment23
was assigned to the speech fragment ’seven’ and could not be
assigned to a particular phone realisation.

2.3. Stage 3: Word discovery by DTW

Stage 3 is the word discovery stage. It takes as input the wave
files, in combination with the sequence of labels from stage 2
and the abstract tags (see for an example table 1). Also this stage
applies a DTW in which the likelihood of two utterances sharing
a common word is estimated using a DTW on the two label
sequences. This method is closely related to recent DTW-based
matching techniques such as elastic partial matching ([17]).

The word discovery algorithm runs as follows. The input
(audio plus tags) is assumed to be available in a list.

1 Select the next utterance.

– Initialise two empty sets: Bmatch and
Bno−match.

– Compare the new utterance with all previously ob-
served utterances by performing a DTW on the
corresponding label sequences.

– Find the best-matching subsequence on the best
path found by DTW.

– If both utterances share the same abstract tag (as in
table 1), then put the best-matching subsequence
into Bmatch, otherwise put it intoBno−match.

2 Order all items in these sets according to their occur-
rence.

Table 2: Example of input for stage 3. For an explanation see
the text.

audio file segment labels abstract information
1 1 2 5 6 3 6 23 23 1 yes
2 1 5 7 8 23 23 23 1 no
new 1 4 2 5 6 3 23 6 1 yes

Table 3: Example of sorted shortlist inBmatch after process-
ing 47 (left column) and 106 (right column) files in a particu-
lar word discovery experiment. On each line, the first integer
represents the absolute count of the label sequence. After that,
the integer representation of the label sequence follows. The
bracketed integer indicates whether this sequence also occurs in
Bno−match [1] or not [0]. This list shows the emergence of the
sequence (3, 6, 7, 9) among its competitor sequences during a
training.

--after utt 47-- --after utt 106--
121 3 [1] 751 3 6 7 9 [0]
121 3 6 7 9 [0] 503 6 7 9 [0]
116 6 7 9 [0] 451 6 [1]
112 2 [1] 435 3 [1]
83 6 [1] 398 3 6 7 [1]
66 7 [1] 384 7 [1]
65 9 [1] 382 2 [1]
... ...
------------------------------------

3 Select theN -best in Bmatch that do not occur in
Bno−match, and monitor this shortlist during the discov-
ery algorithm.

4 Go back to the first step.

In table 2 an example is provided. The first column
indicates the index of the utterance; the ones with index 1 and
2 have already been processed. The utterance indicated on
the bottom line is the current input. The label sequences and
tags are presented in column 2 and 3 respectively. A DTW
between the new utterance and utterance 1 will select (5, 6, 23)
as cheapest subpath. This solution will therefore be put into
Bmatch. In contrast, the DTW between the new utterance and
utterance 2 does not provide a clear low-cost subsequence and
might for example select the short subsequence (23). Here, the
tags do not match so this result is collected intoBno−match.
After a few utterances have been processed, theBmatch set
will contain longer sequences of which a few will tend to stand
out among the competitors. TheBno−match mostly contains
sequences that are shorter than those inBmatch. When more
utterances are processed, the sortedBmatch lists show words
emerging from the sets which were seemingly random in the
beginning.Bno−match is used as a set of negative examples to
elimitate those solutions inBmatch that also occurred between
non-matching utterances. Table 3 shows an example of the
’emergence’ of a particular label sequence.

3. Data and results
The database Aurora 2.0 has been used for selecting utterances
for testing and comparison. The motivation for this digit-string
database is twofold: (1) it provides low-perplexity speechdata,
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Figure 3: Performance of the SWD algorithm. The x-axis shows
the average number of tokens of each digit in the comparison
set. The y-axis represents the performance in terms ofpercent-
age for all plots.

which will simplify to give a proof of concept of the word dis-
covery algorithm and (2) it contains multiple copies with differ-
ent SNRs which makes it possible to study word discovery pro-
cedures in noisy conditions in subsequent studies. In the present
study we focus on the 4220 utterances spoken by male speak-
ers in the clean part of Aurora 2.0. These utterances containon
average 3.2 digit per utterance (min 1, max 7).

The performance of the algorithm is shown in terms of three
criteria: (a) the accuracy to distinguish the eleven word types
(’zero’ to ’nine’ plus ’oh’, silence is discarded) (b) the number
of false alarms (cases where SWD locates a word onset where
there is none) and (c) false rejection (cases where SWD misses
a word). In figure 3 the performance of SWD is presented in the
case where SWD has observedT = 10, 20, 50, 100, 200, 500,
and 1000 tokens of each word. AtT = 1000, word accuracy
is 90 percent, with room for improvement for largerT . Clearly,
the number of false alarms and the number of false rejections
decrease with increasing size of the contrast set. We note a rel-
atively high amount of false alarms. This may indicate that the
word representations that are built up tend to be a bit shorter
than they should be, which is in turn related to the precise def-
inition of the optimality of a symbolic subsequence as applied
in Stage 3.

4. Discussion
The SWD algorithm is able to bootstrap from the speech signal
itself without using any predefined lexical knowledge or phone
models. The learning curves of SWD show improvements in
terms of accuracy, false alarm rate, false rejection as a function
of the number of words available in the set of utterances. In
the word detection stage, the abstract tag information is essen-
tial to contrast hypotheses found in the matching condition(i.e.
Bmatch) with the non-matching condition.
The SWD algorithm consists of a cascade of intertwined stages.
The same distance is used in stage 2 and stage 3, and the same
DTW principle is used to define segment-to-segment distances
and to hypothesize the symbolic representations of shared word-

like speech fragments. The choice of the number of clusters
in thek-means step deserves some care; the optimal choice is
likely to be related to the number of phones that can be identi-
fied in the speech material.
A conceptual point of considerable interest is whether the ac-
quistion of phones preceeds the acquisition of words. Here
phone-like units are hypothesized in a data-driven way, on top
of which words are hypothesized in an hierarchical manner.
Also the use of additional, paralinguistic information is of con-
siderable interest. Prosody (pauses, energy and pitch contours)
may facilitate the detection of potential words. The multiple
use of knowledge sources, as well as the use of this algorithm
in noisy conditions will be studied in the near future.
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