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1. Introduction

The aim of the European Future and Emerging Technologies (FBECpACORNS is to develop
computational modelthat demonstrate the capability to acquire language and comitiomiskills

on the basis of sensory input. In a farther-reaching perspeativeeed these models to explain how
infants can learn to communicate by means of spoken language andttautamatic systems that
substantially outperform extant Automatic Speech Recoghid@R] systems that implement some
kind of pattern recognition where the patterns are pre-defined by thengyesteloper.

In ACORNS, the primary input from which the artificial agentgjuire language is restricted to
speech utterances that refer to observable physical objegtevents in the environment. To ground
the meaning of the spoken utterances, they are accompanied byepoesentation of a virtual world
to which they refer. In addition, the learning agent reseifauditory only) input in the form of
feedback from the (simulated) care givers with whom it campates. The learning agent in
ACORNS is passive, in the sense that it has no means for pigdspeech-like sounds, nor is it able
to actively explore the surroundings.

The five partners in the project have their main backgroundspéech technology and ASR in
particular (although their focuses may differ). But all subscto the idea that for ASR to reach
human-like performance a completely different approach is deeadsgpired by human processing.
This explains why we expect that investigating whether a approach to modeling language
acquisition and processing —inspired by a theory of cognition anddetede- will eventually open
new perspectives for ASR. It also explains why many of thénadst and approaches used in the
project have their roots in ASR research.

Thus, the challenge of ACORNS is to model an infant whonleagrior knowledgeabout grammar,
words, or speech sounds when it is confronted with the first comativegiaitterances produced by its
care givers. By doing so, we avoid the error of referencartificial Intelligence: modeling some
meta-level description of a process rather than the priaseffigPfeifer & Scheier, 1999). Inspired by
a hierarchical model describing human memory (the memory-pi@dichodel, developed by
Hawkins 2004), the hypothesis will be tested that processingmaalél input will result in the
emergence of hierarchical representations of speech thatomayay not reflect the units and
representations that play a pivotal role in all existingtiles of language structure and language
processing. To the extent that units reminiscent of words and phonemes do emevifjénvestigate
whether they emerge in a fixed order, or that, alternativelferdiit units emerge as they are needed
for communicative processing of sensory stimuli.

The literature related to modeling first language acquisition isiggpfast. To position the research in
ACORNS we find it useful to refer to the recent overvigaper by Kaplan, Oudeyer and Bergen
(2008) who distinguish five major —but not necessarily orthogonal— apgm@®dor stances, as they
call them) in the general field of language learnabilityeSeh‘stances’ are the generative perspective,
the statistical approach, the embodied/social perspective, pdispective from the child’s
development, and language evolution. The fi@#nerative stance is mainly concerned with
grammaticality, and is therefore outside the part of th&l ftaat ACORNS intends to cover
(irrespective of the fact that this stance is losing appmabkeveral other reasons). Actually, the
original ACORNS proposal took position against the generativecestaSince ACORNS does not
address the question lainguage evolutionthe fifth stance does not apply either. However, ACORNS
fits in three of the five approaches, viz. statistical lesgyniembodied & social cognition, and
developmental learning. And, of course, ACORNS is all about conprmaithimodeling as the method
of choice for investigating and explaining behavioral observationstdbe acquisition of language
and communication skills; and for deriving novel hypotheses that caastexl in new behavioral
experiments.



2. Overall approach in the project

The design of the ACORNS project is such that the wodivisled into three years. In the first year

the infant (Little Acorns) should be able to know when s/he is agéddeand learn to understand 10
‘words’ (i.e. utterances that refer to 10 different objedts)the second year s/he should be able to
learn 50 words, and for the final year the target is 250 words.

In order to accomplish these aims, ACORNS intends to develop end tiree speech databases, a
different database for each year in the project, corresporidirigree development stages of the
learner model. These databases should have a basic ecologjitity. \dowever, ACORNS is not
trying to mimic all aspects of the actual language acquisitirocess, if only because there is no
simulation of speech production. The databases should make itlpdedibst the main claims of the
project, and should not take too much time to make. Specificallge siittle Acorns has no innate
knowledge of linguistic units such as words, syllables or sountisledkannotations of the utterances
in the databases are not required. It is enough that we can hbausach utterance refers to specific
objects or events.

The databases form the bases for performing simulation experimbatexperiments are all meant to
investigate whether an artificial agent can learn languati®ut endowing this agent with linguistic
knowledge. In doing so several different computational approaché@svastigated. These approaches
will be compared with a focus on what they can tell us aboupitheesses involved in language
acquisition. Such a comparison can be instructive even if diffeapproaches yield different
performance levels in terms of the number of ‘words’ learnetheispeed or ease with which new
‘words’ are learned, etc. At the end of the project we hope totaldeaw conclusions related to the
cognitive plausibility of the approaches to modeling firsglaage learning that we have investigated,
and suggest promising new ways for designing and building more powerful and capaldgstes3Rs

In the remainder of this section we present the memory archigeitiat lies at the basis of all research
in ACORNS. In section 3 we introduce the databases for theviiosyears. In section 4, a number of
experiments related to the different approaches to modeling lgmgaequisition are presented.

Finally, some preliminary conclusions are drawn and ideas for the fiaahye presented.

2.1 Memory Architecture

ACORNS is about the feasibility of the memory-prediction framévwblawkins, 2004) as a basis for
understanding language acquisition and communication. The memory-predicdimework is
extremely appealing, mainly because it is based on solid and newsiolpbical evidence that has
been known for a long time (Mountcastle, 1978). However, at thieoftthe ACORNS project there
was no complete computational implementation of the framework, tamés unlikely that such
software would materialize any time early in the lifetiofighe project (Hawkins, 2005). The software
based on Hierarchical Temporal Memories (HTMs) under impleatientby Numenta™ that came
closest to our needs (George and Hawkins, 2005) appeared to be ted fonireaching the goals of
ACORNS (van Doremalen & Boves, 2008).

While the concepts underlying the memory-prediction framework shoulidhéoguiding principle,
ACORNS never wanted to commit to one single software implementation. Thaita Annex listed
several different approaches to the problem of discoveringisteuin speech (and visual) input and
building hierarchical representations. Equally importantly, iuldanot be appropriate to ignore the
extensive literature on memory processing in psychology nesgBaddeley, 1992) that does not
necessarily map one-to-one to the structure suggested by em®ryaprediction framework and
certainly not to its implementation in terms of HTMs. Thereforech time and effort has been spent
during the first two years of the project to design a memuogel that at once reflects the results of
decades of psychological research and the basic tenets of the meeaticyigor framework.
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Figure 1Hierarchical modular memory and processingarchitecture that reflects the results from researh
in Psychology on Memory, Language.

The latest and most elaborate version of the model that welitiemplement is shown in Fig. 1. It
reflects a widely accepted modular structure in which onedistimguish a sensory store, a working
memory (or short-term memory) and a long term memory. At 8rght the architecture in Fig. 1
seems to have little in common with the structures suggestétedyiemory-Prediction framework,
one possible representation of which is shown in Fig. 2. However, ipacorg the pictures one must
keep in mind that both ‘models’ are quite general and abstracthanohany essential details are left,
perhaps as ‘implementation details’.

We think that one can map the sensory store in the arehiégest Fig. 1 onto the lowest level of the
hierarchy in Fig. 2, if only because neither model makes hard slaiithh respect to the neural
encoding and representation of the sensory signals at the llewelsbf the cortical hierarchy. In a
similar vein the processing that is going on in the working amgnm Fig. 1 may very well map onto
the connections that are formed and the information that flovtiseirhigher levels of the structure
depicted in Fig. 2. And when it comes to the long term memory inlkidpis too must be represented
in the form of connections between brain cells in the cortegréfore, we take it that an architecture
such as depicted in Fig. 1 can implement the basic operationdgmery-Prediction framework.
Perhaps the most important difference between the models depicteigs. 1 and 2 is that the
modularity suggested by the first model may make it easidevelop computational approaches that
rely on explicit representations of speech and ‘meaning’ omraber of distinct levels of some
hierarchy. The model of Fig. 2, on the other hand, is probably more¢ca&komputational approaches
inspired by Neural Network techniques.
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Figure 2 One possible view of the cortical hieratty in the Memory-Prediction Framework. (After
Hawkins, 2004)

3. Databases developed in the project

3.1 Year 1 database

The design of the first year's database was a topic of a lengthy dstirstiie ACORNS consortium.
Several ecological constraints were contrasted with vanther constraints concerning e.g. acoustic
variability and complexity of the carrier phrases. The evémdea behind the first year database was
to start with very simple utterances by 4 different speakero male and two female. The database
has been recorded for Dutch, English, Swedish, and Finnish.

There are 10 target words per language. The words wereeseleased on language acquisition
literature (i.e. ‘words’ reported to be known by 8 months ofdrits). Each of the words were used in
10 different contexts (carrier sentences), each of whichreymEsated 10 times by each of the speakers.
Examples of sentences are “Show me the hotkhere is Daddy, where the underlined word
represents the object referred to by the utterance. The t@ogds mostly occurred in utterance final
position (which is usual in infant directed speech in thedaggs under study). In the database, each
utterance corresponds with otag (i.e. code of the visual concept). The tag is 1-1 with thelesing
keyword uttered in the utterance, and is thereby uniquely and non-probabilistefailgd.

The resulting set of 1000 utterances per speaker were produced in two modes:
e anormal ‘adult-addressed speech’ (ADS) mode
e acted ‘infant-directed speech’ (IDS) mode, with exaggerated itbonand slow tempo, as if
speaking to an infant about 8 to 10 months old. On advice by Elisidimtison the elicitation
was facilitated by the presence of a real-life picture of a young infant.



The resulting number of 2000 utterances per speaker per languagd pydse a good starting point
for the learning experiments.

3.2.Year 2 database

The database for the second year is meant to show that A@GDRNS is able to learn fifty “words”.
The target words are based on the list of “words” infantshofial2-15 months old are reported to
understand. Compared to the first year database, the phonetic context ofethedadg is much more
varied.

In contrast to the ‘one-tag-per utterance’ annotation of thieyi@ database, for the Y2 database we
decided to use semantic features. The major reason forsthimt one of the core goals of the
ACORNS project is not to use a prior knowledge about linguistits. The tags used so far are fully
deterministic and, therefore, they can be interpreted asyaswuemng form of a priori knowledge.
During first word acquisition a child is obviously not confrontedthwanything resembling
unambiguous meanings. Rather infants perceive objects whicmtfalainumber of categories. For
example: a red sleeping bear falls into the categoeigssleeping bear, as well as possiblgnimal,
furry, big or small, scary etcAnd all those words can appear in a perceived utterance imdbenge
of the very same individual object. However, at the same timaay of the words that might also be
used to denote properties of such an object might not appear.dg-eadiimg of objects and events
allows us to replicate this situation more accurately and, in thiselieninate a priori knowledge.
Practically, this is done by using several object position.sktsry slot can contain an individual
object (including persons). An object is defined by a setatfes, depending on which categories
apply to it. For example one position might be filled with theuieasets ofed, furry, eats bear, and
animal while another slot might be filled with the feature setgaoind green apple food The
learning system might then be exposed to an utterance suchebé&@r eats the apple.” or “The red
furry animal eats the round green food”.

There are many possibilities of coding meaning in featuressh force involving most ACORNS
partners developed a suitable coding scheme. The most approyaiai@ppeared to be the use of
features and anti-features (i.@reen and not_greef with continuous intensity values (with an
additional value for certainty), which allows us to distinguidisence of a feature from ignorance
about a feature. The task force further came up with a number of (naita) constraints that has to
hold about the feature set and the coding of objects with featengsabout the distance between
concepts in feature space, or the relation between features afehanes).

The words of the Y2 database were chosen with the goal afildiegca simple scene with persons,
objects and actions that are likely to occur in the envisorinof a child. For every word, a feature
coding was established. As far as possible this coding weedban existing semantic feature
databases. Further, the coding reflects visual semanticdsasiimilar to those that could be extracted
from visual information available to a child.

To generate the sentences of the database a sceneryeda® wseate a list of objects (including
persons), properties (colors, shapes, sizes) and actions ¢veryBfased on this list, sentences were
created such as "there is a lion and a duck”, “do you like adugie". In addition, specific feedback
utterances were recorded, e.g. “no | mean the RBIV for use in lightly supervised learning
algorithms that require feedback for reducing classification eaites.

Next, the sequences of words in the sentences were used te ttreatorresponding meaning
presentations. For a sentence like “Daddy sees the red dtaléast two individuals or objects (but
possibly more) need to be present in the scene: one individual who toebdge the features of
“daddy”, but also for example the features of “man” (and in &uteisearch also “see”) and another
object with the features of “red” and “ball” (but also with the fesgwof “round”, “toy” etc.). Note that
in the Y2 database there are more target words per utterancesdqup tvérage 2.8).

There are 10 speakers; 4 speakers are the same ones whledeber year 1 database and 6 new
speakers. The databases were recorded for English, Dutch, amshFifime 6 new speakers only
produce a subset (600) of the 2000 utterances, and thereby seew gseviously unseen’ persons.
Per language, each target word occurs at least 50 timess dheoentire database. At the time of this



writing no results obtained with the Y2 database have been publihefore, this paper will focus
on results obtained with the T1 database.

The database is further dedicated to experiments on the us®mdtion/focus, and the interaction

between the learner and care giver (especially the roléeaxback in the update of internal

representations). This database is not very well suited tstigate the reuse of emergent sub-word
units for facilitating learning of new words. To investigates tatter issue, other existing large scale
databases such as TIDIGITS, Resource Management and Wall Streel bave been used.

4. Experiments

In this section we give a summary of the major lines of éxparts that have been explored up to
now. More detailed reports are available in the form of worksimapconference papers published as
part of the project. All published papers can be found on the ACORNS pubkiteteb

All experiments refer, in some way or another, to the basic memodgls shown in Figs. 1 and 2,
and to the objectives for the first two years, i.e., to show #m artificial agent can build
representations of speech signals without imposing a priori kagelof meta-level concepts such as
words, syllables, phonemes, etc. and that this agent can usedposgentations to associate novel
speech input with a limited number of objects in the environment.|dtter capability might be
referred to in terms such as ‘recognize’ or ‘understand’, and indlead define recognition or
understanding as ‘showing the expected response’ this equivalence jadfifigd.

Most of the experiments conducted so far focus on discovery ofws&ln what can be called a one-
level hierarchy. There are two major reasons for this limitatiost, Firwas felt that we needed to start
with an in depth investigation of the capability of the stetdiscovery approaches that we had
available at the start of the project to find recursgnicture, without using unjustifiable pre-existing
knowledge. Second, experiments with elaborate multi-level hieegsralequire the availability of
operational implementations of a hierarchical memory architecAs said before, such software is
not readily available. Our attempts to specify the impleatemt of a hierarchical memory
architecture has shown that there are a large number wdsighat may look at the surface as
‘implementation details’ but that on second thoughts appear toibasgaps in our understanding of
the structure and the operation of the brain. These difficuti¢svithstanding we have conducted
experiments aimed at investigating multi-layered structu?eshaps the most interesting results of
these experiments so far is the finding that it may be diffidunot impossible, to find a single
processing strategy that will be optimal (or even effectiwall layers, for all types of information (or
units) and for all purposes. Perhaps, this finding should not esnaecomplete surprise, even if one
might interpret the architecture in Fig. 2 as suggestiag) processing should be homogeneous from
top to bottom because the structures seem so similar. Itmdlyat differences in interconnectivity
and in the type if information stored at different levéisidd imply different computational processes
and different algorithms. In many ways the modular architecturigf 1 already points in that
direction.

So far, we have investigated five different approaches tgotbblem of discovering structure in
acoustic input (that comes along with references to objedteienvironment) without any form of
prior segmentation (nor any form of a priori linguistic concdptguide the process) where the
continuous speech signal is represented as an acoustic wavefase dpproaches exploit, in one
way or another, statistical regularities that are preserthe speech signal. These four research
directions are Non-negative Matrix Factorization (NMF); Mutims; DP-Ngrams and Computational
Mechanics Modeling (CMM) and State Transition (or Contex@trides. Results obtained with
Context Matrices have not yet been published; therefore, waatitiscuss this approach in detail in
this paper.

In addition to approaches that do not start with segmentatgonze linguistically motivated level, an
approach based on bottom-up phonetically inspired segmentation has been explored.

! http://www.acorns-project.org



Finally, experiments with Artificial Neural Networks (moseecifically Self-Organising Maps) have
been conducted.

In their default implementations the structure discovery methmagioned in the previous paragraph
operate on large batches of input stimuli. Obviously, this is natdardance with the way in which
infants acquire language. For that reason substantial effobdleasinvested in attempts to modify the
NMF and DP-Ngram methods to make them suitablinftrementallearning, in both cases with some
success. Making NMF and DP-Ngrams incremental makessiereto investigate the cognitive
consequences of learning in the absence of a priori defined corjospified by meta-level
descriptions.

So far, the basic representations of the acoustic signalsfarsatbst of the experiments have been
conventional Mel-Frequency Cepstrum Coefficients (MFCC) in an implet@mntdeveloped in WP1.
During the third year of the project we will repeat cruegberiments with more advanced acoustic
representations that take advantage of our knowledge about aymitopssing. These features are at
present under development in WP1. It will be interesting (andlalé&dt for the third year of the
project) to investigate possible relations between the audikaiignt features under development in
WP1 and the results of experiments that investigated augitogessing of infants (Saffran et al.,
2006).

While MFCCs have proved their usefulness in automatic speecynition, these features are not
particularly powerful representations of prosodic featurestfétte only ‘loudness’ has a fairly direct
representation, while ‘pitch’ is only implicitly encoded in ammer that is difficult or impossible to
decode. Yet, prosody is known as a potentially very powerful hdipding end points of what might
appear to be ‘patterns’ in the audio signals (Jusczyk, 2600)hat reason the MFCC representation
has been enriched with an estimate of the pitch. Physics-bessutlp parameters as well as hand
coded accent locations in the speech utterances in the Yeabhsks have been used to investigate
the added value of prosody in pattern discovery. So far, thesdtsrehave been somewhat
disappointing, both with the non-segmenting and segmenting approachesctaretuiscovery.
Focusing structure discovery on stretches of speech thaira@ucented syllables does not result in
faster emergence of more powerful internal representatiomsosf all structure discovery
experiments showed extremely high performance figures with #@Q@4 as the only acoustic input.
In such a situation it would be extremely difficult for any &ddal type of input (such as pitch) to
have a large effect. It has been suggested that, indeedatisticstbased bottom-up discovery of
acoustic patterns that can be related to references to tinerenent can succeed without the help of
an additional device that focuses attention on the most saléts of an utterance. The intrinsic
salience of the (spectral) properties may be sufficieiis iown right. Also, it has been suggested that
the role ofprosodyin speech processing comes later, and in different forms. Asasothre learning
infant has learned that it may make sense to segments @ékehspignal in some way or another,
prosody may come in helpful in languages where the large majority of the wardsi(gful stretches
of sound) is characterized by systematic stress pattemsv®rd stress (almost) always on the first
syllable). However, in the experiments performed so far, whiate wet aimed at the discovery of
‘words’ in the linguistic sense of the term, systematic stpedgterns could make very little —if any-
contribution.

Ideally, all experiments should reflect a setting in whichaanieg agent interacts with a care giver
and by virtue of that interaction acquires communication skillsudicty language proficiency. Fig. 3
gives a schematic representation of the general settitigeoiearning experiments that have been
conducted. The top panel shows the speech corpora from which traitér@nces are selected (top
right hand side). The box labeled ‘Experiment design’ determinesrtler in which utterances are
taken from the corpora and the number of utterances that aameskehs a single set. The selected
utterances are made available to the Carer via the ‘Stimulugristiost experiments conducted so far
the Carer offered the utterances in the Stimulus list tdetiming agent in the exact same order and
manner as determined by ‘Experimental design’. In future expesnibatCarer will be made more



independent, so that s/he will be able to select utterancéd®e drasis of the response of the learning
agent.

The lower part of the schema in Fig. 3 represents the interdugioreen the Carer and the Learner.
Basically, the Carer offers an utterance to the Learner, o processes this new stimulus. When
processing is finished, the Learner will respond. So far, theomsspoptions for the Learner are
limited to selecting one or more (in the multi-keyword inpitgrances in the Year 2 database) objects
that are supposed to be referenced in the input; alternatilvelyesponse can be NIL. As said above,
the implementation of the simulation environment provides for thi@rophat the Carer selects the
next stimulus on the basis of the Learner’s response, but so far this optiost basn used much.
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Figure 3 Schematic overview of the learning proces3he vertical axis represents time. In a
communicative loop, Carer and Learner exchange meages.

The exact meaning of ‘Stimulus processing and learning’ dependsnerly on the details of the
experiments. For example, in the first stage of the initial éxeets with NMF in batch learning
mode ‘processing and learning’ meant just storing the inputs momye(it is left undecided whether
this should best be pictured as sensory store, or rather amgvanemory). Only after a certain
number of utterances were available was the first NMF decongposapplied. Until that moment
responses of the Learner would be meaningless. However, aftritidlzation of the NMF structure
matrix subsequent input utterances can be mapped onto one of the objectatadxk |

As already said before, the NMF approach has recently bepitedda enable incremental learning.
In this mode the first decomposition is attempted after dl smmber of utterances has been offered,
and subsequent utterances can be used to update the NMF matsgesa”incremental processing
strategy has been developed for the DP-Ngram approach.
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It goes without saying that ‘processing’ as well as theessgtations in memory are different for the
different approaches to discovering structure.

4.1 NMF for discovering ‘words’ in continuous spee ch

Non-negative Matrix Factorization (NMF) is a member of a wHamily of approaches aiming at the
discovery of ‘structure’ by using a specific decomposition techniyi is a general mathematical
technique for decomposing a large matrix that only contains natimeqiumbers into two smaller
matrices, also comprising only non-negative numbers, in such a ménatesne of the resulting
matrices can be considered as representing ‘basic’ struetaraents and the other as the degree to
which these basic structural elements add up to form a given arbitraryattmse During the learning
phase NMF builds the representations of the structural elefmenisscratch. Thus, NMF fulfills one

of the basic requirements in ACORNS: it does not impose limgtaistic knowledge upon the
learning process.
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Figure 4 Correspondence between NMF and the generalemory architecture.

Still, there may seem to be a big gap between NMF adtzematical device on the one hand and the
memory architecture sketched in Fig. 1 and the learning procdsg.i® on the one hand and the
operations of NMF on the other. To narrow this gap Fig. 4 explaingdlgein which NMF can be
mapped onto the general framework suggested in Fig. 1. In intagpiag. 4 it must be taken into
account that the actual implementation of the architeaitiféig. 1 would require many decisions,
some of which might run counter to the process depicted in Fig, 4. However, we areastivii¢he
scheme shown in Fig. 4 is compatible with at least some plauisiblementations of the architecture
in Fig. 1.
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NMF (and almost all other extant algorithms for structure disgdvequire that ‘objects’ (in our case
speech utterances) are mapped onto a numerical representaltieriarm of a vector of fixed length.
We have designed such a mapping: the histogram of co-occurreramsisfic events (HAC). Speech
is represented as an ensemble of ordered (in time) acoustitseln our initial experiments, these
were the detection of phones (Stouten et al., 2008; Stouten 20@r). Later, they were plainly the
observation of typical speech spectra (Van hamme, 2008a). The-ntéf@ing is then the
accumulation of the number of times any combination of acoustic everuss in a speech utterance.
This utterance-level histogram is clearly affected bywibeds it is composed of. The NMF will now
factorize a collection of such utterance-level histogramswuaa-level histograms, which form the
learned internal representations of words.

Grounding of the learned internal representations is achievgalritly estimating the co-occurrence
of the acoustic events with the occurrence of events in the wibdalities (in the Year 1 database,
these are crisp keyword tags simulating the visual chanhighce, we obtain internal word
representations that are truly cross-modal and that link informatidifférent modalities to the extent
that it is possible to predict the feature values of tiseal modality (i.e. keyword tag) from the
observed acoustics.

The NMF paradigm allows to learn and subsequently recognizdsviora sentence. However, it is a
detection type of response, in which an unordered set of words ar@exgttby the recognizer. Since
word order is important in language, we extended the method to atsatestihe word position within
the analysis window of the recognizer, and hence order the words (Van h2o08a).

The NMF-framework has shown to be a powerful approach to wordsémuin which information
across modalities can be exploited to build integrated iftegpaesentations. Acoustic and semantic
information at different time scales can easily be integré/an hamme, 2008b) and the learning was
made incremental in the sense that learned internal représesntean be updated based on a single
utterance. Apart from acquisition, it also allows to build a bouipnspeech recognizer, where words
are activated from the acoustic evidence without, like MMs$, the need for maintaining tens of
thousands of search hypotheses nor is there a need to sharpgnségenutterance into words or
subword units (Van hamme, 2008b). Heraetjvation-verificationrecognition framework is in place.
Thus far, theverification component is limited to checking if the activation of wordsuiicGently
strong and consistent over time, rather than confrontation with leavitkhee.

To show reuse of learned representation, a hierarchical modpketls was learned in which the
acoustic events used in the HAC-model were also learned with Nglvever, top-down learning of
reusable phoneme-like units by analyzing commonalities in leavoedl models has thus far always
lead to significant losses in accuracy.

4.1.1 NMF-based experiments for learning to understand keywords

4.1.1.1 Aim of the experiments

In this section, we specifically discuss experiments designéavestigate the learning curve of an
NMF approach depending on the settings of the multiple paramettrcah be specified. The
learning results investigated include the accuracy of thephetation as provided by the learner, as
function of the number of stimuli presented, the sensitivitthefinternal representations in terms of
the amount of learning material, and the speaker-dependency ointdreal representations.
Experimental parameters include the order in which utteraareesffered, the number of utterances
that are stored before an NMF decomposition is attempted, @&ndvdly in which the ‘visual’
information is encoded. To that end, about 20 different experimentsbleawecarried out during the
first 18 months of the project (more details can be found in tenohBetsal. (2008a) and ten Bosch et
al. (2008b).

Interestingly, these experiments do not differentiate betwaérirtg and test set, as is mostly done in
automatic speech recognition. Instead, the entire database ofu8@@&nces is processed in an
utterance-by-utterance manner. Each utterance-tag paiesered only once. Learning therefore
takes place by ‘remembering’ the characteristics of therarices and associations that have been
observed.
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accuracy versus nr of tokens processed
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Figure 5 Results of the learning algorithm. The hoizontal axis displays the tokens; in total 8000 ta¥ns
are presented. The vertical axis shows the accura@g measured on the most recent 50 utterances.

4.1.1.2 Method

The learning algorithm is based on the assumption that the inteprakentation is updated as new
stimuli are processed. The update rate is one of the paranetee determined. At a certain point
during a training, a new stimulus (utterance + tag) is preseifitas stimulus is processed by the
perception module, of which the outcome is stored into the sensogy atat from there into the
short-term memory. The learner then attempts to interpeehéhv utterance in terms of the stored
representations in the long-term memory. The aim to improve negpretation of each unseen
stimulus in terms of what it knows at that moment is the ultiheat@ing drive of the learner.

4.1.1.3 Results in relation to automatic learning - acquisition and ASR
The outcome of all experiments can be summarized as follows.

Firstly, the experiments show that it is possible to buildrirdl representations by processing HAC
representations of input utterances by means of NMF decomposition.

Secondly, internal representations are dependent on the sp€hieis shown by the difference
between learning curves obtained in a randomized speakagsaitl a speaker-blocked setting of the
learning experiment. In the speaker-blocked setting, internagseptations are built for one speaker,
and must be adapted to the next speaker in order to obtain the sdomngce. In Fig. 5, the
performance is shown in the case of randomised ordering of DutohlistThe horizontal axis
displays the tokens; in total 8000 tokens are presented to thmeete@he vertical axis shows the
accuracy as measured on the most recent 50 utterances (apiraxithe ‘instantaneous accuracy’).
In the beginning, no internal representations are built. As a consequetlaing is correctly
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recognized and the accuracy is zero. Fig. 6 is similar to Fithe5difference being that the 8000
stimuli are presented in speaker-blocked fashion (female & indkmale 2, male 2). The drop in
accuracy for each new speaker shows that representatienspeaker dependent if stimuli are
presented speaker block-wise, where the blocks contain enough utteratitisscérae 2000).
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Figure 6 Results of the learning algorithm. Stimuliare presented speaker-block-wise.

Thirdly, learning results are sensitive to a specificpg@ameters that determine the way how the
learning takes place. Interestingly, these parameters hadé@ect cognitive interpretation. We
identified four parameters:

a) the amount of material (stimuli) before internal representationsudte b

b) The amount of recently observed stimuli that us used to updatingxispresentations or

hypothesize new representations

c) The number of times stimuli must be used internally for this update

d) The ‘eagerness’ with which updates take place.
Fig. 7 shows the dependency of the learning algorithm in termbeofimount of data used for
updating its internal representation. For clarity, the learnimges are shown for the 2000 utterances
of the first speaker only. The abbreviations ‘nsbt’ and ‘mlered ‘number of stimuli before training’
and ‘(internal) memory length’, respectively. Essentially flygire shows the sensitivity of the
performance of the learner as a function of the size (‘ofilijs working memory. For the update of
internal representations, the learner should take into account aheation gathered over the last 500
utterances to obtain an eventual performance of beyond 90 percent accuracy.

4.1.1.4 Ideas for the final year

The HAC-model will be made cognitively more plausible by usingeanory model that exploits
forgetting to order the recognized items in time.
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The vocabulary size will be extended by incorporating more #comormation, i.e. features at
different time scales produced by WP1.

We will further explore the hierarchical organization of the lediinternal representations.

In the final year we intend to develop theories and experiments omlsivactionscan emerge. We
still do not know exactly how the concept of ‘abstraction’ shoulchterpreted. Using the Year 1 and
Year 2 databases, we have conducted several experiments tedaii@eitnal structure of the space of
internal representations. One of these experiments was quialing in the sense that ‘abstraction’
on a certain level could be the result of a more efficiese of representational space when the
collection of stored representations gets too crowded on a low&r la this case, abstraction is
equivalent to grouping.

This directly relates to the use and implementation of hierarchtas learning algorithm.
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Figure 7 This figure shows the dependency of thedening algorithm in terms of the amount of data use
for updating its internal representation. The abbreviations nsbt and ml mean ‘number of stimuli before
training’ and ‘memory length’, respectively.

4.1.1.5 Questions to SAC

Learning reusable phoneme-like internal representation fonacquired vocabulary has so far
remained unsuccessful. For practical reasons, we have linutedelves to deriving such
representations from a vocabulary of about 400 words. Is therevaagnee from human word
acquisition experiments or from medium-vocabulary ASR that a pher@geénization could emerge
from such a small vocabulary? Can we discern if the phonemic/phonetic &lincsppeech perception
is a purely top-down learning process (i.e. observing that thhesemtation of a vocabulary can be
simplified by phonemes), a purely bottom-up (i.e. first observivag there are recurring acoustic
events, phones and subphonetic events, that are combined to words) or a combination of both
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One of the issues that remain is the question to what extent alisoodery method is able to explain
results of a certain type of psycholinguistic experiments shatv how abstraction explains the
flexibility of internal representations. In the learning altor, representations enter into a
competition and the boundaries between representations, once farméldxible and updated all the
time during training. This adaptive behavior is common in both th&mesjon of psycholinguistic
experiments and in the explanation of the competition between int@amadsentations. So it is
plausible to serve as common ground for a more extensive set of experiments

Another question relates to hierarchy. Is hierarchy the resaltnodre efficient use of representation
space? And if so, which process determines the constructiondotha levels in this hierarchy?
Another, closely related, issue (that will come back in viljual other approaches) is to what extent
the variation that is pervasive in speech signals can be aeddanton a single layer, if one does not
want to impose some kind of structure and units a priori. Actgepnits that are defined a priori
opens the possibility to learn probabilistic models for those Unis.sense, these putative units can
be considered as an extra layer in the architecture. Islitraasonable to assume that structure can be
discovered in data as variable as speech in a mono-layered architecture?

A third question relates to the data used in the Y1 and Y2 datadbat® consortium, we have
discussed the pros and cons of this type of ‘artificial ,i-sgpontaneous’ real-speaker data at length.
The rationale of using this type of data was to keep away thenfully artificial nonsense syllable
sequences (Saffran et al, 1996) on the one hand and the ‘found speslebeed in realistic carer-
child interaction. The set-up that we settled on in ACORNS isriegfly discussions with Elisabeth
Johnson when she was still working in Nijmegen.

4.2 Multigram

The multigram approach is another approach that is being explorde IACORNS project. The
multigram concept is especially useful for detecting rerurpatterns in sequences of symbolic
entities.

4.2.1 Aim of the experiment

The aim of this experiment was to see whether the multigalyorithm can be used for word
acquisition from spoken utterances that are accompanied by inimnnfiadm other modalities. In the
original multigram algorithm (Deligne and Bimbot, 1997), symbolic inpuéxplained by a set of
units, multigrams, that emit symbolic strings stochasticallypur (and their) setup, each multigram is
modeled by a Hidden Markov Model (HMM). The set of multigrathsjr topology and parameters
need to be learned. We have extended the multigram learnimgttadg to cope with ambiguity, i.e.
the input is not a string of symbols any more, but a latticgrabsels that describes a large collection
of possible input symbols. Secondly, we have designed a method tthéinliscovered patterns
(multigrams) with the information in other modalities.

4.2.2 Method

We have performed two main sets of experiments.

In the first one, on the well-known TIDIGITS database, we whmbeforego the requirement that
patterns are learned without any prior knowledge and raticeis fon the pattern discovery itself. In
other words, we have assumed that the phone inventory has abesalyearned before starting to
discover word-sized patterns of phones. To this end a conventional bidktt acoustic model was
used to create a phone lattice for each utterance. By magéngf our extended algorithm with lattice
input, a self-discovered set of multigrams representing \Woedinits was derived from the train set.
The utterances in that set were then segmented into thesgramaltinits and a statistical mapping
between the segmented ‘words' and the multimodal information was performed.

Finally, by segmenting the utterances in thstset and guessing the multimodal information i.e. the
'meaning' of each utterance, a final score could be determjnedmparing this guessed sequence of
multimodal tags with the actual sequence of multimodal tags present inteaeahae.
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In a second set of experiments, we wanted to avoid using thekpdadedge of phones. We applied
the multigram algorithm directly at the signal level, ieevéctor-quantized spectra and their velocity
and acceleration features, using the ACORNS year 1 datdbacle.feature stream generates 100
symbols per second, a much higher symbol rate than at the phone level. There wererEsd slifitic
labels, 150 different velocity labels and 100 different accéterdabels. Initial HMM's representing
word-like patterns were derived from the static stream. fitemiion was to train these on the train set
using all three streams conjointly, much like the way itlame in the training of discrete density
HMM's.

4.2.3 Result in relation to automatic learning acquisition and ASR

The results of the first attempted experiment on TIDIGIT$ewery promising. The results show a
significant improvement of taking lattice input into accoast well as showing global success
discovering and grounding the vocabulary from phone-level input. Aleelevords present in the
database showed up as separate models in the self-discoveredetbier with a small number of
distorted versions of some of these models (e.g. “wA” as artiistoof “wAn”) and a couple of
garbage models. Mapping these HMM's to multimodal tags and usngto do recognition on the
test set yielded tag recognition rates of around 90%. Interestingte is that the recognition rate
when using complete lattices yielded an absolute improvement aixapately 3%, compared to the
result when using only the best path through the lattices, giving a tag remogaié of approximately
93%.

The results in the second experiment, however, were a lot moppaisang. The learning algorithm
starts off with an inventory of symbol sequences that osafficiently frequently and transforms
them into an HMM per multigram. The parameters of the HMivis re-estimated and the least
probably multigrams are pruned. This iterative process is egheadr VQ-label level input, it proved
virtually impossible to determine an acceptable initial sétMM's. Because of the increased number
of symbol identities (150 VQ labels vs. about 40 phone labels) arzdi®e of the higher symbol rate,
the emission statistics of a multigram become exponentially owmnplex: much longer patterns with
more variation need to be searched for if we want them to mamteHike units. Moreover, a lot of
variability is present in the label stream that is not nkegkin a phonetic transcription, such as speed,
intonation,... On top of that, asynchrony of the spectral analysis wiagoWthe pitch instants can
cause alternating sequences. All this causes the stream ob¥l94a be a sequence that is too erratic
to determine stable patterns from. The multigram algorithiesren a prior probability for each of the
patterns in the set, which is initialized by the relative Ipeinmof occurrences of that pattern in the
input. No such probability can be determined if every pattern of 8iteceurs only once or twice.
Another observation is that the multigram algorithm needs to explain the ¢enmplet sequence in
terms of multigrams. Hence, it has difficulty to cope with new words or thtiis only partly

known, which contradicts with human keyword spotting abilities.

4.2.4 |deas for the final year

Due to its apparent lack of robustness against variationseiackp the pursuit of a full fledged
language learning agent based on the multigram algorithm wwakast for the time being,
discontinued. Our only hope to overcome the difficulties would be tkentfae learning process
hierarchical, in which shorter (e.g. phone-sized) units with conseguesd variation are discovered
first. Word-level patterns would then be learned from the output of this laye

4.3 DP-ngram

DP-ngram is a technique that allows the discovery of recupagterns directly by comparing pairs of
acoustic utterances. In contrast to the multigram method discabsed, the input is sub-symbolic
rather than symbolic. The DP-ngram method hypothesizes temphatearé stored in order to be
reused later. There are substantial similarities with thesidederlying ‘episodic’ speech processing.
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4.3.1 Aim of the experiment

The experiments carried out using the DP-ngram algorithm showittbah successfully segment
speech in an unsupervised and incremental manner. Results shovethatith a limited memory of
past utterances it is still possible to exploit the stial regularities in speech to discover word-like
units. Similar to the NMF experiments in section 4.2 there is para& training/test set and
utterances are processed sequentially.

The algorithm aims for cognitive plausibility by beginninge lwith no prior knowledge of any
language and carrying out segmentation in an unsupervised and incremental fashio

4.3.2 Method

The DP-ngram model is able to segment speech, directly fronadhestic signal; automatically
segmenting important lexical fragments by discovering ‘simikgpeating patterns. Speech is never
the same twice and therefore impossible to find exact rigpestiof importance (e.g. phones, words or
sentences). The use of dynamic programming techniques allowslgasthm to accommodate
temporal distortion through dynamic time warping. Traditionahpiate based word spotting
algorithms using dynamic programming would compare two sequencespthespeech vectors and
the word template, and penalise insertions, deletions and substiusiogsnegative scores. Instead,
this algorithm uses quality scores, positive and negative, in ¢odesward matches and prevent
anything else, resulting in longer more meaningful sub-sequences.

The algorithm is also able to create continuously evolvingriaterepresentations of keywords by
exploiting the cross-modal statistical regularities in tipaut stimuli (acoustics + visual tag). From the
very first utterance we test the models internal repragens of the keywords by asking it to predict
the tag of every incoming utterance.

As an incremental process the DP-ngram model only compares thetaitterance with a set number

of (earliest/latest) past utterances, dramatically asing processing efficiency at the cost of
decreasing the total search space. However, by re-using Intepnasentations we can increase the
search space by calling up segments from older utterances stored in ttegdongemory.

4.3.3 Result in relation to automatic learning acquisition and ASR

Results show that there is enough information in the input to buittnalt representations of
important lexical units even with a very limited storagpagdty for processing incoming utterances. It
is also apparent that the re-use of internal representations ahe keyword hypotheses to become
more accurate and stable at a faster rate by discovering more exapm@aentations that would have
been outside of the incremental search space.

4.3.4 |deas for the final year
There are many possibilities for further research and experiments:

a) The addition of prosodic features (rhythm & pitch) as a segmentatidor attEntion aid.

b) Hierarchically structuring the input stream with the discegldexical units would allow us to
analyze the relationships between units.

c) Create variance models of the discovered speech units. Wilvaib units like phones
emerge as the most efficient units for speech? Variancdels of the units could be
constructed to see if they exhibit phonetic categorization giepeand evidence for native-
language neural commitment.

4.3.5 Questions to SAC

The DP-ngram model stores a list of episodic segmentsafcit internal representation of important
lexical units (e.g. key word). A major question that haseariis how to cluster them to find a
general/ideal representation. Does an infant use an atation/average of all heard exemplars of
each unit or a single most ideal episodic representatio?th&re computationally efficient methods
for combining cluster centroids with strategically chosen exesyparalternatively, for keeping some
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representation of many exemplars in memory but organized in suchremhbat each new input only
activates a small subset of those exemplars, so that the etiopal effort in the search can be kept
within feasible bounds?

4.4 Computational Mechanics Modeling

For Computational Mechanics Modeling the algorithm known as Ca@tste Splitting and
Reconstruction (CSSR) has been explored as an approach to discetrighgre without imposing a
priori units. Similar to the Multigram method, also CSSR sakgmbolic sequences as input. That
means that this method may be useful AFTER some preprocdssngpnverted the ‘raw’ acoustic
input into a symbol sequence (or lattice).

4.4.1 Aim of the experiment

The aim of the first year ACORNS experiments was to tesuhability of the so-called Causal State
Splitting Reconstruction algorithm, or CSSR (described in the seotion), for speech recognition
and language acquisition. Since the algorithm appears not to havieseehmuch in this setting, the
first experiment was to apply CSSR to a simple, speechddlataset in order to study the properties
of the learned representations. For this part the experiraeatsa text transcription of the Swedish
first year ACORNS database recordings. Because theitalgoexpects input from a small set of
discrete symbols, the data was converted to a word-level g&jugymbolic representation by
considering each unigue word in the data as one symbol.

A second goal was to assess the behavior of CSSR on mdstiaahdta, including complications
such as noise. To this end, another dataset was generatddr simcharacter to the symbolic
representation of the ACORNS recordings but also featuring low-pifitypasymbol substitution

noise.

4.4.2 Method

The CSSR algorithm is a convergent procedure for learning tballsal causal state representation of
a stationary stochastic process from empirical data. CEhusal state representation is a minimal
sufficient statistic for predicting the observation sequetiwe states contain precisely all information
from past observations relevant for predicting the futund, reothing more. The causal state set also
has a natural interpretation as an HMM but, as the state®xalicitty composed of strings of
symbols, the current state can now be uniquely identified from the avaiajpierse of observations.

Unlike traditional ASR with HMM methods, CSSR performs unsugedripattern discovery, not just
recognition of previously learned patterns. However, at pres8B§R requires the data to be
sequences of symbols from an alphabet of small size, such as @soriEme algorithm may not
converge if the number of causal states is not finite. There areanslsuser-set parameters.

4.4.3 Result in relation to automatic learning acquisition and ASR

Results from the symbolic representation of the Swedish ACOR#Ata were encouraging. Despite
the limited amount of data, CSSR learned a near-perfect aatomgpresentation of a stationary
stochastic process to generate the observed data. Eaclygizatiyt represented a specific word or
position within one of the carrier sentences.

When applied to the noisy data, on the other hand, the algoritted faiconverge on a limited set of
causal states. It appears that the further back the CS8Rtalglooks at the data, more information
comes to light that affects future behavior. As the algorithrimtended to capture all information
relevant for prediction, these differences count even if thélirence is small enough that a human
would label them as noise. The algorithm thus discovers alasgg number of distinct possible
predictions for the future, each of which has to be represented by its ¢&n sta
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4.4.4 |deas for the final year

In response to the high sensitivity to noise, an extension of GSBRdevelopment. The extension
aims to reduce the complexity of the learned representatimhicrease robustness by adding a user-
set resolution level to the state splitting decisions witha algorithm. Only features indicative of
large differences in future behavior are to be learned, aneftherbe represented as distinct states,
while less influential differences should be left to one side.

A possible application of CSSR within the ACORNS framework wdwédto learn prosodic and
phonic input streams from ACORNS sentences in parallel, aed tatonstruct such prosodic
information from phones alone, for segmentation purposes.

Besides CSSR with resolution, other Markov model learnersengtates are represented as sets of
observed strings are being considered, both as alternatives and for comparison.

4.4.5 Questions to SAC

Unlike some approaches within ACORNS, the HMM-style automatotput of CSSR is quite
reminiscent of classical ASR. Where in the language acquisition anchgpeegnition process would
discovery and use of such HMM pattern representations be biologitalisible?

4.5 Automatic Segmentation

4.5.1 Aim of the experiments

Phonological parsing of continuous speech may be based on eveniodete phone-like segments
(Carlson-Berndsen, 1998). Since phonemes are the smallest unissettadile to affect distinctions
between words a bottom-up based ASR system should utilize this kirghrelentation at least on
some level. The phone-like segments also provide a good waypresent relevant information in a
compact manner. We have not confined our studies only to methods deitlingegmentation but
have also continued work towards classification (clusteringh®fsegmental information based on
our own version oincrementally learning vector quantization (ILV@ur general goal has now been
set higher thasignal patterningor pattern discoveras mentioned in the ACORNS Technical Annex.
We are developing a novel bottom-up architecture (agent) ableato kpoken messages from
examples that have rich internal representations and methods to cope weth thearnal world. This
method can be tested as one proposal among others coming out of ACORNS.

Our experiments so far can be catalogued as follows:

a) Performance tests and studies of the segmentation algorithm

b) The effect of spectral representations on performance in noistyasitueEFT vs. MFCC)
c¢) Tests with incremental clustering (ILVQ) and preliminary A8&g based on this model
d) Tests on the effects and meaning of a simple attention mechanism

e) Comparisons of ADS vs. IDS speech in Finnish and in Swedish

4.5.2 Method

In our framework speech is first segmented into phone-like wsitsg the blind segmentation
algorithm developed during Y1. The algorithm detects internaledtrally) coherent regions of
speech and places segmental boundaries to create units. Ségratsdaries are then obtained
incrementally using these segmental units as input to thsifidadon process. After exposure to a
sufficient amount of speech, the statistics of the categodesolidate and the speech signal can be
described as a sequence of activations of these cateigoaiesystematical manner. The output of this
process for each incoming speech signal is a sequence of czdedaivels. Statistical methods can
then be applied to the sequences in order to discover structures, e.g., subwandtlde units.

We have performed a simple word learning experiment where teerasiprobabilities of adjacent
segments (~phones) were tracked in the presence of multinmpdlsimulated by a visual tag. The
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system was able to differentiate between the keywords foutiteiryl corpus (Rasénen, Laine &
Altosaar, 2008) and to locate these keywords temporally in the utteranceowdtlagcuracy.

Experiments with an external attentional mechanism were pexthrim which occurrences of
segmental units during the spoken keyword were emphasized oveplbtimatic content in the input.
The idea was to test whether the prosodic aspects of input, or cihieie salient events in the
environment that pinpoint the keyword in some context, could helpytem to learn keywords. It
was determined that at this still relatively low levebqassing level external attentional mechanisms
are not necessary since all of the acoustic informatiorbegorocessed in a bottom-up manner and
familiar patterns will be discovered in the input despite a biasitugsfto a specific part of the stream.

Spectral and temporal properties of IDS and ADS speech wereaalgzed and reported in
(Rasanen, Altosaar & Laine, 2008). Using the Year 1 corpus as impuested whether our bottom-
up learning agent was able to differentiate between thesspeech types by their spectral content.
The system learned separate segmental category modéi®®wmand IDS speech and tested which
model reacted better to speech segments in new input. Withealkers, the ADS/IDS speech type
recognition rate was above chance (62 - 95 % correct).

4.5.3 Result in relation to automatic learning acquisition and ASR

The results show that it is possible to bootstrap self-supervised learning using segmental level
(coarse) statistics of the input in a purely bottom-up mannes. rElicates several findings from
behavioral literature (see, e.g., Saffran et al. (1996), Werk€e&s (1984) and Smith & Yu (2008).
An unsupervised bottom-up path from acoustics to complex internal lilngtépresentations by
statistical analysis has been illuminated from sevesfadets and it will be interesting to see what kind
of representations can be formed in this manner.

We have also developed a novel method for unsupervised speedntaipn and also clarified and
unified the evaluation methods for automatic speech segrmenteéa a new R-value measure
(Rasanen et al., submitted). Work has also been performed ohmetleods for learning vector
guantization that are especially designed for describing phoneéiggments in a speech stream. In
order to better understand discrete time-series representafispsech signals in ASR and learning,
we have analyzed both segmental and fixed-frame approachesufduml description and pattern
discovery (also in collaboration with the NMF group).

4.5.4 |deas for the final year

We will continue to develop the incrementally learning, bottgrsystem and to test its performance
on all levels. The main quality measure in this development work will bé kgaognition rates on the
ACORNS corpora. Therefore, we require a complete (bottom-up) #ASEM to run these
experiments. We will also compare the results with the presaiit performing NMF-system. We
also hope to develop a deeper insight into bottom-up statistmetgsing of speech signals and find
important links to research findings from infant language acquisition.

4.5.5 Questions to SAC

There is plethora of discussion around the conceptbottbm-up and top-down processing. In
language acquisition and comprehension, at what level of progedses some kind dbp-down
feedback occur and at what point in infant development dogéetilback begin? What is the type of
knowledge that can be learned from speech that affects therfpdrsing of speech signals? At what
level of processing does this occur (acoustics, sub-word units, words?).
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4.6 Maps

4.6.1 Aim of the experiment

This section of the paper describes the development of emtiatt-gated recurrent working memory
model that was developed towards the overall aim of the ACOR®{&cpiof producing language and
communication skills based on sensory inputs in an emergent mahiegrce this computational
model is a small step towards the aim of the project to producgent that can communicate. In
terms of the stances identified in the examination of compuotdtmodels of language learnability by
Kaplan, Oudeyer & Bergen (2008)is research fits within the statistical stance dedembodied and
social cognitive stance. As the model relies on extractinyiiktic statistical patterns from speech
signals that offer a rich sensory input and is constrained baatiesaistics of the cerebral cortex. The
model combines an approached based on reinforcement learninéeterdiate between speech and
non-speech signals that can act as an attention mechanisny speeth is introduced into the main
recurrent self-organising network working memory model thatng&eapeech through a memory
representation.

4.6.2 Method

As can be seen from Fig. 8 in the neural architecture theaudignal is split into fixed time frames
using moving overlapping windows with mel-frequency spectrum vangacted for each frame to
represent the auditory signal. Auditory frames are userhito the attention-gating element of the
model to perform reinforcement learning to determine if thetawydsignal is speech or non-speech.
Once the decision is made as to whether an auditory section ¢hspés can be used to control the
input to the recurrent self-organising map model for learnest@ent representation of speech. It was
decided currently to use fixed time frame-by-frame approachh®inputs into the attention-gated
working memory model as it offers a real-time focus. Wiiis fipproach it is possible to introduce
speech frames into the recurrent working memory model as tieydantified by the gating
mechanism as they are heard over time. In Fig. 8 the recurrent self-orgamigiel not only receives
as input a speech frames, but also the activations of the preinweistep of the self-organising
network which provides a memory representation of the prevjmexh frames making up the speech
element to produce an emergent speech representation.

4.6.3 Result in relation to automatic learning acquisition and ASR

When presented with speech (from the English ACORNS databasejoargpeech (crowd noise)
samples the trained reinforcement attention-gating systetlésto detect correctly 93% of the non-
speech auditory and 80% of the speech frames. The incorrect atetettspeech frames by the
attention-gating network is due in part to periods in the speeunples where there are no speech
sounds for instance between words and so is unlikely to hawe iiitpact on the representation
created by the recurrent working memory model. The recurrerkinggmemory system creates
distributed temporal representations on the upper level self-siggnimap in Fig. 8 that are
associated with specific speech sounds. For instance, the tbpridfarea of the self-organising map
represents the sound ‘S’ at the end or start of words sutthaashe§ ‘taps, ‘news, ‘seen’, and
‘comes. The top right of map is associated with sounds suchts ‘SH’, ‘JH’ and ‘K’. In terms

of the working memory model outlined by Baddeley (1992) the recusafrganisation model
recreates some of the functionality of the phonological loojt Bsable to store and assist in the
acquisition of word. As the working memory model is currenthyhoentrating on developing
representation of the speech waveform signal the représenteeated is associated with the speech
sounds found within this signals. However this is only a single compoheepresenting speech by
the cortex and as such the model will be extended in the futunedrporate visual semantic feature
into the emergent representation of speech.
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4.6.4 |deas for the final year

As part of the future work it is the aim to extend theenirmodel by incorporating semantic features.
As stated by Pulvermiiller (2003) semantic feature also plagartthe representation in a word. For
content words the semantic factors that influence theasskkmblies come from various modalities
and include the complexity of activity performed, facial expression or sound, theseabktc. Hence,
the aim in the future is to combine the representation of theclspsignal with a semantic
representation of the word to give a richer representatidheofvord. The recurrent self-organising
representation of the speech signal is to be associated weiphesentation of the semantic features of
the word using a further recurrent self-organising approach at theshighel.

4.6.5 Questions to SAC

When associating a speech signal and visual input what is the role of@ymnation between them?

Self organising A
etwork representation of
current speech element Recurrentself-
Memory of organising network
previous components working rfemory
of speech element

I v
Speech input slice / T
Non-speech input ince/

Gated speech detection déision Gated reipforcement
attention fhechanism

Attention-gated mechanis

Auditory sliced inpt /

Figure 8 The gated attention recurrent working memaey model for emergent speech
representation

4.7 Features that Exploit Auditory Knowledge

4.7.1 Aim

The auditory periphery provides a pre-processing for human speemfnitéon. To reach human

recognition performance, signal features that are not audibleaaileast in principle, not needed.
More importantly, the human auditory system provides an imponalitator of relevant distances
between speech sounds. We conjecture that an acoustic feettuvith Euclidean distances between
sounds that approximate the corresponding distortions indicated by itha&nhauditory system
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simplifies the design of a recognition system. Only when a recaghias an input space with
perceptually meaningful distances is the learning of meanirgifulal patterns possible. This is
particularly relevant in ACORNS since it aims to model @afarit who has no prior knowledge of
speech sounds.

In this part of ACORNS, our aim is to develop a systemationmato find a feature set where the
Euclidean distance between sounds approximates the distortlmm @itput of sophisticated auditory
models. This work is motivated by the fact that models of titit@y periphery have been improved
significantly in recent decades. Until now, these models havseen significant use in the context of
speech recognition.

4.7.2 Method

Consider a vectax describing a speech signal segment. The objective is to femtaré set for which
any perturbatiore of the vectorx leads to a Euclidean distance that approximates the wistort
indicated by the auditory model. Naturally, this has to hold truelf@paech signal segments. To
measure the similarity of the auditory model distortion and therea&ctor distance we can correlate
the auditory model distortions and the feature distances founkef@nsemble of all speech segments
x and all perturbations. A higher normalized correlation corresponds to a better feature set.

The use of small perturbations allows us to simplify both tkeodion measure of the perceptual
model and the Euclidean distance for the feature set. We definkatjoaapproximations for the

perceptual distortion and the feature distance, reducing the@utational effort to a reasonable
amount.

As a first experiment, we selected a perceptually motivaigbset of mel-frequency cepstrum
coefficients (MFCCs) from a set of twelve MFCC for clesreech, using the well-known AURORA
database. This database consists of balanced sets of cleaoiggndtterances. We used a relatively
simple auditory model. We checked recognition performance of subsletsted with our method
using the HTK recognition system. The full set of tweleatfires resulted in a recognition rate of
97.4%. Using our method to select the subset of MFCCs, we retameedgnition rate of 96.6% for
four MFFCC. In contrast, the recognition rate averaged over randomly setettgets of MFCCs was
84.2%. Similar results were found for other subset sizes.ifitlisates that perceptual measures can
indeed be used to select a good subset of features.

We are currently working on a second experiment where we agtithie parameters of known
features, with the aim to obtain more effective features.

4.7.3 Result in relation to automatic learning acquisition and ASR

In any bottom-up recognition system such as ACORNS it is notdbgpcselect or optimize the
features for recognition performance. Features must beextlbased on a different criterion. The
outcome of this work is a systematic method to find featwisEuclidean distances between sounds
that correspond to the “perceived distance” between sounds. Thusd in$tesing a particular
recognition system to find a good set of features, we use the human auditory peripheot togeod
set of features.

4.7.4 |deas for the final year

It is natural to extend the work in two directions. First, varauditory models can be used and their
performance can be compared. We are particularly interestad use of auditory models that show
the effect of time-domain masking. Second, the method natUeslys to the definition of new
features. We can either use the method to optimize parametstisting features or to build features
from scratch.

4.7.5 Questions to SAC
Are there indications that features that are not perceived by humangfateruspeech recognition?

24



4.8 Experiments with Semantic Features

4.8.1 Aim

Although the main switch from the usage of rigid tags to tleeofisemantic features will come with
the use of the Year 2 database, first explorations with senfaatures were already made during the
first year. The primary issue we needed to solve was whabkaognitive plausible module could
provide a good interface between the presented features andtthefpthe ACORNS implementation
which is concerned with the acquisition of the auditory represensatThe function of such an
interface would be to take in the perceived semantic featfrem object and transform it into
activation or probability values of possible concepts. In lind Wie memory prediction model, we
strived to allow this part of the ACORNS implementation twrkwvith minimal a priori knowledge,
i.e. the processing architecture should not have any prior kdg&labout what concepts it was
expected to learn. Further, the architecture should be able to creptesentational hierarchy similar
to the one observed in the sensory systems of the human brain. 3inidgoping from low level
sensory features to high level sensory features was akayiven (ACORNS is not about sensory
processing other than in the auditory domain), we tried to capterdiierarchy from high level
semantic features to conceptual units. As argued by Leveéilof2, and Meyer (1999), concepts
cannot be represented as feature clusters, but need to be regreaennon-decompositional
conceptual units. One major reason for this is the hypernym/hyponymeproifl concepts are
represented as feature clusters, the conceptual representation afrdrhag at least all the features of
its hypernym. It would therefore be impossible to activate, e.gwthe “daddy” without triggering
the word “man” at the same time. However, if concepts are indeed repakasnion-decompositional
units, at least two other problems remain to be solved (ghairthe input to the semantic system are
perceptual features): (i) explaining the emergence of such duiing the acquisition of conceptual
knowledge and (ii) preventing the analogue to the hypernym/hyponym problesactr at the
conceptual level, i.e., the problem that the input featuresnigddithe activation of conceptual unit
[[daddy]] would also trigger the activation of [[man]]. While thgperonym problem is not very
prominent in the first year database with its limited woidgjll already be in the Year 2 database
when words likenananddaddy bearandtoy, or foodandappleare in the vocabulary of almost every
child, indicating that the human cognitive system is able to deal with tiigepn.

4.8.2 Method

In keeping with the general spirit of the memory-prediction model tested several biologically
inspired learning algorithms, among them: direct Hebbian asiseciaarning, Self-Organizing Maps,
biased competitive layers, as well as Restricted BoltzmaachMes. All but the Hebbian algorithm
allow the recruitment of units on a higher level to represent highel toncepts.

4.8.3 Results

After testing several architectures, the most appropffiatethis task was the competitive-layer
architecture. We demonstrated that the conceptual analoghe biypernym/hyponym problem did
not occur in this architecture. The architecture was fudb& to acquire the correct conceptual units
as higher level representations from the presented semantic feathi@s any a priory knowledge in

a purely unsupervised manner. Finally, we could replicategeweralizations (e.g., the use of the
[[dog]] concept for everything with four legs) reported in tiverdture (e.g., Clark, 1973), one of the
most basic behavioural findings related to semantic features duringdiis acquisition.

4.8.4 |deas for the final year

One exploratory study would be to use simple images of objects antleuestricted Boltzmann
Algorithm to extract the features from the image. This woudllice the arbitrariness of the selected
features and make the visual/semantic process more similar tadit@raprocess.

25



4.8.5 Questions to SAC

How realistic is our training situation in comparison to kbarning situation of real children. In
particular, how much information do children refer about which word in @nance refer to which
object in a scene.

5. General questions to the SAC

From the literature on child language acquisition it is irgiregy clear that more than one ‘learning
mechanism’ is involved. There is convincing evidence that infartssiadistical patterns in speech
(Saffran et al., 1996) In one experiment 8m old infants listened2taninute continuous nonsense
sequence of syllables simulating sequences of multisyllabidsm‘golabupabikututigolabubikutu’).
Infants appeared to be able to distinguish syllable sequences glithr Hiequencies from ‘words’
made of lower-frequency sequences, showing that infants arediralde to detect and use the
statistical properties of the speech stream. Later expetgmshowed that infants are sensitive to
transition probabilities (Saffran et al., 1999, Swingley, 2005). Sthecture discovery approaches in
ACORNS seem to be able to find similar statistical structure irspesdch signals.

Infants also seem to be able to infer some kind of generalisdtioms statistical patterns. For
example, experiments suggest that infants may detect violadbn®kens that do not meet
phonological patterns, but the results are not uncontroversiak(slaviarcus, Vijayan, Rao, and
Vishton, 1999, see also Seidenberg, MacDonald, & Saffran, 2003). Howeigenoit evident what
simulation experiments should be performed to arbitrate betakemative interpretations of the
behavioural data.

Perhaps the most important thing that we learned in thetficsiyears of the project is that the gap
between existing models of memory, representation and learningeiriterature on language
acquisition on the one hand and computational models that can thkpaeeh utterances as input for
learning on the other hand is much larger than anticipated.didstgap it is possible to map quite
different learning approaches, resulting in quite differentriaterepresentations, onto the general
models shown in Figs. 1 and 2. One consequence of this is thatffidglidio interpret the different
strengths and weaknesses of the approaches that we have expléaedltsis also very difficult to
design simulation experiments that directly tap into the questi@isstill linger in the linguistically
oriented language acquisition community.

This raises the following questions

1. What would be experiments that we can do with the techniques armhskdahat we have
developed so far that could answer burning questions of the SAC members

2. What would be the best way to proceed to 250 words, the final goal according to thiealechn
Annex.

3. Does it make sense to go to 250 words, or are there other lsatiean be addressed without
a new database (and preferably also without new computationalingogaleproaches) that are
more interesting?

4. Any attempt to go to 250+ words would require some kind of hieraicklayered)
representation, with appropriate corresponding processing. So faaweenot managed to
define one single processing strategy that is adequate fgped of representations and on all
levels (except perhaps in purely connectionist models). Ibbas suggested that the idea that
the seeming homogeneity of the neural fabric should resulieisame way of processing at
all times and all levels is misleading. Language acquisilii@nature suggests that new
processes come into play as the number (and perhaps complexity) of theemresantations
increases.

5. How to exactly address hierarchy and generalisation? In seggpariments, we have
observed glimpses of some form of generalisation.
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» speaker-dependent word representations can be clustered tom cipeaker-
independent word representations — this COULD be interprestedrasult of a too
crowded set of representations on a lower hierarchical level

e the learner is able to discover the speech style (IDS/ARSed on many word
tokens with an accuracy of about 80 percent — too many to storeritlauially, so
a form of ‘abstraction’ must have taken place

All structure discovery approachesthat we have investigated so far appear to be hampered by the
large amount of variation in speech signals. To the best of muwlkdge there are no structure
discovery methods that can operate on semi-continuous inputs,sshtCaC vectors, or other frame-
based representations of the signal. The only exceptiomiight be artificial neural networks, but it
is questionable whether networks can be trained for such a large tasguEgRacquisition.

It has been suggested that all structure discovery methatlshave been developed for discrete
symbolic data will encounter serious problems if the numberbefdagrows too large, and ‘too large’
might well be anything with more than 50 — 100 elements irb#sic set (Lin et al., 2007). If this
holds true for all structure discovery methods, what are ehsegjuences for language acquisition?
Can the problem be solved, at least in part, by not requiring exches between input signals and
the representations of a finite set of units? Would it b&llpossible to mix units of different size
(sound, syllable, word, etc.) and combine these for buildingriatgactures on higher levels of the
hierarchy?
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