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1. Introduction 
 
The aim of the European Future and Emerging Technologies (FET) project ACORNS is to develop 
computational models that demonstrate the capability to acquire language and communication skills 
on the basis of sensory input. In a farther-reaching perspective we need these models to explain how 
infants can learn to communicate by means of spoken language and to build automatic systems that 
substantially outperform extant Automatic Speech Recognition (ASR) systems that implement some 
kind of pattern recognition where the patterns are pre-defined by the system developer.  
In ACORNS, the primary input from which the artificial agents acquire language is restricted to 
speech utterances that refer to observable physical objects and events in the environment. To ground 
the meaning of the spoken utterances, they are accompanied by some representation of a virtual world 
to which they refer. In addition, the learning agent receives (auditory only) input in the form of 
feedback from the (simulated) care givers with whom it communicates. The learning agent in 
ACORNS is passive, in the sense that it has no means for producing speech-like sounds, nor is it able 
to actively explore the surroundings.  
The five partners in the project have their main backgrounds in speech technology and ASR in 
particular (although their focuses may differ). But all subscribe to the idea that for ASR to reach 
human-like performance a completely different approach is needed, inspired by human processing. 
This explains why we expect that investigating whether a new approach to modeling language 
acquisition and processing –inspired by a theory of cognition and intelligence- will eventually open 
new perspectives for ASR. It also explains why many of the methods and approaches used in the 
project have their roots in ASR research.  
Thus, the challenge of ACORNS is to model an infant who has no prior knowledge about grammar, 
words, or speech sounds when it is confronted with the first communicative utterances produced by its 
care givers. By doing so, we avoid the error of reference in Artificial Intelligence: modeling some 
meta-level description of a process rather than the process itself (Pfeifer & Scheier, 1999). Inspired by 
a hierarchical model describing human memory (the memory-prediction model, developed by 
Hawkins 2004), the hypothesis will be tested that processing multimodal input will result in the 
emergence of hierarchical representations of speech that may or may not reflect the units and 
representations that play a pivotal role in all existing theories of language structure and language 
processing. To the extent that units reminiscent of words and phonemes do emerge, we will investigate 
whether they emerge in a fixed order, or that, alternatively, different units emerge as they are needed 
for communicative processing of sensory stimuli.  
 
The literature related to modeling first language acquisition is growing fast. To position the research in 
ACORNS we find it useful to refer to the recent overview paper by Kaplan, Oudeyer and Bergen 
(2008) who distinguish five major –but not necessarily orthogonal–  approaches (or stances, as they 
call them) in the general field of language learnability. These ‘stances’ are the generative perspective, 
the statistical approach, the embodied/social perspective, the perspective from the child’s 
development, and language evolution.  The first Generative stance is mainly concerned with 
grammaticality, and is therefore outside the part of the field that ACORNS intends to cover 
(irrespective of the fact that this stance is losing appeal for several other reasons). Actually, the 
original ACORNS proposal took position against the generative stance. Since ACORNS does not 
address the question of language evolution, the fifth stance does not apply either. However, ACORNS 
fits in three of the five approaches, viz. statistical learning, embodied & social cognition, and 
developmental learning. And, of course, ACORNS is all about computational modeling as the method 
of choice for investigating and explaining behavioral observations about the acquisition of language 
and communication skills; and for deriving novel hypotheses that can be tested in new behavioral 
experiments.   
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2. Overall approach in the project 
 
The design of the ACORNS project is such that the work is divided into three years. In the first year 
the infant (Little Acorns) should be able to know when s/he is addressed and learn to understand 10 
‘words’ (i.e. utterances that refer to 10 different objects). In the second year s/he should be able to 
learn 50 words, and for the final year the target is 250 words.  
 
In order to accomplish these aims, ACORNS intends to develop and record three speech databases, a 
different database for each year in the project, corresponding to three development stages of the 
learner model. These databases should have a basic ecological validity. However, ACORNS is not 
trying to mimic all aspects of the actual language acquisition process, if only because there is no 
simulation of speech production. The databases should make it possible to test the main claims of the 
project, and should not take too much time to make. Specifically, since Little Acorns has no innate 
knowledge of linguistic units such as words, syllables or sounds, detailed annotations of the utterances 
in the databases are not required. It is enough that we can be sure that each utterance refers to specific 
objects or events.  
 
The databases form the bases for performing simulation experiments. The experiments are all meant to 
investigate whether an artificial agent can learn language without endowing this agent with linguistic 
knowledge. In doing so several different computational approaches are investigated. These approaches 
will be compared with a focus on what they can tell us about the processes involved in language 
acquisition. Such a comparison can be instructive even if different approaches yield different 
performance levels in terms of the number of ‘words’ learned, or the speed or ease with which new 
‘words’ are learned, etc. At the end of the project we hope to able to draw conclusions related to the 
cognitive plausibility of the approaches to modeling first language learning that we have investigated, 
and suggest promising new ways for designing and building more powerful and capable ASR systems  
  
In the remainder of this section we present the memory architecture that lies at the basis of all research 
in ACORNS. In section 3 we introduce the databases for the first two years. In section 4, a number of 
experiments related to the different approaches to modeling language acquisition are presented. 
Finally, some preliminary conclusions are drawn and ideas for the final year are presented.  

2.1 Memory Architecture  
ACORNS is about the feasibility of the memory-prediction framework (Hawkins, 2004) as a basis for 
understanding language acquisition and communication. The memory-prediction framework is 
extremely appealing, mainly because it is based on solid and neuro-physiological evidence that has 
been known for a long time (Mountcastle, 1978). However, at the start of the ACORNS project there 
was no complete computational implementation of the framework, and it was unlikely that such 
software would materialize any time early in the lifetime of the project (Hawkins, 2005). The software 
based on Hierarchical Temporal Memories (HTMs) under implementation by Numenta™ that came 
closest to our needs (George and Hawkins, 2005) appeared to be too limited for reaching the goals of 
ACORNS (van Doremalen & Boves, 2008).  
While the concepts underlying the memory-prediction framework should be the guiding principle, 
ACORNS never wanted to commit to one single software implementation. The Technical Annex listed 
several different approaches to the problem of discovering structure in speech (and visual) input and 
building hierarchical representations. Equally importantly, it would not be appropriate to ignore the 
extensive literature on memory processing in psychology research (Baddeley, 1992) that does not 
necessarily map one-to-one to the structure suggested by the memory-prediction framework and 
certainly not to its implementation in terms of HTMs. Therefore, much time and effort has been spent 
during the first two years of the project to design a memory model that at once reflects the results of 
decades of psychological research and the basic tenets of the memory-prediction framework.  
 



 5 

 

Figure 1Hierarchical modular memory and processing architecture that reflects the results from research 
in Psychology on Memory, Language. 

 
The latest and most elaborate version of the model that we intend to implement is shown in Fig. 1. It 
reflects a widely accepted modular structure in which one can distinguish a sensory store, a working 
memory (or short-term memory) and a long term memory. At first sight the architecture in Fig. 1 
seems to have little in common with the structures suggested by the Memory-Prediction framework, 
one possible representation of which is shown in Fig. 2. However, in comparing the pictures one must 
keep in mind that both ‘models’ are quite general and abstract, and that many essential details are left, 
perhaps as ‘implementation details’.  
We think that one can map the sensory store in the architecture of Fig. 1 onto the lowest level of the 
hierarchy in Fig. 2, if only because neither model makes hard claims with respect to the neural 
encoding and representation of the sensory signals at the lowest level of the cortical hierarchy. In a 
similar vein the processing that is going on in the working memory in Fig. 1 may very well map onto 
the connections that are formed and the information that flows in the higher levels of the structure 
depicted in Fig. 2. And when it comes to the long term memory in Fig. 1, this too must be represented 
in the form of connections between brain cells in the cortex. Therefore, we take it that an architecture 
such as depicted in Fig. 1 can implement the basic operations in a Memory-Prediction framework. 
Perhaps the most important difference between the models depicted in Figs. 1 and 2 is that the 
modularity suggested by the first model may make it easier to develop computational approaches that 
rely on explicit representations of speech and ‘meaning’ on a number of distinct levels of some 
hierarchy. The model of Fig. 2, on the other hand, is probably more akin to computational approaches 
inspired by Neural Network techniques.  
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Figure 2  One possible view of the cortical hierarchy in the Memory-Prediction Framework. (After 
Hawkins, 2004) 

3. Databases developed in the project 

3.1 Year 1 database 
The design of the first year’s database was a topic of a lengthy discussion in the ACORNS consortium. 
Several ecological constraints were contrasted with various other constraints concerning e.g. acoustic 
variability and complexity of the carrier phrases. The eventual idea behind the first year database was 
to start with very simple utterances by 4 different speakers, two male and two female. The database 
has been recorded for Dutch, English, Swedish, and Finnish.  
There are 10 target words per language. The words were selected based on language acquisition 
literature (i.e. ‘words’ reported to be known by 8 months old infants). Each of the words were used in 
10 different contexts (carrier sentences), each of which was repeated 10 times by each of the speakers. 
Examples of sentences are “Show me the book”, “Where is Daddy”, where the underlined word 
represents the object referred to by the utterance. The target words mostly occurred in utterance final 
position (which is usual in infant directed speech in the languages under study). In the database, each 
utterance corresponds with one tag (i.e. code of the visual concept). The tag is 1-1 with the single 
keyword uttered in the utterance, and is thereby uniquely and non-probabilistically defined. 
 
The resulting set of 1000 utterances per speaker were produced in two modes: 

• a normal ‘adult-addressed speech’ (ADS) mode 
• acted ‘infant-directed speech’ (IDS) mode, with exaggerated intonation and slow tempo, as if 

speaking to an infant about 8 to 10 months old. On advice by Elisabeth Johnson the elicitation 
was facilitated by the presence of a real-life picture of a young infant. 
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The resulting number of 2000 utterances per speaker per language proved to be a good starting point 
for the learning experiments.   

3.2.Year 2 database 
The database for the second year is meant to show that Little ACORNS is able to learn fifty “words”. 
The target words are based on the list of “words” infants of about 12-15 months old are reported to 
understand. Compared to the first year database, the phonetic context of the target words is much more 
varied.  
In contrast to the ‘one-tag-per utterance’ annotation of the first year database, for the Y2 database we 
decided to use semantic features. The major reason for this is that one of the core goals of the 
ACORNS project is not to use a prior knowledge about linguistic units. The tags used so far are fully 
deterministic and, therefore, they can be interpreted as a very strong form of a priori knowledge. 
During first word acquisition a child is obviously not confronted with anything resembling 
unambiguous meanings. Rather infants perceive objects which fall into a number of categories. For 
example: a red sleeping bear falls into the categories red, sleeping, bear, as well as possibly animal, 
furry, big or small, scary etc. And all those words can appear in a perceived utterance in the presence 
of the very same individual object. However, at the same time, many of the words that might also be 
used to denote properties of such an object might not appear. Feature-coding of objects and events 
allows us to replicate this situation more accurately and, in this way, eliminate a priori knowledge.  
Practically, this is done by using several object position slots. Every slot can contain an individual 
object (including persons). An object is defined by a set of features, depending on which categories 
apply to it. For example one position might be filled with the feature sets of red, furry, eats, bear, and 
animal, while another slot might be filled with the feature sets of round, green, apple, food. The 
learning system might then be exposed to an utterance such as “The bear eats the apple.” or “The red 
furry animal eats the round green food”.  
There are many possibilities of coding meaning in features. A task force involving most ACORNS 
partners developed a suitable coding scheme. The most appropriate way appeared to be the use of 
features and anti-features (i.e., green and not_green) with continuous intensity values (with an 
additional value for certainty), which allows us to distinguish absence of a feature from ignorance 
about a feature. The task force further came up with a number of (mathematical) constraints that has to 
hold about the feature set and the coding of objects with features (e.g. about the distance between 
concepts in feature space, or the relation between features and anti-features).  
The words of the Y2 database were chosen with the goal of describing a simple scene with persons, 
objects and actions that are likely to occur in the environment of a child. For every word, a feature 
coding was established. As far as possible this coding was based on existing semantic feature 
databases. Further, the coding reflects visual semantic features, similar to those that could be extracted 
from visual information available to a child.  
 
To generate the sentences of the database a scenery was used to create a list of objects (including 
persons), properties (colors, shapes, sizes) and actions (very few). Based on this list, sentences were 
created such as ”there is a lion and a duck”, “do you like a big cookie”. In addition, specific feedback 
utterances were recorded, e.g. “no I mean the RED ball” for use in lightly supervised learning 
algorithms that require feedback for reducing classification error rates.  
Next, the sequences of words in the sentences were used to create the corresponding meaning 
presentations. For a sentence like “Daddy sees the red ball.” at least two individuals or objects (but 
possibly more) need to be present in the scene: one individual who needs to have the features of 
“daddy”, but also for example the features of “man” (and in future research also “see”) and another 
object with the features of “red” and “ball” (but also with the features of “round”, “toy” etc.). Note that 
in the Y2 database there are more target words per utterances (up to four, average 2.8).  
 
There are 10 speakers; 4 speakers are the same ones who recorded the year 1 database and 6 new 
speakers. The databases were recorded for English, Dutch, and Finnish. The 6 new speakers only 
produce a subset (600) of the 2000 utterances, and thereby serve as new ‘previously unseen’ persons. 
Per language, each target word occurs at least 50 times across the entire database. At the time of this 
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writing no results obtained with the Y2 database have been published. Therefore, this paper will focus 
on results obtained with the T1 database.  
 
The database is further dedicated to experiments on the use of intonation/focus, and the interaction 
between the learner and care giver (especially the role of feedback in the update of internal 
representations). This database is not very well suited to investigate the reuse of emergent sub-word 
units for facilitating learning of new words. To investigate this latter issue, other existing large scale 
databases such as TIDIGITS, Resource Management and Wall Street Journal have been used.  

4. Experiments  
In this section we give a summary of the major lines of experiments that have been explored up to 
now. More detailed reports are available in the form of workshop and conference papers published as 
part of the project. All published papers can be found on the ACORNS public website1.  
All experiments refer, in some way or another, to the basic memory models shown in Figs. 1 and 2, 
and to the objectives for the first two years, i.e., to show that an artificial agent can build 
representations of speech signals without imposing a priori knowledge of meta-level concepts such as 
words, syllables, phonemes, etc. and that this agent can use those representations to associate novel 
speech input with a limited number of objects in the environment. The latter capability might be 
referred to in terms such as ‘recognize’ or ‘understand’, and indeed, if we define recognition or 
understanding as ‘showing the expected response’ this equivalence is fully justified.  
Most of the experiments conducted so far focus on discovery of structure in what can be called a one-
level hierarchy. There are two major reasons for this limitation. First, it was felt that we needed to start 
with an in depth investigation of the capability of the structure discovery approaches that we had 
available at the start of the project to find recurrent structure, without using unjustifiable pre-existing 
knowledge. Second, experiments with elaborate multi-level hierarchies require the availability of 
operational implementations of a hierarchical memory architecture. As said before, such software is 
not readily available. Our attempts to specify the implementation of a hierarchical memory 
architecture has shown that there are a large number of issues that may look at the surface as 
‘implementation details’ but that on second thoughts appear to be serious gaps in our understanding of 
the structure and the operation of the brain. These difficulties not withstanding we have conducted 
experiments aimed at investigating multi-layered structures. Perhaps the most interesting results of 
these experiments so far is the finding that it may be difficult, if not impossible, to find a single 
processing strategy that will be optimal (or even effective) at all layers, for all types of information (or 
units) and for all purposes. Perhaps, this finding should not come as a complete surprise, even if one 
might interpret the architecture in Fig. 2 as suggesting that processing should be homogeneous from 
top to bottom because the structures seem so similar. It may be that differences in interconnectivity 
and in the type if information stored at different levels should imply different computational processes 
and different algorithms. In many ways the modular architecture of Fig. 1 already points in that 
direction.  
 
So far, we have investigated five different approaches to the problem of discovering structure in 
acoustic input (that comes along with references to objects in the environment) without any form of 
prior segmentation (nor any form of a priori linguistic concepts to guide the process) where the 
continuous speech signal is represented as an acoustic waveform. These approaches exploit, in one 
way or another, statistical regularities that are present in the speech signal. These four research 
directions are Non-negative Matrix Factorization (NMF); Multigrams; DP-Ngrams and Computational 
Mechanics Modeling (CMM) and State Transition (or Context) Matrices. Results obtained with 
Context Matrices have not yet been published; therefore, we will not discuss this approach in detail in 
this paper.  
In addition to approaches that do not start with segmentation at some linguistically motivated level, an 
approach based on bottom-up phonetically inspired segmentation has been explored.  

                                                           
1 http://www.acorns-project.org 
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Finally, experiments with Artificial Neural Networks (more specifically Self-Organising Maps) have 
been conducted.  
 
In their default implementations the structure discovery methods mentioned in the previous paragraph 
operate on large batches of input stimuli. Obviously, this is not in accordance with the way in which 
infants acquire language. For that reason substantial effort has been invested in attempts to modify the 
NMF and DP-Ngram methods to make them suitable for incremental learning, in both cases with some 
success. Making NMF and DP-Ngrams incremental makes it easier to investigate the cognitive 
consequences of learning in the absence of a priori defined concepts justified by meta-level 
descriptions.  
 
So far, the basic representations of the acoustic signals used for most of the experiments have been 
conventional Mel-Frequency Cepstrum Coefficients (MFCC) in an implementation developed in WP1. 
During the third year of the project we will repeat crucial experiments with more advanced acoustic 
representations that take advantage of our knowledge about auditory processing. These features are at 
present under development in WP1. It will be interesting (and a task left for the third year of the 
project) to investigate possible relations between the auditorily salient features under development in 
WP1 and the results of experiments that investigated auditory processing of infants (Saffran et al., 
2006).   
 
While MFCCs have proved their usefulness in automatic speech recognition, these features are not 
particularly powerful representations of prosodic features. In effect, only ‘loudness’ has a fairly direct 
representation, while ‘pitch’ is only implicitly encoded in a manner that is difficult or impossible to 
decode. Yet, prosody is known as a potentially very powerful help in finding end points of what might 
appear to be ‘patterns’ in the audio signals (Jusczyk, 2000). For that reason the MFCC representation 
has been enriched with an estimate of the pitch. Physics-based prosody parameters as well as hand 
coded accent locations in the speech utterances in the Year 1 databases have been used to investigate 
the added value of prosody in pattern discovery. So far, these results have been somewhat 
disappointing, both with the non-segmenting and segmenting approaches to structure discovery. 
Focusing structure discovery on stretches of speech that contain accented syllables does not result in 
faster emergence of more powerful internal representations. Almost all structure discovery 
experiments showed extremely high performance figures with the MFCCs as the only acoustic input. 
In such a situation it would be extremely difficult for any additional type of input (such as pitch) to 
have a large effect. It has been suggested that, indeed, the statistics-based bottom-up discovery of 
acoustic patterns that can be related to references to the environment can succeed without the help of 
an additional device that focuses attention on the most salient parts of an utterance. The intrinsic 
salience of the (spectral) properties may be sufficient in its own right. Also, it has been suggested that 
the role of prosody in speech processing comes later, and in different forms. As soon as the learning 
infant has learned that it may make sense to segments the speech signal in some way or another, 
prosody may come in helpful in languages where the large majority of the words (meaningful stretches 
of sound) is characterized by systematic stress patterns (e.g., word stress (almost) always on the first 
syllable). However, in the experiments performed so far, which were not aimed at the discovery of 
‘words’ in the linguistic sense of the term, systematic stress patterns could make very little –if any- 
contribution.  
 
Ideally, all experiments should reflect a setting in which a learning agent interacts with a care giver 
and by virtue of that interaction acquires communication skills, including language proficiency. Fig. 3 
gives a schematic representation of the general setting of the learning experiments that have been 
conducted. The top panel shows the speech corpora from which training utterances are selected (top 
right hand side). The box labeled ‘Experiment design’ determines the order in which utterances are 
taken from the corpora and the number of utterances that are selected as a single set. The selected 
utterances are made available to the Carer via the ‘Stimulus list’. In most experiments conducted so far 
the Carer offered the utterances in the Stimulus list to the learning agent in the exact same order and 
manner as determined by ‘Experimental design’. In future experiments the Carer will be made more 
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independent, so that s/he will be able to select utterances on the basis of the response of the learning 
agent. 
The lower part of the schema in Fig. 3 represents the interaction between the Carer and the Learner. 
Basically, the Carer offers an utterance to the Learner, who then processes this new stimulus. When 
processing is finished, the Learner will respond. So far, the response options for the Learner are 
limited to selecting one or more (in the multi-keyword input utterances in the Year 2 database) objects 
that are supposed to be referenced in the input; alternatively, the response can be NIL. As said above, 
the implementation of the simulation environment provides for the option that the Carer selects the 
next stimulus on the basis of the Learner’s response, but so far this option has not been used much.  
 

 

Figure 3 Schematic overview of the learning process. The vertical axis represents time. In a 
communicative loop, Carer and Learner exchange messages. 

 
The exact meaning of ‘Stimulus processing and learning’ depends very much on the details of the 
experiments. For example, in the first stage of the initial experiments with NMF in batch learning 
mode ‘processing and learning’ meant just storing the inputs in memory (it is left undecided whether 
this should best be pictured as sensory store, or rather as working memory). Only after a certain 
number of utterances were available was the first NMF decomposition applied. Until that moment 
responses of the Learner would be meaningless. However, after the initialization of the NMF structure 
matrix subsequent input utterances can be mapped onto one of the objects to be learned.  
As already said before, the NMF approach has recently been adapted to enable incremental learning. 
In this mode the first decomposition is attempted after a small number of utterances has been offered, 
and subsequent utterances can be used to update the NMF matrices. A similar incremental processing 
strategy has been developed for the DP-Ngram approach.  
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It goes without saying that ‘processing’ as well as the representations in memory are different for the 
different approaches to discovering structure.  
 

4.1  NMF for discovering ‘words’ in continuous spee ch 
Non-negative Matrix Factorization (NMF) is a member of a whole family of approaches aiming at the 
discovery of ‘structure’ by using a specific decomposition technique. NMF is a general mathematical 
technique for decomposing a large matrix that only contains non-negative numbers into two smaller 
matrices, also comprising only non-negative numbers, in such a manner that one of the resulting 
matrices can be considered as representing ‘basic’ structural elements and the other as the degree to 
which these basic structural elements add up to form a given arbitrary observation. During the learning 
phase NMF builds the representations of the structural elements from scratch. Thus, NMF fulfills one 
of the basic requirements in ACORNS: it does not impose meta-linguistic knowledge upon the 
learning process.  

 

Figure 4 Correspondence between NMF and the general memory architecture. 

 
 
Still, there may seem to be a big gap between NMF as a mathematical device on the one hand and the 
memory architecture sketched in Fig. 1 and the learning process in Fig. 3 on the one hand and the 
operations of NMF on the other. To narrow this gap Fig. 4 explains the way in which NMF can be 
mapped onto the general framework suggested in Fig. 1. In interpreting Fig. 4 it must be taken into 
account that the actual implementation of the architecture of Fig. 1 would require many decisions, 
some of which might run counter to the process depicted in Fig, 4. However, we are convinced that the 
scheme shown in Fig. 4 is compatible with at least some plausible implementations of the architecture 
in Fig. 1. 
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NMF (and almost all other extant algorithms for structure discovery) require that ‘objects’ (in our case 
speech utterances) are mapped onto a numerical representation in the form of a vector of fixed length. 
We have designed such a mapping: the histogram of co-occurrences of acoustic events (HAC). Speech 
is represented as an ensemble of ordered (in time) acoustic events. In our initial experiments, these 
were the detection of phones (Stouten et al., 2008; Stouten et al., 2007). Later, they were plainly the 
observation of typical speech spectra (Van hamme, 2008a). The HAC-mapping is then the 
accumulation of the number of times any combination of acoustic events occurs in a speech utterance. 
This utterance-level histogram is clearly affected by the words it is composed of. The NMF will now 
factorize a collection of such utterance-level histograms into word-level histograms, which form the 
learned internal representations of words.  
Grounding of the learned internal representations is achieved by jointly estimating the co-occurrence 
of the acoustic events with the occurrence of events in the other modalities (in the Year 1 database, 
these are crisp keyword tags simulating the visual channel). Hence, we obtain internal word 
representations that are truly cross-modal and that link information in different modalities to the extent 
that it is possible to predict the feature values of the visual modality (i.e. keyword tag) from the 
observed acoustics. 
The NMF paradigm allows to learn and subsequently recognize words in a sentence. However, it is a 
detection type of response, in which an unordered set of words are activated by the recognizer. Since 
word order is important in language, we extended the method to also estimate the word position within 
the analysis window of the recognizer, and hence order the words (Van hamme, 2008a). 
 
The NMF-framework has shown to be a powerful approach to word acquisition in which information 
across modalities can be exploited to build integrated internal representations. Acoustic and semantic 
information at different time scales can easily be integrated (Van hamme, 2008b) and the learning was 
made incremental in the sense that learned internal representations can be updated based on a single 
utterance. Apart from acquisition, it  also allows to build a bottom-up speech recognizer, where words 
are activated from the acoustic evidence without, like in HMMs, the need for maintaining tens of 
thousands of search hypotheses nor is there a need to sharply segment the utterance into words or 
subword units (Van hamme, 2008b). Hence, activation-verification recognition framework is in place. 
Thus far, the verification component is limited to checking if the activation of words is sufficiently 
strong and consistent over time, rather than confrontation with learned evidence. 
To show reuse of learned representation, a hierarchical model of speech was learned in which the 
acoustic events used in the HAC-model were also learned with NMF. However, top-down learning of 
reusable phoneme-like units by analyzing commonalities in learned word models has thus far always 
lead to significant losses in accuracy. 

4.1.1 NMF-based experiments for learning to understand keywords 
 
4.1.1.1 Aim of the experiments 
In this section, we specifically discuss experiments designed to investigate the learning curve of an 
NMF approach depending on the settings of the multiple parameters that can be specified. The 
learning results investigated include the accuracy of the interpretation as provided by the learner, as 
function of the number of stimuli presented, the sensitivity of the internal representations in terms of 
the amount of learning material, and the speaker-dependency of the internal representations. 
Experimental parameters include the order in which utterances are offered, the number of utterances 
that are stored before an NMF decomposition is attempted, and the way in which the ‘visual’ 
information is encoded. To that end, about 20 different experiments have been carried out during the 
first 18 months of the project (more details can be found in ten Bosch et al. (2008a) and ten Bosch et 
al. (2008b). 
Interestingly, these experiments do not differentiate between training and test set, as is mostly done in 
automatic speech recognition. Instead, the entire database of 8000 utterances is processed in an 
utterance-by-utterance manner. Each utterance-tag pair is presented only once. Learning therefore 
takes place by ‘remembering’ the characteristics of the utterances and associations that have been 
observed. 
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Figure 5 Results of the learning algorithm. The horizontal axis displays the tokens; in total 8000 tokens 

are presented. The vertical axis shows the accuracy as measured on the most recent 50 utterances. 

 
4.1.1.2 Method 
The learning algorithm is based on the assumption that the internal representation is updated as new 
stimuli are processed. The update rate is one of the parameters to be determined. At a certain point 
during a training, a new stimulus (utterance + tag) is presented. This stimulus is processed by the 
perception module, of which the outcome is stored into the sensory store, and from there into the 
short-term memory. The learner then attempts to interpret the new utterance in terms of the stored 
representations in the long-term memory. The aim to improve the interpretation of each unseen 
stimulus in terms of what it knows at that moment is the ultimate learning drive of the learner. 
 
4.1.1.3 Results in relation to automatic learning - acquisition and ASR 
 
The outcome of all experiments can be summarized as follows. 
 
Firstly, the experiments show that it is possible to build internal representations by processing HAC 
representations of input utterances by means of NMF decomposition.  
Secondly, internal representations are dependent on the speaker. This is shown by the difference 
between learning curves obtained in a randomized speaker setting and a speaker-blocked setting of the 
learning experiment. In the speaker-blocked setting, internal representations are built for one speaker, 
and must be adapted to the next speaker in order to obtain the same performance. In Fig. 5, the 
performance is shown in the case of randomised ordering of Dutch stimuli. The horizontal axis 
displays the tokens; in total 8000 tokens are presented to the Learner. The vertical axis shows the 
accuracy as measured on the most recent 50 utterances (approximating the ‘instantaneous accuracy’). 
In the beginning, no internal representations are built. As a consequence nothing is correctly 
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recognized and the accuracy is zero. Fig. 6 is similar to Fig. 5, the difference being that the 8000 
stimuli are presented in speaker-blocked fashion (female 1, male 1, female 2, male 2). The drop in 
accuracy for each new speaker shows that representations are speaker dependent if stimuli are 
presented speaker block-wise, where the blocks contain enough utterances (in this case 2000). 
 

 

Figure 6 Results of the learning algorithm. Stimuli are presented speaker-block-wise. 

 
Thirdly, learning results are sensitive to a specific set parameters that determine the way how the 
learning takes place. Interestingly, these parameters have a direct cognitive interpretation. We 
identified four parameters: 

a) the amount of material (stimuli) before internal representations are built. 
b) The amount of recently observed stimuli that us used to update existing representations or 

hypothesize new representations 
c) The number of times stimuli must be used internally for this update 
d) The ‘eagerness’ with which updates take place. 

Fig. 7 shows the dependency of the learning algorithm in terms of the amount of data used for 
updating its internal representation. For clarity, the learning curves are shown for the 2000 utterances 
of the first speaker only. The abbreviations ‘nsbt’ and ‘ml’ refer to ‘number of stimuli before training’ 
and ‘(internal) memory length’, respectively. Essentially the figure shows the sensitivity of the 
performance of the learner as a function of the size (‘ml’) of its working memory. For the update of 
internal representations, the learner should take into account the information gathered over the last 500 
utterances to obtain an eventual performance of beyond 90 percent accuracy. 
 
4.1.1.4 Ideas for the final year 
The HAC-model will be made cognitively more plausible by using a memory model that exploits 
forgetting to order the recognized items in time. 



 15

The vocabulary size will be extended by incorporating more acoustic information, i.e. features at 
different time scales produced by WP1. 
We will further explore the hierarchical organization of the learned internal representations. 
In the final year we intend to develop theories and experiments on how abstractions can emerge. We 
still do not know exactly how the concept of ‘abstraction’ should be interpreted. Using the Year 1 and 
Year 2 databases, we have conducted several experiments related the internal structure of the space of 
internal representations. One of these experiments was quite revealing in the sense that ‘abstraction’ 
on a certain level could be the result of a more efficient use of representational space when the 
collection of stored representations gets too crowded on a lower level. In this case, abstraction is 
equivalent to grouping. 
This directly relates to the use and implementation of hierarchies in the learning algorithm. 
 
 
 

 

Figure 7 This figure shows the dependency of the learning algorithm in terms of the amount of data used 
for updating its internal representation. The abbreviations nsbt and ml mean ‘number of stimuli before 
training’ and ‘memory length’, respectively. 

 
4.1.1.5 Questions to SAC 
Learning reusable phoneme-like internal representation from an acquired vocabulary has so far 
remained unsuccessful. For practical reasons, we have limited ourselves to deriving such 
representations from a vocabulary of about 400 words. Is there any evidence from human word 
acquisition experiments or from medium-vocabulary ASR that a phonemic organization could emerge 
from such a small vocabulary? Can we discern if the phonemic/phonetic structure in speech perception 
is a purely top-down learning process (i.e. observing that the representation of a vocabulary can be 
simplified by phonemes), a purely bottom-up (i.e. first observing that there are recurring acoustic 
events, phones and subphonetic events, that are combined to words) or a combination of both ? 
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One of the issues that remain is the question to what extent a word discovery method is able to explain 
results of a certain type of psycholinguistic experiments that show how abstraction explains the 
flexibility of internal representations. In the learning algorithm, representations enter into a 
competition and the boundaries between representations, once formed, are flexible and updated all the 
time during training. This adaptive behavior is common in both the explanation of psycholinguistic 
experiments and in the explanation of the competition between internal representations. So it is 
plausible to serve as common ground for a more extensive set of experiments. 
Another question relates to hierarchy. Is hierarchy the result of a more efficient use of representation 
space? And if so, which process determines the construction of and the levels in this hierarchy? 
Another, closely related, issue (that will come back in virtually all other approaches) is to what extent 
the variation that is pervasive in speech signals can be accounted for on a single layer, if one does not 
want to impose some kind of structure and units a priori. Accepting units that are defined a priori 
opens the possibility to learn probabilistic models for those units. In a sense, these putative units can 
be considered as an extra layer in the architecture. Is it at all reasonable to assume that structure can be 
discovered in data as variable as speech in a mono-layered architecture?  
A third question relates to the data used in the Y1 and Y2 database. In the consortium, we have 
discussed the pros and cons of this type of ‘artificial, semi-spontaneous’ real-speaker data at length. 
The rationale of using this type of data was to keep away from the fully artificial nonsense syllable 
sequences (Saffran et al, 1996) on the one hand and the ‘found speech’ as observed in realistic carer-
child interaction. The set-up that we settled on in ACORNS is inspired by discussions with Elisabeth 
Johnson when she was still working in Nijmegen. 
 

4.2 Multigram 
 
The multigram approach is another approach that is being explored in the ACORNS project. The 
multigram concept is especially useful for detecting recurrent patterns in sequences of symbolic 
entities. 
 
4.2.1 Aim of the experiment 
The aim of this experiment was to see whether the multigram algorithm can be used for word 
acquisition from spoken utterances that are accompanied by information from other modalities. In the 
original multigram algorithm (Deligne and Bimbot, 1997), symbolic input is explained by a set of 
units, multigrams, that emit symbolic strings stochastically. In our (and their) setup, each multigram is 
modeled by a Hidden Markov Model (HMM). The set of multigrams, their topology and parameters 
need to be learned. We have extended the multigram learning algorithm to cope with ambiguity, i.e. 
the input is not a string of symbols any more, but a lattice of symbols that describes a large collection 
of possible input symbols. Secondly, we have designed a method to link the discovered patterns 
(multigrams) with the information in other modalities. 
 
4.2.2 Method 
We have performed two main sets of experiments. 
In the first one, on the well-known TIDIGITS database, we wanted to forego the requirement that 
patterns are learned without any prior knowledge and rather focus on the pattern discovery itself. In 
other words, we have assumed that the phone inventory has already been learned before starting to 
discover word-sized patterns of phones. To this end a conventional HMM-based acoustic model was 
used to create a phone lattice for each utterance. By making use of our extended algorithm with lattice 
input, a self-discovered set of multigrams representing word-like units was derived from the train set. 
The utterances in that set were then segmented into these multigram units and a statistical mapping 
between the segmented 'words' and the multimodal information was performed. 
Finally, by segmenting the utterances in the test set and guessing the multimodal information i.e. the 
'meaning' of each utterance, a final score could be determined by comparing this guessed sequence of 
multimodal tags with the actual sequence of multimodal tags present in each utterance.  
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In a second set of experiments, we wanted to avoid using the prior knowledge of phones. We applied 
the multigram algorithm directly at the signal level, i.e. to vector-quantized spectra and their velocity 
and acceleration features, using the ACORNS year 1 database. Each feature stream generates 100 
symbols per second, a much higher symbol rate than at the phone level. There were 150 different static 
labels, 150 different velocity labels and 100 different acceleration labels. Initial HMM's representing 
word-like patterns were derived from the static stream. The intention was to train these on the train set 
using all three streams conjointly, much like the way it is done in the training of discrete density 
HMM's. 
  
 
4.2.3 Result in relation to automatic learning acquisition and ASR 
The results of the first attempted experiment on TIDIGITS were very promising. The results show a 
significant improvement of taking lattice input into account as well as showing global success 
discovering and grounding the vocabulary from phone-level input. All eleven words present in the 
database showed up as separate models in the self-discovered set, together with a small  number of 
distorted versions of some of these models (e.g. “wA” as a distortion of “wAn”) and a couple of 
garbage models. Mapping these HMM's to multimodal tags and using them to do recognition on the 
test set yielded tag recognition rates of around 90%. Interesting to note is that the recognition rate 
when using complete lattices yielded an absolute improvement of approximately 3%, compared to the 
result when using only the best path through the lattices, giving a tag recognition rate of approximately 
93%. 
The results in the second experiment, however, were a lot more disappointing. The learning algorithm 
starts off with an inventory of symbol sequences that occur sufficiently frequently and transforms 
them into an HMM per multigram. The parameters of the HMMs are re-estimated and the least 
probably multigrams are pruned. This iterative process is repeated. For VQ-label level input, it proved 
virtually impossible to determine an acceptable initial set of HMM's. Because of the increased number 
of symbol identities (150 VQ labels vs. about 40 phone labels) and because of the higher symbol rate, 
the emission statistics of a multigram become exponentially more complex: much longer patterns with 
more variation need to be searched for if we want them to model word-like units.  Moreover, a lot of 
variability is present in the label stream that is not observed in a phonetic transcription, such as speed, 
intonation,... On top of that, asynchrony of the spectral analysis window and the pitch instants can 
cause alternating sequences. All this causes the stream of VQ-labels to be a sequence that is too erratic 
to determine stable patterns from. The multigram algorithm relies on a prior probability for each of the 
patterns in the set, which is initialized by the relative number of occurrences of that pattern in the 
input. No such probability can be determined if every pattern of interest occurs only once or twice. 
Another observation is that the multigram algorithm needs to explain the complete input sequence in 
terms of multigrams. Hence, it has difficulty to cope with new words or input that is only partly 
known, which contradicts with human keyword spotting abilities. 
 
4.2.4 Ideas for the final year 
Due to its apparent lack of robustness against variations in speech, the pursuit of a full fledged 
language learning agent based on the multigram algorithm was, at least for the time being, 
discontinued. Our only hope to overcome the difficulties would be to make the learning process 
hierarchical, in which shorter (e.g. phone-sized) units with consequently less variation are discovered 
first. Word-level patterns would then be learned from the output of this layer. 
 

4.3 DP-ngram 
 
DP-ngram is a technique that allows the discovery of recurrent patterns directly by comparing pairs of 
acoustic utterances. In contrast to the multigram method discussed above, the input is sub-symbolic 
rather than symbolic. The DP-ngram method hypothesizes templates that are stored in order to be 
reused later. There are substantial similarities with the ideas underlying ‘episodic’ speech processing. 
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4.3.1 Aim of the experiment 
The experiments carried out using the DP-ngram algorithm show that it can successfully segment 
speech in an unsupervised and incremental manner. Results show that even with a limited memory of 
past utterances it is still possible to exploit the statistical regularities in speech to discover word-like 
units. Similar to the NMF experiments in section 4.2 there is no separate training/test set and 
utterances are processed sequentially.  
 
The algorithm aims for cognitive plausibility by beginning life with no prior knowledge of any 
language and carrying out segmentation in an unsupervised and incremental fashion.      
 
4.3.2 Method 
The DP-ngram model is able to segment speech, directly from the acoustic signal; automatically 
segmenting important lexical fragments by discovering ‘similar’ repeating patterns. Speech is never 
the same twice and therefore impossible to find exact repetitions of importance (e.g. phones, words or 
sentences). The use of dynamic programming techniques allows this algorithm to accommodate 
temporal distortion through dynamic time warping. Traditional template based word spotting 
algorithms using dynamic programming would compare two sequences, the input speech vectors and 
the word template, and penalise insertions, deletions and substitutions using negative scores. Instead, 
this algorithm uses quality scores, positive and negative, in order to reward matches and prevent 
anything else, resulting in longer more meaningful sub-sequences. 
 
The algorithm is also able to create continuously evolving internal representations of keywords by 
exploiting the cross-modal statistical regularities in the input stimuli (acoustics + visual tag). From the 
very first utterance we test the models internal representations of the keywords by asking it to predict 
the tag of every incoming utterance.    
 
As an incremental process the DP-ngram model only compares the current utterance with a set number 
of (earliest/latest) past utterances, dramatically increasing processing efficiency at the cost of 
decreasing the total search space. However, by re-using internal representations we can increase the 
search space by calling up segments from older utterances stored in the long term memory.       
 
4.3.3 Result in relation to automatic learning acquisition and ASR 
Results show that there is enough information in the input to build internal representations of 
important lexical units even with a very limited storage capacity for processing incoming utterances. It 
is also apparent that the re-use of internal representations allows the keyword hypotheses to become 
more accurate and stable at a faster rate by discovering more exemplar representations that would have 
been outside of the incremental search space. 
 
4.3.4 Ideas for the final year 
There are many possibilities for further research and experiments: 

a) The addition of prosodic features (rhythm & pitch) as a segmentation and/or attention aid. 
b) Hierarchically structuring the input stream with the discovered lexical units would allow us to 

analyze the relationships between units. 
c) Create variance models of the discovered speech units. Will sub-word units like phones 

emerge as the most efficient units for speech? Variance models of the units could be 
constructed to see if they exhibit phonetic categorization properties and evidence for native-
language neural commitment.      
 

4.3.5 Questions to SAC 
The DP-ngram model stores a list of episodic segments for each internal representation of important 
lexical units (e.g. key word). A major question that has arisen is how to cluster them to find a 
general/ideal representation. Does an infant use an accumulation/average of all heard exemplars of 
each unit or a single most ideal episodic representation?  Are there computationally efficient methods 
for combining cluster centroids with strategically chosen exemplars, or alternatively, for keeping some 
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representation of many exemplars in memory but organized in such a manner that each new input only 
activates a small subset of those exemplars, so that the computational effort in the search can be kept 
within feasible bounds?   

4.4 Computational Mechanics Modeling 
 
For Computational Mechanics Modeling the algorithm known as Causal State Splitting and 
Reconstruction (CSSR) has been explored as an approach to discovering structure without imposing a 
priori units. Similar to the Multigram method, also CSSR takes symbolic sequences as input. That 
means that this method may be useful AFTER some preprocessing has converted the ‘raw’ acoustic 
input into a symbol sequence (or lattice). 
 
 
4.4.1 Aim of the experiment 
The aim of the first year ACORNS experiments was to test the suitability of the so-called Causal State 
Splitting Reconstruction algorithm, or CSSR (described in the next section), for speech recognition 
and language acquisition. Since the algorithm appears not to have been tested much in this setting, the 
first experiment was to apply CSSR to a simple, speech-related dataset in order to study the properties 
of the learned representations. For this part the experiments used a text transcription of the Swedish 
first year ACORNS database recordings. Because the algorithm expects input from a small set of 
discrete symbols, the data was converted to a word-level sequential symbolic representation by 
considering each unique word in the data as one symbol. 
 
A second goal was to assess the behavior of CSSR on more realistic data, including complications 
such as noise. To this end, another dataset was generated, similar in character to the symbolic 
representation of the ACORNS recordings but also featuring low-probability symbol substitution 
noise. 
 
4.4.2 Method 
The CSSR algorithm is a convergent procedure for learning the so-called causal state representation of 
a stationary stochastic process from empirical data. The causal state representation is a minimal 
sufficient statistic for predicting the observation sequence; the states contain precisely all information 
from past observations relevant for predicting the future, and nothing more. The causal state set also 
has a natural interpretation as an HMM but, as the states are explicitly composed of strings of 
symbols, the current state can now be uniquely identified from the available sequence of observations. 
 
Unlike traditional ASR with HMM methods, CSSR performs unsupervised pattern discovery, not just 
recognition of previously learned patterns. However, at present, CSSR requires the data to be 
sequences of symbols from an alphabet of small size, such as phonemes. The algorithm may not 
converge if the number of causal states is not finite. There are also two user-set parameters. 
 
4.4.3 Result in relation to automatic learning acquisition and ASR 
Results from the symbolic representation of the Swedish ACORNS data were encouraging. Despite 
the limited amount of data, CSSR learned a near-perfect automaton representation of a stationary 
stochastic process to generate the observed data. Each state typically represented a specific word or 
position within one of the carrier sentences. 
 
When applied to the noisy data, on the other hand, the algorithm failed to converge on a limited set of 
causal states. It appears that the further back the CSSR algorithm looks at the data, more information 
comes to light that affects future behavior. As the algorithm is intended to capture all information 
relevant for prediction, these differences count even if their influence is small enough that a human 
would label them as noise. The algorithm thus discovers a very large number of distinct possible 
predictions for the future, each of which has to be represented by its own state. 
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4.4.4 Ideas for the final year 
In response to the high sensitivity to noise, an extension of CSSR is in development. The extension 
aims to reduce the complexity of the learned representations and increase robustness by adding a user-
set resolution level to the state splitting decisions within the algorithm. Only features indicative of 
large differences in future behavior are to be learned, and therefore be represented as distinct states, 
while less influential differences should be left to one side. 
 
A possible application of CSSR within the ACORNS framework would be to learn prosodic and 
phonic input streams from ACORNS sentences in parallel, and later reconstruct such prosodic 
information from phones alone, for segmentation purposes. 
 
Besides CSSR with resolution, other Markov model learners where states are represented as sets of 
observed strings are being considered, both as alternatives and for comparison. 
 
4.4.5 Questions to SAC 
Unlike some approaches within ACORNS, the HMM-style automaton output of CSSR is quite 
reminiscent of classical ASR. Where in the language acquisition and speech recognition process would 
discovery and use of such HMM pattern representations be biologically plausible? 
 

4.5 Automatic Segmentation 
4.5.1 Aim of the experiments 
Phonological parsing of continuous speech may be based on event detection or phone-like segments 
(Carlson-Berndsen, 1998). Since phonemes are the smallest units that are able to affect distinctions 
between words a bottom-up based ASR system should utilize this kind of representation at least on 
some level. The phone-like segments also provide a good way to represent relevant information in a 
compact manner. We have not confined our studies only to methods dealing with segmentation but 
have also continued work towards classification (clustering) of the segmental information based on 
our own version of incrementally learning vector quantization (ILVQ). Our general goal has now been 
set higher than signal patterning or pattern discovery as mentioned in the ACORNS Technical Annex. 
We are developing a novel bottom-up architecture (agent) able to learn spoken messages from 
examples that have rich internal representations and methods to cope with the real external world. This 
method can be tested as one proposal among others coming out of ACORNS. 
 
Our experiments so far can be catalogued as follows: 
a) Performance tests and studies of the segmentation algorithm 
b) The effect of spectral representations on performance in noisy situations (FFT vs. MFCC) 
c) Tests with incremental clustering (ILVQ) and preliminary ASR tests based on this model 
d) Tests on the effects and meaning of a simple attention mechanism 
e) Comparisons of ADS vs. IDS speech in Finnish and in Swedish 
 
4.5.2 Method 
In our framework speech is first segmented into phone-like units using the blind segmentation 
algorithm developed during Y1. The algorithm detects internally (spectrally) coherent regions of 
speech and places segmental boundaries to create units. Segmental categories are then obtained 
incrementally using these segmental units as input to the classification process. After exposure to a 
sufficient amount of speech, the statistics of the categories consolidate and the speech signal can be 
described as a sequence of activations of these categories in a systematical manner. The output of this 
process for each incoming speech signal is a sequence of categorical labels. Statistical methods can 
then be applied to the sequences in order to discover structures, e.g., sub-word or word-like units.  
 
We have performed a simple word learning experiment where transitional probabilities of adjacent 
segments (~phones) were tracked in the presence of multimodal input simulated by a visual tag. The 
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system was able to differentiate between the keywords found in the Y1 corpus (Räsänen, Laine & 
Altosaar, 2008) and to locate these keywords temporally in the utterance with good accuracy.  
 
Experiments with an external attentional mechanism were performed, in which occurrences of 
segmental units during the spoken keyword were emphasized over other phonetic content in the input. 
The idea was to test whether the prosodic aspects of input, or some other salient events in the 
environment that pinpoint the keyword in some context, could help the system to learn keywords. It 
was determined that at this still relatively low level processing level external attentional mechanisms 
are not necessary since all of the acoustic information can be processed in a bottom-up manner and 
familiar patterns will be discovered in the input despite a biasing focus to a specific part of the stream. 
 
Spectral and temporal properties of IDS and ADS speech were also analyzed and reported in 
(Räsänen, Altosaar & Laine, 2008). Using the Year 1 corpus as input, we tested whether our bottom-
up learning agent was able to differentiate between these two speech types by their spectral content. 
The system learned separate segmental category models for ADS and IDS speech and tested which 
model reacted better to speech segments in new input. With all speakers, the ADS/IDS speech type 
recognition rate was above chance (62 - 95 % correct). 
 
4.5.3 Result in relation to automatic learning acquisition and ASR 
The results show that it is possible to bootstrap self-supervised word learning using segmental level 
(coarse) statistics of the input in a purely bottom-up manner. This replicates several findings from 
behavioral literature (see, e.g., Saffran et al. (1996), Werker & Tees (1984) and Smith & Yu (2008). 
An unsupervised bottom-up path from acoustics to complex internal linguistic representations by 
statistical analysis has been illuminated from several aspects and it will be interesting to see what kind 
of representations can be formed in this manner.  
 
We have also developed a novel method for unsupervised speech segmentation and also clarified and 
unified the evaluation methods for automatic speech segmentation via a new R-value measure 
(Räsänen et al., submitted). Work has also been performed on novel methods for learning vector 
quantization that are especially designed for describing phone-like segments in a speech stream. In 
order to better understand discrete time-series representations of speech signals in ASR and learning, 
we have analyzed both segmental and fixed-frame approaches for structural description and pattern 
discovery (also in collaboration with the NMF group).  
 
4.5.4 Ideas for the final year 
We will continue to develop the incrementally learning, bottom-up system and to test its performance 
on all levels. The main quality measure in this development work will be word recognition rates on the 
ACORNS corpora. Therefore, we require a complete (bottom-up) ASR-system to run these 
experiments. We will also compare the results with the present, well performing NMF-system. We 
also hope to develop a deeper insight into bottom-up statistical processing of speech signals and find 
important links to research findings from infant language acquisition.  
 
4.5.5 Questions to SAC 
 
There is plethora of discussion around the concepts of bottom-up and top-down processing. In 
language acquisition and comprehension, at what level of processing does some kind of top-down 
feedback occur and at what point in infant development does this feedback begin? What is the type of 
knowledge that can be learned from speech that affects the further parsing of speech signals? At what 
level of processing does this occur (acoustics, sub-word units, words?). 
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4.6 Maps 
4.6.1 Aim of the experiment 
 
This section of the paper describes the development of an attention-gated recurrent working memory 
model that was developed towards the overall aim of the ACORNS project of producing language and 
communication skills based on sensory inputs in an emergent manner.  Hence this computational 
model is a small step towards the aim of the project to produce an agent that can communicate.  In 
terms of the stances identified in the examination of computational models of language learnability by 
Kaplan, Oudeyer & Bergen (2008) this research fits within the statistical stance and the embodied and 
social cognitive stance.  As the model relies on extracting linguistic statistical patterns from speech 
signals that offer a rich sensory input and is constrained by characteristics of the cerebral cortex.  The 
model combines an approached based on reinforcement learning to differentiate between speech and 
non-speech signals that can act as an attention mechanism so only speech is introduced into the main 
recurrent self-organising network working memory model that learns speech through a memory 
representation. 
 
4.6.2 Method 
 
As can be seen from Fig. 8 in the neural architecture the auditory signal is split into fixed time frames 
using moving overlapping windows with mel-frequency spectrum values extracted for each frame to 
represent the auditory signal.  Auditory frames are used to train the attention-gating element of the 
model to perform reinforcement learning to determine if the auditory signal is speech or non-speech.  
Once the decision is made as to whether an auditory section is speech, this can be used to control the 
input to the recurrent self-organising map model for learned emergent representation of speech.  It was 
decided currently to use fixed time frame-by-frame approach for the inputs into the attention-gated 
working memory model as it offers a real-time focus.  With this approach it is possible to introduce 
speech frames into the recurrent working memory model as they are identified by the gating 
mechanism as they are heard over time.  In Fig. 8 the recurrent self-organising model not only receives 
as input a speech frames, but also the activations of the previous time step of the self-organising 
network which provides a memory representation of the previous speech frames making up the speech 
element to produce an emergent speech representation.   
  
4.6.3 Result in relation to automatic learning acquisition and ASR 
 
When presented with speech (from the English ACORNS database) and non-speech (crowd noise) 
samples the trained reinforcement attention-gating system is able to detect correctly 93% of the non-
speech auditory and 80% of the speech frames.  The incorrect detection of speech frames by the 
attention-gating network is due in part to periods in the speech samples where there are no speech 
sounds for instance between words and so is unlikely to have little impact on the representation 
created by the recurrent working memory model.  The recurrent working memory system creates 
distributed temporal representations on the upper level self-organising map in Fig. 8 that are 
associated with specific speech sounds.  For instance, the top left hand area of the self-organising map 
represents the sound ‘S’ at the end or start of words such as ‘matches’, ‘taps’, ‘news’, ‘seen’, and 
‘comes’.  The top right of map is associated with sounds such as ‘SH’, ‘CH’, ‘JH’ and ‘K’.  In terms 
of the working memory model outlined by Baddeley (1992) the recurrent self-organisation model 
recreates some of the functionality of the phonological loop as it is able to store and assist in the 
acquisition of word.  As the working memory model is currently concentrating on developing 
representation of the speech waveform signal the representation created is associated with the speech 
sounds found within this signals.  However this is only a single component of representing speech by 
the cortex and as such the model will be extended in the future to incorporate visual semantic feature 
into the emergent representation of speech.   
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4.6.4 Ideas for the final year 
 
As part of the future work it is the aim to extend the current model by incorporating semantic features.  
As stated by Pulvermüller (2003) semantic feature also play a role in the representation in a word.  For 
content words the semantic factors that influence the cell assemblies come from various modalities 
and include the complexity of activity performed, facial expression or sound, the tool used etc.  Hence, 
the aim in the future is to combine the representation of the speech signal with a semantic 
representation of the word to give a richer representation of the word.  The recurrent self-organising 
representation of the speech signal is to be associated with a representation of the semantic features of 
the word using a further recurrent self-organising approach at the highest level.   
 
4.6.5 Questions to SAC 
 
When associating a speech signal and visual input what is the role of synchronization between them? 
 
 

 

 

 
 
 

4.7 Features that Exploit Auditory Knowledge 
 
4.7.1 Aim 
The auditory periphery provides a pre-processing for human speech recognition. To reach human 
recognition performance, signal features that are not audible are, at least in principle, not needed.  
More importantly, the human auditory system provides an important indicator of relevant distances 
between speech sounds. We conjecture that an acoustic feature set with Euclidean distances between 
sounds that approximate the corresponding distortions indicated by the human auditory system 
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Figure 8 The gated attention recurrent working memory model for emergent speech 
representation. 
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simplifies the design of a recognition system. Only when a recognizer has an input space with 
perceptually meaningful distances is the learning of meaningful signal patterns possible. This is 
particularly relevant in ACORNS since it aims to model an infant who has no prior knowledge of 
speech sounds. 
 
In this part of ACORNS, our aim is to develop a systematic manner to find a feature set where the 
Euclidean distance between sounds approximates the distortion at the output of sophisticated auditory 
models. This work is motivated by the fact that models of the auditory periphery have been improved 
significantly in recent decades. Until now, these models have not seen significant use in the context of 
speech recognition.  
 
4.7.2 Method 
Consider a vector x describing a speech signal segment. The objective is to find a feature set for which 
any perturbation ε of the vector x leads to a Euclidean distance that approximates the distortion 
indicated by the auditory model. Naturally, this has to hold true for all speech signal segments. To 
measure the similarity of the auditory model distortion and the feature vector distance we can correlate 
the auditory model distortions and the feature distances found for the ensemble of all speech segments 
x and all perturbations ε. A higher normalized correlation corresponds to a better feature set. 
 
The use of small perturbations allows us to simplify both the distortion measure of the perceptual 
model and the Euclidean distance for the feature set. We define quadratic approximations for the 
perceptual distortion and the feature distance, reducing the computational effort to a reasonable 
amount.  
 
As a first experiment, we selected a perceptually motivated subset of mel-frequency cepstrum 
coefficients (MFCCs) from a set of twelve MFCC for clean speech, using the well-known AURORA 
database.  This database consists of balanced sets of clean and noisy utterances. We used a relatively 
simple auditory model. We checked recognition performance of subsets selected with our method 
using the HTK recognition system. The full set of twelve features resulted in a recognition rate of 
97.4%. Using our method to select the subset of MFCCs, we retained a recognition rate of 96.6% for 
four MFFCC. In contrast, the recognition rate averaged over randomly selected subsets of MFCCs was 
84.2%. Similar results were found for other subset sizes. This indicates that perceptual measures can 
indeed be used to select a good subset of features. 
 
We are currently working on a second experiment where we optimize the parameters of known 
features, with the aim to obtain more effective features. 
 
4.7.3 Result in relation to automatic learning acquisition and ASR 
 
In any bottom-up recognition system such as ACORNS it is not logical to select or optimize the 
features for recognition performance.  Features must be selected based on a different criterion. The 
outcome of this work is a systematic method to find features with Euclidean distances between sounds 
that correspond to the “perceived distance” between sounds. Thus, instead of using a particular 
recognition system to find a good set of features, we use the human auditory periphery to select a good 
set of features.  
 
4.7.4 Ideas for the final year 
It is natural to extend the work in two directions. First, various auditory models can be used and their 
performance can be compared. We are particularly interested in the use of auditory models that show 
the effect of time-domain masking. Second, the method naturally leads to the definition of new 
features. We can either use the method to optimize parameters in existing features or to build features 
from scratch. 
 
4.7.5 Questions to SAC 
Are there indications that features that are not perceived by humans are useful in speech recognition? 
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4.8 Experiments with Semantic Features 
 
4.8.1 Aim 
Although the main switch from the usage of rigid tags to the use of semantic features will come with 
the use of the Year 2 database, first explorations with semantic features were already made during the 
first year. The primary issue we needed to solve was what sort of cognitive plausible module could 
provide a good interface between the presented features and the parts of the ACORNS implementation 
which is concerned with the acquisition of the auditory representations. The function of such an 
interface would be to take in the perceived semantic features of an object and transform it into 
activation or probability values of possible concepts. In line with the memory prediction model, we 
strived to allow this part of the ACORNS implementation to work with minimal a priori knowledge, 
i.e. the processing architecture should not have any prior knowledge about what concepts it was 
expected to learn. Further, the architecture should be able to create a representational hierarchy similar 
to the one observed in the sensory systems of the human brain. While a mapping from low level 
sensory features to high level sensory features was taken as given (ACORNS is not about sensory 
processing other than in the auditory domain), we tried to capture the hierarchy from high level 
semantic features to conceptual units. As argued by Levelt, Roelofs, and Meyer (1999), concepts 
cannot be represented as feature clusters, but need to be represented as non-decompositional 
conceptual units. One major reason for this is the hypernym/hyponym problem: if concepts are 
represented as feature clusters, the conceptual representation of any word has at least all the features of 
its hypernym. It would therefore be impossible to activate, e.g., the word “daddy” without triggering 
the word “man” at the same time. However, if concepts are indeed represented as non-decompositional 
units, at least two other problems remain to be solved (given that the input to the semantic system are 
perceptual features): (i) explaining the emergence of such units during the acquisition of conceptual 
knowledge and (ii) preventing the analogue to the hypernym/hyponym problem to occur at the 
conceptual level, i.e., the problem that the input features leading to the activation of conceptual unit 
[[daddy]] would also trigger the activation of [[man]]. While the hyperonym problem is not very 
prominent in the first year database with its limited words, it will already be in the Year 2 database 
when words like man and daddy, bear and toy, or food and apple are in the vocabulary of almost every 
child, indicating that the human cognitive system is able to deal with this problem.   
 
 
4.8.2 Method 
In keeping with the general spirit of the memory-prediction model, we tested several biologically 
inspired learning algorithms, among them: direct Hebbian associative learning, Self-Organizing Maps, 
biased competitive layers, as well as Restricted Boltzmann Machines. All but the Hebbian algorithm 
allow the recruitment of units on a higher level to represent higher level concepts.  
 
4.8.3 Results  
After testing several architectures, the most appropriate for this task was the competitive-layer 
architecture. We demonstrated that the conceptual analogue of the hypernym/hyponym problem did 
not occur in this architecture. The architecture was further able to acquire the correct conceptual units 
as higher level representations from the presented semantic features without any a priory knowledge in 
a purely unsupervised manner. Finally, we could replicate overgeneralizations (e.g., the use of the 
[[dog]] concept for everything with four legs) reported in the literature (e.g., Clark, 1973), one of the 
most basic behavioural findings related to semantic features during first word acquisition.  
 
4.8.4 Ideas for the final year 
One exploratory study would be to use simple images of objects and use the Restricted Boltzmann 
Algorithm to extract the features from the image. This would reduce the arbitrariness of the selected 
features and make the visual/semantic process more similar to the auditory process.  
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4.8.5 Questions to SAC 
How realistic is our training situation in comparison to the learning situation of real children. In 
particular, how much information do children refer about which word in an utterance refer to which 
object in a scene.  
 

5. General questions to the SAC  
From the literature on child language acquisition it is increasingly clear that more than one ‘learning 
mechanism’ is involved. There is convincing evidence that infants use statistical patterns in speech 
(Saffran et al., 1996) In one experiment 8m old infants listened to a 2 minute continuous nonsense 
sequence of syllables simulating sequences of multisyllabic words (‘golabupabikututigolabubikutu’). 
Infants appeared to be able to distinguish syllable sequences with higher frequencies from ‘words’ 
made of lower-frequency sequences, showing that infants are indeed able to detect and use the 
statistical properties of the speech stream. Later experiments showed that infants are sensitive to 
transition probabilities (Saffran et al., 1999, Swingley, 2005). The structure discovery approaches in 
ACORNS seem to be able to find similar statistical structure in real speech signals.  
Infants also seem to be able to infer some kind of generalisations from statistical patterns. For 
example, experiments suggest that infants may detect violations of tokens that do not meet 
phonological patterns, but the results are not uncontroversial (Marcus Marcus, Vijayan, Rao, and 
Vishton, 1999, see also Seidenberg, MacDonald, & Saffran, 2003). However, it is not evident what 
simulation experiments should be performed to arbitrate between alternative interpretations of the 
behavioural data.  
 
Perhaps the most important thing that we learned in the first two years of the project is that the gap 
between existing models of memory, representation and learning in the literature on language 
acquisition on the one hand and computational models that can take real speech utterances as input for 
learning on the other hand is much larger than anticipated. Due to this gap it is possible to map quite 
different learning approaches, resulting in quite different internal representations, onto the general 
models shown in Figs. 1 and 2. One consequence of this is that it is difficult to interpret the different 
strengths and weaknesses of the approaches that we have explored so far. It is also very difficult to 
design simulation experiments that directly tap into the questions that still linger in the linguistically 
oriented language acquisition community.  
 
This raises the following questions 
 

1. What would be experiments that we can do with the techniques and databases that we have 
developed so far that could answer burning questions of the SAC members 

2. What would be the best way to proceed to 250 words, the final goal according to the Technical 
Annex.  

3. Does it make sense to go to 250 words, or are there other issues that can be addressed without 
a new database (and preferably also without new computational modeling approaches) that are 
more interesting?  

4. Any attempt to go to 250+ words would require some kind of hierarchical (layered) 
representation, with appropriate corresponding processing. So far we have not managed to 
define one single processing strategy that is adequate for all types of representations and on all 
levels (except perhaps in purely connectionist models). It has been suggested that the idea that 
the seeming homogeneity of the neural fabric should result in the same way of processing at 
all times and all levels is misleading. Language acquisition literature suggests that new 
processes come into play as the number (and perhaps complexity) of the neural representations 
increases.  

5. How to exactly address hierarchy and generalisation? In several experiments, we have 
observed glimpses of some form of generalisation.  
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• speaker-dependent word representations can be clustered to obtain speaker-
independent word representations – this COULD be interpreted as a result of a too 
crowded set of representations on a lower hierarchical level 

• the learner is able to discover the speech style (IDS/ADS) based on many word  
tokens with an accuracy of about 80 percent – too many to store them individually, so 
a form of ‘abstraction’ must have taken place 

 
 
All structure discovery approaches that we have investigated so far appear to be hampered by the 
large amount of variation in speech signals. To the best of our knowledge there are no structure 
discovery methods that can operate on semi-continuous inputs, such as MFCC vectors, or other frame-
based representations of the signal. The only exception here might be artificial neural networks, but it 
is questionable whether networks can be trained for such a large task as language acquisition.  
It has been suggested that all structure discovery methods that have been developed for discrete 
symbolic data will encounter serious problems if the number of labels grows too large, and ‘too large’ 
might well be anything with more than 50 – 100 elements in the basic set (Lin et al., 2007). If this 
holds true for all structure discovery methods, what are the consequences for language acquisition? 
Can the problem be solved, at least in part, by not requiring exact matches between input signals and 
the representations of a finite set of units? Would it still be possible to mix units of different size 
(sound, syllable, word, etc.) and combine these for building larger structures on higher levels of the 
hierarchy?  
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