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Understanding the communicative intention of a speaker is the ultimate goal
of language comprehension. Yet, there is very little computational work on this
topic. In this chapter a general cognitive plausible model of how an addressee
can understand communicative intentions is presented in mathematical detail.
The key mechanism of the model is simulated role-reversal of the addressee with
the speaker, i.e., the addressee puts himself in the state of the speaker and —
using his own experience about plausible intentions — computes the most likely
intention in the given context. To show the model’s computational effectiveness,
it was implemented in a multi-agent system. In this system agents learn about
which states of the world are desirable using a neural network trained with
reinforcement learning. The power of simulated role-reversal in understand-
ing communicative intention was demonstrated by depriving the utterances
of speakers of all content. Employing the outlined model, the agents never-
theless accomplished a remarkable understanding of intentions using context
information alone.
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1. Introduction

When a baby cries, the information content transmitted in the acoustic
signal is very lowa. Nevertheless, a mother can usually understand what
the baby desires. She can do so because she understands (i) the context
of the cry (last meal, state of diapers, etc.), as well as of (ii) the normal
desires of a baby (to be fed, to be dry, etc). While utterances with such a
low information content are exceptional, it is generally the case for almost
every utterance that the literally transmitted information is not sufficient
to understand the communicative goal of a speaker, but context and likely

ai.e., although the individuals cries might be quite different, these differences do not
systematically related to a difference in content (at least not in the early stages of
development).
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desires are required as additional key parameters. To understand the com-
municative goal of a speaker is not a minor side issue, but it is the overall
purpose of every act of inter-human communication. At the very funda-
ment of human communication lies the understanding that a speaker (or,
as in the example above, a crying baby) has a certain intention and wants
you to understand this intention.1 And to understand this intention, the
context (including the current state and history of the speaker, as far as
it is known the the addressee), as well as our estimation of likely desires
of the speaker are essential sources of information. Only an approach inte-
grating these can be considered a good model of human communication. In
fact, our good understanding of each other, despite the fact that our utter-
ances are so imprecise and sparse in terms of content can only be explained
within the framework of such an integrated approach. Embedding cogni-
tive processes involved in communication and language in a more general
framework of processes concerned with the understanding of intentions is
considered essential,2,3 but so far very little computational work uses such
an approach.

To understand intentions in the way described above requires a number
of cognitive abilities. First of all, a person must have the ability to attribute
a desire to another person, even if this desire is different from desire the at-
tributing person has himself. This ability has been coined Theory of Mind.4

This term is generally considered to include the second precondition of the
model outlined above: the ability to regard actions as caused by those at-
tributed inner states. Given that these two conditions are fulfilled, we can
ask the question of how it is possible for a person to compute the underlying
desire of an action.

The contemporary philosophical literature distinguishes two contrasting
approaches to solve this problem: theory-theory and simulation theory.5–7

While theory-theory would describes this computations as a detached the-
oretical process, simulation theory postulates that we simulate the mental
state of the observed person in our own cognitive system. In other words,
we put ourselves in the shoes of the other person. This means, for example,
that we could estimate an emotional state of a person by simulating the
situation or context of that particular person.

One of the main computational advantages of simulation theory over
theory theory is that the machinery used for understanding an action is
more or less the same as the machinery used for selecting your own action.
The model I will present in this chapter draws heavily on this advantage.
All the components an agent uses to understand an intention are the same
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as those the agent uses for the selection of his own goal-directed actions.
What I will present is a first simple computational approach to model the
understanding of communicative intentions taking into account the context
and likely desires. To demonstrate how effective these two parameters can
be used in understanding a communicative intention, I will use commu-
nication signals that are utterly empty in terms of content (comparable
to the cries of a baby), with the only information transmitted being that
an act of communication has been made. A multi-agent system is used in
which agents receives a reward if they are in a certain class of states of the
environment. Using reinforcement learning,8 the agents learn which states
of the environment are desirable. Agents can perform a set of non-verbal
actions to get into these desired states. In certain cases a desired state
cannot be produced by an action of the agent itself, but by the action of
another agent. In these cases, an agent is allowed to produce a commu-
nication signal without any content. The desired state that the signaling
agents is trying to accomplish is considered the communicative intentions.
The agent decides which action (among non-verbal and the one verbal) to
perform by means of a Markov decision process using a value function and
a pre-programmed forward model as it was described in previous work.9

Using their own experience - their knowledge about which states of the
environment are desirable, as well as their full awareness of the current
state of the speaker, the addressees computes the plausible intentions of
the speaking agents by a form of role-reversal. After putting themselves
into the state of the speaker, the addressed agents use their forward model
to test which of the plausible intention of the speaking agent they can ac-
tually bring about (assuming that the speaker wants them to bring about
a certain state). Of those role-reversed states that the addressee is able
to bring about, it is the one with the highest value that is considered the
communicative intention of the speaker.

2. Method

Value Function

In the simulation work presented in this chapter, a value function V () maps
complete states of the simulated environment to a value (equation 1).

V π(st) = Eπ{
∞∑

k=0

γkrt+k+1} (1)
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The value is an estimations of how good it is for an agent to be in this
particular state (i.e. how much he desires the state). Values are positive or
negative real numbers. V π(st) is the estimation of the value of state st at
(discrete) time step t under a policy π.10 Here, π is a mapping from states
s and actions a to the probability π(s, a) of performing action a when
in state s. V π(st) is defined in terms of the expected sum of discounted
rewards r. The expected value is taken with respect to the Markov chain
{st+1, st+2, ...} where the probability of transition from state st+k to st+k+1

is given by π. Future rewards are discounted by the discount factor γ. The
higher the value of γ, the more importance is given to later rewards, i.e.
the less they are discounted (see Ref. 10 for a more detailed explanation of
the formula and the theory that goes with it).

The value function is implemented as a single-layer feed-forward neural
network. To train this network we used TD(0) reinforcement learning.8

In TD-learning, the so-called TD-error gives the distance from the correct
prediction and the direction of the deviation. Thus, it can be used to change
the weights of a neural network. The TD-error δ is computed by subtracting
the current state value of state st V (st) from the sum of the reward rt+1

and the value of the next state V (st+1) times the discount factor (equation
2). Given δ, the value of the state V (st) is changed to V (st) + αδ, where α

is the rate of change (equation 3).

δ = rt+1 + γV (st+1)− V (st) (2)

V (st)← V (st) + αδ (3)

Action Selection

The value function allows to determine the most desired state of every agent
in every state: the desired state is the state with the highest value. However,
not every state can be reached from every other state. In fact, apart from the
context state st only those few states are accessible which can be produced
from st through a single action in a single time step. Therefore, the value
function only needs to compute the value of those states which can be
reached from the current state. To compute which states are accessible, or,
in other words, to select a (verbal or non-verbal) action the consequence
of actions needs to be estimated. This is accomplished with another device
- a so-called forward model.11 Within motor control, forward models are
used to predict sensory consequences from efference copies of issued motor
commands.12 In the model described in this paper, we use forward models
for the selection actions in the following way: the outcome of all possible
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actions in the present context is predicted with the forward model and then
the action which produces the most desired effect is chosen. F predicts a
subsequent state s∗t+1 based on a current state st (context) and a possible
non-verbal or verbal action (utterance) u∗

t .

s∗t+1 = F (st, u
∗
t ) (4)

Given the forward model F , utterances and actions are selected by
means of a function argmaxu which selects the verbal or non-verbal ac-
tion that produces the most desirable state (equation 5).

ut = argmax
u

[c(st, u
∗
t ) + V (F (st, u

∗
t )] (5)

This function returns that one from all possible a∗
t ’s which, given the

context st, is mapped by the forward model F into a state s for which the
value function V returns the highest value. Since π(s, u) can be determined
on the basis of the function described in equation 5, we will, for the rest of
this article, no longer talk about π, but only about the forward model and
the value function.

Fig. 1. The figure shows the architecture of action selection. In the current state st, the
forward model F () is used to predict the outcome of possible non-verbal or verbal actions.
The value function V () then estimates how desirable such an outcome is. The selected
action is the one which leads to the most desirable outcome. After action selection, the
environment determines the reward r and the next state st+1.
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To be able to choose a verbal action, an agent needs to be able to
compute the outcome of such a verbal action. In the simulations described
in this chapter this is done in the following manner: Given the current
state the speaker computes the outcome of all possible actions of a possible
addressee with the pre-programmed value function and estimated the value
of those outcomes with his trained value function. If any of the actions of
a possible addressee leads to a state with a higher value than those states
he can bring about himself he will choose to signal this addressee. This,
of course, assumes (i) that the addressee will understand what the speaker
want from him - which is only the case in later stages of training and (ii)
that the addressee will actually cooperate. To keep things simple and we
avoided all issues related to cooperation and made it a general policy of the
addressee to cooperate.

Understanding Intentions

Here we state the mathematical and computational core of the theory pre-
sented in this paper. It is based in the following assumption:

(i) The addressee assumes (correctly in our simulations) that, if he is
spoken to, the speaker desires that the addressee performs an action and
that this action is the one that is the optimal action for the speaker in the
current circumstances.

(ii) The value function of the addressee can serve as an approximation of
the value function of the speaker, i.e. speaker and addressee desire similar
things in similar situations.

Therefore, to understand the communication intention of a speaker, an
addressee needs to (i) understand the current state of the speaker, including,
of course, the speaker’s environment. This is, of course, a highly idealized
assumption. In the simulation presented in this chapter, agents, however,
have full access to the complete state of the game. The state, however, needs
to be role-reversed, i.e. the addressee needs to put himself in the shoes of the
speaker. On the basis of this role-reversed current state, the addressee can
find the action that is optimal for the speaker using his own value function
to serve as an approximation of the value function of the speaker

a = argmaxVspa(F (sc, aad)) (6)

The role-reversed value function is denoted by Vsp. I use the term de-
sire and intention in the following manner. States of the world which the
agents know to be beneficial for themselves are desired states, while states
of the world which they are actually trying to reach by some action or
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utterance are called intended states. In our theoretical framework an agent
has many desires. However, only some of these desires actually become in-
tentions. The desired state that triggered the verbal action is regarded as
the communicative intention of the verbal action. If the addressee chooses
an action that brings about this intended state he has correctly understood
this intention.

The Acquisition Environment

We test our hypotheses about language acquisition and communication in
a simulation of a multi-agent game. The goal in this game is to obtain food
through verbal and non-verbal actions. In this simulation, food grows in
certain intervals on trees (how this time interval is calculated is explained
in the appendix). There are three trees T1...T3, growing three types of food.
Every tree Ti can hold maximally 5 pieces of food. Time is supposed to
advance in discrete jumps, from t = 1 to t = 2, t = 2 to t = 3 etc. Each
two successive times ti and ti+1 are separated by an action ati of one of the
agents, so that the state sti+1 at ti+1 is the result that action ati produces
in the state sti .

Within a certain time interval (do) invariably one piece of food gets
digested, i.e. it disappears. Once the total amount of food in the game is
below the threshold no, 3 pieces of food grow simultaneously on one of the
three trees. Because of this design, the agents cannot afford to rest once
they have gained a sufficient amount of food items. Agents never starve to
death, but for every time step during which they do not have any food they
get a very negative reward.

Agents can perform one of the following 12 actions:

• harvest a tree, i.e. collect all its food (3 possibilities)
• give one piece of food to another agent (2 other agents × 3 food types =

6 possibilities)
• send a communication signal to one of the other agents (2 other agents

= 2 possibilities)
• no action (1 possibility)

At each transition between two successive times, only one agent can
perform an action. This agent can perform either one non-verbal or one
verbal action. Generally, the agents take turns. However, when an agent
asks another agent for a type of food, the normal order of play is suspended
for one time step and while the addressee gives (or fails to give) the desired
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object to the speaker. An agent can only address one of the other agents,
never both of them.

The goal of the agents in the game is to have at least one piece of each
food type at all times. Therefore, the reward function was designed in the
following way: Each agent gets a reward at every time step. If an agent has
at least one item of every food type, he gets a reward of +3, otherwise he
gets −1 for every food type which is missing in his store at that time.

3. Results

We performed a number of simulations during which the neural network
based value function of the agents were trained and the percentage of cor-
rect understood communicative intentions were measured. Figure 2 shows
a Hinton diagram of the weights of trained value function (at the end of the
simulation). In that simulation a high γ-value was chosen and, as a result,
the agents have learned that it is good to have more than one item of every
type, although a direct reward is only given for the first item of each type.
The diagram also shows that the agents all have a good understanding of

Fig. 2. This figure shows the weights of the value functions of the three agents for a
γ - value of 0.9. The size of the squares represents the strength of the weights; the color
represents the polarity (white is positive, black is negative).
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Fig. 3. The figure shows the average percentage of correctly understood communicative
intentions over 15 runs.

which states of the game are desirable. Note, however, that there are subtle
differences between the weights of each agents — even when the states are
role-reversed the computed value will not be exactly the same.

This is also the reason why the number of correctly understood com-
municative intentions does not go up to 100%, but reaches a plateaux of
about 80% after an initial fast increase of performance in the beginning
(see Figure 3. This slight difference in value function is probably due to the
fact that the weights are initialized randomly and for exploratory purposes
during action selection a random number is added to the value of every
action outcome. Nevertheless, given that no verbal information is given to
the agents, the number of correctly understood utterances after a short
training interval is remarkably high.

To illustrate the exact way the system works, two example conversa-
tions are shown here (see Figure 4 for the exact situations in which the
two interactions took place). The first one is an incorrect case from early
training (time step 2066 of 20000), i.e. the addressee does not understand
the communicative intention of the speaker, due to his incompletely trained
value function.
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Fig. 4. This figure shows the situations of the two example interactions.

(i) Agent 3 needs food type 3. He correctly addresses agent 2 who is the
only agent who has this type of food.

(ii) Agent 2 has items of all three food types. For each of the three food
types he computes the consequent state should he give agent 3 an item
of this type. Then, using role-reversal, he computes what value the
three consequent states would have for agent 3. Due to his insufficient
training he computes 0.2649376 for food type 1, 0.25863677 for food
type 2, and 0.2633224 for food type 3. As a result, he gives agent 3 and
item of food type 1 — clearly the wrong interpretation of the speaker’s
intention.

The second example is a correct case from the later stages of training
(time step 19808 of 20000) when the addressee correctly understands the
intention of the speaker.

(i) Agent 1 needs food type 3. He beeps agent 2, since agent 3 does not
have food type 3.

(ii) Agent 2 has food type 2 and 3. He applies his value function (role
reversed) to the outcome of the possible actions of giving agent 2 food
type 2 (value: 1.2755736) or food type 3 (value 1.28508). Consequently,
agent 2 gives food type 3 to agent 1 — the correct interpretation of
the speaker’s intention.



February 18, 2009 10:43 WSPC - Proceedings Trim Size: 9in x 6in MKlein

13

4. Discussion

This chapter introduced a general cognitive plausible theory of intention
understanding in mathematical detail. Its effectiveness was demonstrated
in a number of simulations using multi-agent systems. The estimation of
intentions was performed with a value function implemented as a neural
network and trained with reinforcement learning. To demonstrate the power
of the approach we used utterances without content, so the only information
an addressee did receive was that an utterance has been made. Nevertheless
the amount of correctly recognized communicative intentions was around
80% after training.

One of the reasons for the recognition rate to be that high is the current
implementation uses two major simplifications of the simulated world in
comparison to real communication situations. The first one is that the state
of the speaker and its context is fully accessibility to the addressee. The
second one is that there is a close similarity between the value function of
all agents. The similarity is accomplished by the fact that they are given
exactly the same rewards and they also use the same γ parameter (i.e.,
they have the same attitude towards the relation between short term and
long term goals). And while it can be generally assumed that all humans
have somewhat similar goals just by the fact that they are the same species,
difference in goals are given by genes and environment.

Simulations that do not use these simplifications are bound to be inter-
esting and would be a possible extension of this work. However, when the
value function of the agents start to differ due to differences in experience
and hard-wired parameters, agents need to rely stronger on the verbal con-
tent of an utterance to determine the communicative intention. Therefore,
a model needs to be developed that can use information given literally in an
utterance (as in previous work9) together with the context and information
obtained through role-reversal.
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