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Overview milestones and deliverables in WP5, Year 3:

Milestones
M5.6 Due M27 Specification of the 

experiments in the third year
M5.7 M34 Complete implementation of 

learning system
M5.8 M34 Release of open source 

memory-prediction based 
learning software

Deliverables
D5.3 M36 System capable of rapidly 

learning large vocabulary



Task description in WP5

WP5 is a workpackage with four ‘main tasks’. In the Technical Annex, these tasks are 
described as follows.

Task 5.1 Creation of a platform for learning in the memory-prediction framework
In this task we will create the basic software environment that is needed to integrate the modules 
produced in WP1 – WP4 and to conduct experiments with language learning. We will provide the 
part of the system that generates the agent’s responses. The platform will come in two versions: one 
for off-line experiments, and one that can be used for demonstrations.
Task 5.2 Multimodal integration
This task is dedicated to the development of procedures and software for the integration of speech 
input and visual input for disambiguating spoken utterances and feedback that is equivalent to 
hugging.
Task 5.3 Architecture for interaction
In this task we will design and implement a fully operational system that can conduct a multimodal 
dialogue, using perception-action loops on several parallel levels. Loops at the lowest level cater for 
latency-free communicative responses, without the need for parsing the semantic contents of an 
utterance. At the highest level the system must be capable of conscious reasoning.
Task 5.4 Experiments with language learning
Three major experiments will be performed, corresponding to three stages of language learning. In 
the first stage the system will learn basic communicative behaviour, mainly to show that is can 
engage in interaction. In the second phase the system will acquire a basic vocabulary, resulting in the 
emergence of sub-word units. In the third experiment the system will learn a larger vocabulary and 
basic rules of syntax.

Task description, with focus on the third year:

Task 5.1 Creation of a platform for learning in the memory-prediction framework
From the experiments done in year 2, it appeared that the three major computational approaches 
(NMF, CM, and DP-ngrams) all had their own merit and advantages. In the December 2008 SAC 
meeting and the previous review, it was recommended to explore these computational approaches in 
parallel. As a result, the third year was devoted to creating the MATLAB platform in three 
instantiations, each specifically focussing on each of the three computational approaches. The 
resulting platform can be used in a ‘stand-alone’ version for off-line experiments – this version can 
also be used for demonstrations.
Task 5.2 Multimodal integration
This task has been addressed by exploiting the way in which information from the audio channel 
and the ‘semantic-visual’ channel can/must be integrated. The specific questions here are the 
encoding of the visual information and the manner in which realistic ambiguity can be added to the 
visual channel.
Task 5.3 Architecture for interaction
In year 1 and 2, all experiments were done in such a manner such that the caregiver and learner were 
involved in simple turntaking. Also the interaction was such that the learner accepted the ground 
truth from the caregiver, such that the learning was essentially supervised. In the third year we have 
done experiments that open up the set of options during the interaction, to decrease the level of 
supervision and to enable the learner to cope with her own certainty and uncertainty levels.
Task 5.4 Experiments with language learning
All the previous tasks are addressed in experiments based on the speech corpora that were recorded 
in the ACORNS project. In accordance with the recommendations of the SAC meeting and the 
previous review, the focus was not any more on the learning of ever more words, but on 
understanding the processes involved in learning.



1 Experiments performed in year 3

1.1 Background
The goals and design of the experiments in year 3 (Milestone M5.6 Due D27) were 
based on the experience and experimental results obtained in year 1 and 2, and the 
recommendations in the previous review in January 2009.

In year 1 and 2 of the project, the ACORNS models of language acquisition have been 
tested on utterances with increasing complexity. In the first year, we started with 
using utterances collected in the first ACORNS database. This database (in the 
ACORNS documents referred to as ‘Y1-database’) contains utterances of which the 
structure has been inspired by the properties of speech that is addressed to (very) 
young infants. Infant-directed speech differs in many aspects from adult-directed 
speech and is mainly characterized by a limited lexicon, a simple syntactic structure, 
repetitions, exaggerated prosodic patterns and a somewhat lower speaking rate (e.g. 
Kuhl, 2004). 
In the ‘Y1-database’, each utterance contains only one target word. A ‘target word’ is 
a word that the learner (in our case, an algorithm) is supposed to detect and learn from 
being exposed to these utterances; in the Y1 database these target words were nouns 
and proper names. The set of target words has been inspired by the contents of 
Communicative Development Inventories (CDIs, Bates, Bretherton, & Snyder, 1988; 
Fenson, Dale, Reznick, Thal, Bates, Hartung, Pethick, & Reilly, 1993; Fenson, Dale, 
Reznick, Bates, Thal, & Pethick, 1994; Tomasello & Bates, 2001) that are available 
for several tens of languages.
The Y1 database is recorded in four languages (FIN, SWE, English and NL).

Typical examples of utterances (English) are

I see a truck.
There is Daddy.
The car is nice.

Several papers were published on the basis of these first year data and experiments 
(www.acorns-project.org). In general, the experiments in year 1 showed that each 
of the three computational approaches (NMF, CP-Ngrams, and Concept Matrices) 
were able to detect word-like units from multimodal stimuli that were composed of an 
audio part and an (abstract) ‘visual’ part. At the input side, audio and visual 
(‘grounding’) information were always coherent: The keyword in the audio part of the 
stimulus always referred to the object that was abstractly encoded in the visual 
modality. In the first year, the emphasis was on the use of these algorithms in batch 
mode.

In year 2, the database has been extended using utterances with a more complex 
syntactical structure, in which more than one target words can appear. Also the overall 
number of keywords was increased from 10 to 50, and the set of target words was 
extended to include action verbs and adjectives in addition to nouns and proper 
names. The database has been recorded in three languages: Dutch, English and 
Finnish. Typical sentences in the Y2 database are

There I see a green frog and a truck
Where is the red aeroplane?

http://www.acorns-project.org/


In the construction of the sentences, semantics did not play a role. It was avoided to 
have semantic clashes such as

Mum likes a green red apple 
I see a big small aeroplane and a frog 

but implausible constructions such as happy aeroplane were allowed. 

Also in the case of these more complex utterances, the ACORNS models were able to 
find recurrent word-like units from multimodal stimuli. While for the ‘simple’ 
utterances an accuracy of 97 percent and beyond could be attained, the performance 
on the more complex utterances was about 90-95 percent (these figures depend on the 
method and on the details of the evaluation.). In the second year, DP-Ngrams, CM 
and NMF became available in incremental mode.

1.2 Towards the third year

On the basis of experiments performed in the second year, a number of issues were 
brought up for investigation in the third year. These issues were also inspired by the 
Scientific Advisory Board (SAC) meetings that took place end of 2008, and by the 
recommendations of the reviewers during the second review in January 2009.
The discussions and scientific advice led us to move the WP5 focus away from the 
learning of ‘ever more words’, as the original deliverable title (‘System capable of 
rapidly learning large vocabulary’) suggests. Instead, we have shifted the focus to 
gaining insight about the learning processes themselves and the internal 
representations. This will be clear from the issues addressed.

The first issue is how the different computational approaches could be compared. The 
second issue is to what extent it is possible to relate model results to findings 
described in the literature on language acquisition. One of the findings, reported in 
Newman (2008), provided a good example of an empirical result that could be 
compared and contrasted with results obtained by computational simulation. 
Newman’s statement is that young infants are better in recognizing novel speakers if 
they have been exposed to more different speakers earlier. This observation is closely 
related to the current debate about episodic and abstractionist processing of speech 
(see e.g. McQueen, 2007).
It was decided to investigate these two issues in a single experiment in which the three 
computational approaches NMF, CM, and DP-Ngrams were compared in their ability 
to reproduce Newman's results. This addresses Task 5.4. It was not the intention to 
see which algorithms performs ‘better’ than other algorithms. Instead, the comparison 
was meant to gain insight in the different types of behaviour, based on different 
learning principles. This experiment is described in section 2 (and is published in 
Interspeech 2009, ten Bosch et al, 2009).

The third issue, which was also raised by the reviewers, concerned the type of 
encoding of the visual information. This directly addressed task 5.2. Visual (or 
‘grounding’) information is presented to the learner in combination with the auditory 
information. This encoding issue already surfaced from the experiments based on 
networks such as Self Organizing Maps (see Klein et al., 2008) and by word learning 
experiments involving multilingual input in year 1. The question is to what extent the 



grounding information in the visual domain was too ‘crisp’ and to what extent this 
information could be made less invariant and therefore more realistic. In year 3 we 
investigated what types of low level (‘sensory’) or high level (‘conceptual’) variability 
could be used to make the visual input more ambiguous. The experiments addressed 
the question how different categories of objects can be distinguished and how 
individual tokens within a category can be recognized. Ideas underlying feature 
encoding, as well as experiments with different feature encodings are discussed in 
section 3. 

The fourth issue relates to the way caregiver and learner interact with each other.
In most ACORNS experiments, we have assumed that the caregiver always presents 
complete and consistent stimuli. Each stimulus consists of an audio part and a ‘visual’ 
(grounding) part. In the experiments so far, the learner takes each stimulus ‘as it 
appears’. That is, the learner assumes the stimulus to be consistent, and does not doubt 
the consistency between the modalities in the stimulus.
Many scenarios can be designed that deviate from this idealized-world scenario.

• At the caregiver side: the caregiver may present a certain proportion of stimuli 
that are inconsistent, in addition to others that are consistent.

• At the learner’s side, an internal confidence mechanism may be active such 
that if the confidence about a self-generated hypothesis exceeds a certain 
threshold θ, (0 ≤ θ ≤ 1), the learner assumes that its own hypothesis is true and 
discards the information in the grounding part of the input stimulus. The self-
generated hypothesis is kept in memory for later reuse. This means that the 
learning becomes less supervised.

We have done experiments with the aim to investigate what happened when the 
interaction between caregiver and learner was modified towards less strict forms of 
supervision during training. This question addresses task 5.3, and is discussed in 
section 4. Section 4 consists of two related parts that both deal with deviations from 
the ‘ideal’ interactive setting:
4A Learning meaningful units from multimodal input – the effect of interaction 
strategies. Here we investigate four different interaction strategies between caregiver 
and learner. This section has been published in and presented at the WOrkshop for 
Child-Computer Interaction WOCCI-09 (ten Bosch, Boves & Räsänen, 2009).
4B Deviating from strict supervision during training. Here we show that a certain 
level of ‘contrariness’ at the learner’s side helps to overcome inconsistencies in 
stimuli from the caregiver.

A final issue concerned the question what would happen in the case of realistic noise 
in the audio part. This task relates to both WP1 and WP5 . Since the computational 
approaches (NMF, CM, DP-Ngrams) differ with respect to how the acoustic features 
are handled during the learning, it is expected that they differ with respect to their 
robustness against background noise. It was expected that the novel features that were 
designed in WP1 show better performance in adverse conditions. WP1 designed two 
novel types of features (‘modified’-MFCC and ‘static adaptive’-MFCC); both these 
features were subject to various tests. Section 5 of this report briefly deals with the 
results. For all technical details regarding MFCC, the modified MFCCs (MMFCC) 
and the static-adaptive MMFCCs (SAMMFCC), the reader is referred to Deliverable 
D1.3.
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2 Do Multiple Caregivers Speed up Language 
Acquisition?
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1Department of Linguistics, Radboud University Nijmegen, NL
2SPandH, University of Sheffield, UK
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Abstract
In this paper we compare three different implementations of language learning to 
investigate the issue of speaker-dependent initial representations and subsequent 
generalization. These implementations are used in a comprehensive model of 
language acquisition under development in the FP6 FET project ACORNS. All 
algorithms are embedded in a cognitively and ecologically plausible framework, and 
perform the task of detecting word-like units without any lexical, phonetic, or 
phonological information. The results show that the computational approaches differ 
with respect to the extent they deal with unseen speakers, and how generalization 
depends on the variation observed during training.
Index Terms: Language acquisition, Computational modeling

2.1. Introduction

Language acquisition involves the discovery and representation of linguistic units 
from situated speech. There is evidence that infants start their language acquisition 
process by storing a large amount of acoustic/prosodic detail [3][4]. As a result, the 
’early’ representations would contain a large amount of speaker dependent detail, 
which may impede the ability to recognize a ’known’ word spoken by an unfamiliar 
speaker [6]. Thus, infants must learn to generalize speaker-dependent representations 
towards other speakers.
The discovery of word-like units is guided by cross-modal association (word-referent  
pairing). Infants receive multimodal stimuli: they hear speech in the context of tactile 
or visual information that is associated with the information in the auditory channel. 
Although for individual stimuli the relation between word and referent may be 
ambiguous, the accumulation of statistical evidence across many situational examples 
may facilitate the generalisation of acoustic representations [7].
In this paper we compare three computational approaches of language learning under 
development in the ACORNS project with the aim to investigate the issue of speaker 
dependent initial representations and subsequent generalisation.

The structure of this paper is as follows. In the next section, we will briefly describe 
the simulated learning situation. The following sections describe three learning 



methods, experiments and results. The final section contains a discussion and 
conclusion.

2.2. Learning

Each input stimulus in our model consists of an auditory part (a spoken utterance) in 
combination with an abstract visual representation of the concepts referred to in the 
speech signal. It is the task of the learner to find a relation between acoustic forms 
(word-like units) and the visual referent without any lexical, phonetic and 
phonological information.
Learning takes place in a communicative loop between the learner and a ’caregiver’ 
[1]. The caregiver presents one multimodal stimulus to the learner. For input stimulus 
a structure discovery technique is applied to hypothesize new and/or adapt existing 
sound-reference pairs. While learning, the system uses both modalities of an input 
stimulus. In the test, only the auditory part of the stimulus is processed, and the 
learner responds with the hypothesized concept(s) that match(es) best with the 
utterance.

2.3. Comparison of three learning methods

In ACORNS we are experimenting with different structure discovery approaches: 
Non-negative Matrix Factorization (NMF) [2] [8], Concept Matrices (CM) [5] and 
DP-Ngrams [9].

All approaches are incremental and are able to discover recurrent structure in speech 
signals and to associate audio and visual information. The exploration of different 
learning methods in parallel is motivated by the fact that neither theories nor 
experimental findings on language acquisition suggest a unique computational process 
or implementation. On the computational level the three approaches aim at the same 
task: the discovery of word-like units by building and updating representations of 
sound-reference pairs. The main conceptual difference is the way in which the step is 
taken from subsymbolic to symbolic processing. CM looks for recurrent patterns in 
sequences of discrete frame-based codebook labels, and so relies on symbolic 
processing at an early stage. DP-Ngrams operates primarily on the surface forms of 
the signals and postpones the symbolic processing until late in the word discovery 
process. NMF takes an intermediate position. Another difference between the 
approaches is how information from the speech signal is processed. Both CM and DP-
Ngrams deal with the speech signal as the acoustic information evolves over time, 
while NMF takes the entire utterance as input to create an internal representation of 
the utterance and finds structure in the speech signal by a decomposition afterwards.
All methods start with the same MFCC-based frame-by-frame 10 ms-spaced vector 
representation of the speech signal.
During learning, the internal representations are updated after each new multimodal 
stimulus. In all methods, the short- and long-term memory is initialised randomly, and 
the number of concepts that are to be discovered during the entire training is not 
specified beforehand.



2.3.1. NMF

NMF represents input data in a (large) matrix V and uses linear algebra to decompose 
this matrix into smaller matrices W and H. W can be interpreted as representations of 
speech units; H contains the associated activations. Matrices W and H approximate 
the information in V in a (highly) condensed form. The number of columns in W (and 
rows in H) is equal to the number of different internal representations. The other 
dimension of W is specified by the dimension of the input. In our NMF-experiments 
an input utterance is coded in the form of counts of co-occurrences of Vector 
Quantization labels. The code book (150-150-100 for static MFCC, the deltas and 
delta-deltas) is trained on randomly selected feature vectors from the training set, and 
is fixed throughout all NMF experiments. This allows us to represent utterances of 
arbitrary length in the form of a fixed-length acoustic vector. For NMF, the visual  
representation of the stimulus is appended to the acoustic part to obtain its full 
vectorial representation.

2.3.2. CM

The Concept Matrix (CM) approach [5] is a statistical method for weakly supervised 
pattern discovery from time-series input.
During training, it builds statistical models for VQ-label pairs, using frequency of 
different label-pair co-occurrences at different time lags, and determines which of 
these pairs are characteristic for a specific concept (in the visual modality). Once the 
learner has seen time-series data in parallel with the visual information, the algorithm 
can be used to recognize new input.
Since the algorithm does not make a Markov assumption about the independence of 
subsequent states, but rather integrates information along the temporal dimension, it 
achieves high robustness against noise and variation in the input. For each concept, a 
separate co-occurrence matrix is created at each lag, and these concept-specific 
matrices are updated only in the presence of the corresponding tag in the visual input 
[5].
When recognising novel input, activation values of transitions occurring in the input 
at different lags are retrieved from cooccurrence matrices and added together for each 
frame, leading to a temporal activation curve for each learned concept. The concept 
with the highest activation is considered as a recognition hypothesis.
A code book of 150 labels (only statics) and lags ranging from 10 ms up to 250 ms 
was used in these experiments.

2.3.3. DP-Ngrams

The DP-Ngram approach detects repeating portions of the acoustic speech signal 
through a dynamic programming (DP) technique (cf. [9]), and finds word-like units 
by associating them to the visual information. DP is used for isolated word 
recognition by finding the shortest distance between an acoustic input and a set of 
templates. However, the current method uses an accumulative quality scoring 
mechanism to reveal repeating sub-portions of two acoustic signals, called local 
alignments.
By means of a classical DP step, for each pair of utterances a matrix D is defined with 
local (frame-to-frame) distance scores.



The distance is Euclidean. By applying a recurrence relation on D [9], local ’quality 
scores’ are calculated such that a high local quality score corresponds with a long 
’local alignment’. These stretches are interesting because they relate to potential 
candidates of recurrent ’words’. Frame insertion and deletion penalties are applied 
during this recurrence. Finally, the optimal local alignment is discovered by 
backtracking from the highest local ’quality score’. Multiple local alignments can be 
discovered by repeating this process.
The internal representations of concepts are represented as a class of local alignments. 
Each class is constantly evolving with the accumulation of exemplar tokens, thus 
allowing the system to gradually become more robust to the variation.

2.4. Experiments

2.4.1. Data

In the experiments, training and test sets were carefully designed by selecting 
utterances from a database recorded in the ACORNS project [1]. All utterances have a 
simple syntax, similar to child-directed speech. The pool consists of 4000 English 
utterances spoken by two female (F1, F2) and two male (M1, M2) speakers (1000 
utt/sp). Each of these utterances contains a single keyword, chosen from the following 
set: Angus, Ewan, bath, book, bottle, car, daddy, mummy, nappy, shoe and telephone.
Each utterance is accompanied by an abstract symbolic tag (representing the 
information in the visual modality).
From this database, five different training sets have been created. These five different 
training sets are: F1, F1+F2, F1+M2, M1+M2, and F1+F2+M1+M2, the notation 
indicating the speakers present in the training set. The ordering of the stimuli (480 in 
F1, 520 in the others) within each training set was set up so that keywords would 
appear in a fixed and repeating order so as to produce a flat occurrence distribution. 
The number of examples per keyword in each training set was the same for each 
keyword and balanced per speaker. Each learning method (CM, NMF, DP-Ngrams) 
was applied to each of the five training sets. During learning, word representations 
were built, and after each 20 training stimuli the model was probed by measuring its 
accuracy on 10 different test sets: 4 test sets (F1, F2, M1, M2) containing held-out 
data from F1, F2, M1, and M2, and 6 sets from additional speakers (denoted AD05, 
06, 07, 08, 09, 10). There are no out-of-vocabulary words in the test sets.

Test sets did not overlap with any training set.
This set-up allows us to investigate the behaviour of the three different learning 
methods as a function of the variation present in training. We obtain 3 (number of 
methods) times 5 (number of training sets) times 24 (minimum probe moments during 
training) times 10 (number of test sets) (over 3600) accuracy measurements.

2.4.2. Results

Table I. Figure reference table
NMF, training set F1 Fig 1
DP-Ngrams, training set F1 Fig 2
CM, training set F1 Fig 3
NMF, full training set Fig 4



DP-Ngrams, full training set Fig 5
CM, full training set Fig 6

Fig 1. NMF. Training set F1.

Fig 2. DP-Ngram, training set F1



Fig 3. CM, training set F1

Fig 4. NMF, full set.



Fig 5, DP-Ngram, full set

Fig 6. CM, full set

For each learning method, the results show a clear tendency.
For the sake of clarity, we have summarized the results in figures that represent the 
major findings and concentrate on F1 and F1+F2+M1+M2 (referred to as the ’full’ 
set). Figure 1, 2 and 3 show the results for NMF, DP-Ngrams and CM in the single-
speaker training conditions, while figures 4, 5 and 6 show results for the full set 
(multi-speaker training condition). Along the horizontal axes, the probe moments are 
specified. The 10 curves relate to the 10 test sets (across all figures they have the same 
symbols). The vertical axes show the concept accuracy. In Figs 1-3 we clearly see that 
the test speaker F1 profits from the fact that she is the single speaker in the training set 
F1. The methods however differ in detail how they handle the other nine speakers. 
NMF is significantly better than CM for F2, M1, M2 in the F1 training case (t-test, N 
= 480, p < 0.01). Furthermore, speakers F2, M1, M2 profit from full training in both 
cases, while F1 does not deteriorate.



In general, the 6 additional speakers that do not play a role in training also profit from 
the speaker variation during training: all their eventual scores are significantly better 
than in case of the F1-training. In general, NMF seems more sensitive to differences 
between speakers than CM appears: in all NMF-results the variation across speakers 
is larger than for CM. For both CM and NMF, speakers 05 to 10 do significantly 
better on the full set compared to set F1 (t-test per speaker, N = 480, p < 0.005).

2.5. Discussion and conclusion

During language acquisition infants must learn to ignore perceptible but irrelevant 
detail in speech. Learning to understand other speakers than the primary caregivers (in 
most cases mother and father) is essentially related to learning to ignore these 
irrelevant aspects in the speech signal. It is argued that the variability in the input 
helps infants recognize which aspects are important and which can be ignored. As 
children gain more linguistic experience, they begin to learn which detail is relevant 
for distinguishing words, supporting the recognition of novel speakers [6].
All three learning approaches presented here show substantial differences between a 
one-speaker and multi-speaker training condition for new speakers. The approaches 
differ with respect to how information from new speakers is integrated into the 
internal models. Learning must find a balance between adaptation on the one hand 
and long-term accuracy on the other.
From an ASR-standpoint these results seem straightforward: in ASR multi-speaker 
training usually shows better results on new speakers. However, in ASR the training 
is always supervised and based on pre-existing knowledge about words and speech 
sounds. In our model the learner must discover sound-reference pairs without prior 
knowledge that would conflict with the requirement that learning must be plausible 
from a cognitive perspective.
For example, in the case of NMF, new information could be redistributed across 
multiple columns of the W-matrix or dealt with by adapting just one specific W-
column. That means that new information is not necessarily ’blended into’ the 
existing internal model.
In summary, all learning approaches show the same tendency which supports the 
finding from behavioural experiments that a multi-speaker training condition helps to 
recognize speech from novel speakers. The approaches differ with respect to the 
degree the training speakers deteriorate. In the case of CM, none of the training 
speakers does significantly sacrifice in the end (fig. 5).
Conceptually, all three approaches have their own merit to be investigated in more 
detail. DP-Ngrams is a method able to hypothesize word-like units by strengthening 
internal representations on the basis of straightforward alignments between stretches 
of speech in different utterances. NMF needs the entire utterance to build a 
representation of the speech signal, but provides a powerful scheme in which bottom-
up and top-down information in a multi-level hierarchy can be dealt with in a 
coherent framework. CM has an open architecture where the processes and internal 
representations are easily analyzable, and the internal representations actually predict 
input in the temporal domain.
Perhaps not surprisingly, our results with respect to the putative advantage of learning 
from multiple speakers for the recognition of new speakers are not completely 
conclusive. Our data suggest that learning from a speaker of a certain gender enhances 
performance for other speakers of the same gender, but that there may still be 
substantial differences between speakers of the same gender. It is still not very well 
understood how differences between speakers are best quantified.



In future work we will investigate learning schemes in which novel inputs may not 
cause the most similar existing internal representations to adapt; rather, additional 
representations can be built, which afterwards may or may not be merged with other 
representations that have the same semantic reference. Here, it is especially interesting 
to investigate the processing of new (out-of-vocabulary) words.
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3. On the representation of the visual channel

This section consists of two parts. Subsections 3.1–3.4 (by Louis ten Bosch, Michael 
Klein, and Hugo Van hamme), discuss ideas about possible realistic representations 
for the information presented in the visual channel. The emphasis is on how one can 
go beyond the crisp, invariant visual feature encoding in a realistic and plausible 
manner. The following subsections (from 3.5 onward, by Hugo Van hamme) present 
and evaluate a number of NMF-based experiments with different visual feature 
representations.

3.1 Introduction

An issue that came up during the first year of ACORNS, in the multi-lingual 
experiments concerns the nature and impact of the symbolic, invariant (‘crisp’) 
character of the visual tags that were presented to the leaner during training. As a 
discussion issue, it came back during the second review. 

The invariant symbolic nature of the keyword tags, as used in the early ACORNS 
experiments, had the following consequences:

- In the database, an utterance such as ‘There I see a car’ was accompanied by 
the tag ‘car’. In reality, an utterance ‘There I see a car’ relates to an extra-
linguistic referent ‘car’, more specifically a specific TOKEN of the type ‘car’. 
So the first-year encoding assumed that each token of the type ‘car’ was 
represented by the same abstract invariant code ‘car’. By construction, 
between-token variation was not modelled and could not be dealt with. For the 
modelling of learning processes this is obviously a disadvantage: Variation in 
the input is needed in order to be able to learn which visual features are 
relevant for recognizing a referent in the context. 

- At the learner’s side, the option of observing invariant tags theoretically 
allows the learner to 'cheat': The mere fact of observing a new symbolic tag 
will already tell the learner to create a representation for a new target word, 
thereby entirely ignoring the audio part.

The way from an invariant symbolic tag towards a more realistic, plausible and 
grounded representation is not evident and has far-reaching consequences for theory 
and algorithms. The exact encoding of the visual ‘grounding’ channel (that is 
presented to the leaner in parallel with the audio information in the speech channel) is 
important for almost all aspects of computational modelling and the concepts 
underlying the model. One of the questions is to what extent learning based on 
multimodal input is facilitated by the amount of information that is available in the 
parallel channel(s). This is an interesting issue since the language acquisition 
literature suggests that linking information is an issue in itself. For example, Saffran, 
Werker, Werner (2006) and several other recent studies show that when it comes to 
learning words, infants must learn to relate sounds with objects, and that this linking 
involves a substantial cognitive effort. This ‘cognitive effort’ is evidenced by 
experiments: There is massive evidence that tasks that only involve auditory 
discrimination are tapping a process that is less complicated than tasks that involve 
lexical tasks (and so involve linking between referents and sounds). It has been 
proposed that this corresponds to the difference between ‘phonetic’ and 



‘phonological’ representations of words (the representation discontinuity hypothesis; 
Saffran et al, 2006, p 89).

Also in the ACORNS tasks carried out in the first two years, the learning of 
associations between acoustic and visual information on the one hand and the learning 
of recurrent acoustical patterns (units) are different aspects of the same learning 
process. Detecting recurrent units is possible without cross-modal association; 
however, cross-modal association facilitates the detection of recurrent units and of 
course also facilitates grounding.

Reference
Saffran, J.R., Werker, J., & Werner, L. (2006). The infant's auditory world: Hearing, 
speech, and the beginnings of language. In R. Siegler and D. Kuhn (Eds.), Handbook 
of Child Development. New York: Wiley (p.58-108).

3.2 Feature and conceptual encodings

We need to explain what we mean by making tags less invariant (more fuzzy, here 
sometimes referred to as ‘descrispification’). There are multiple ways to introduce 
fuzziness in the visual domain. The following options represent two extreme positions 
among the gamma of alternatives.

a. Feature encoding (also called visual feature encoding). A referent is 
represented by a vector of binary features, where each component reflects one visual 
(or ‘semantic’) property of the referent.
b. Conceptual encoding (also called canonical encoding) A referent is 
represented by a vector that contains activations for a number of referents that were 
learned before.

A feature encoding might look like:

legs moving round eating alive soft Etc
Car 0 1 0 0 0 0 Etc

while the conceptual representation for the same referent may look like:

apple aeroplane daddy truck car Etc
Car 0.08 0.12 0.01 0.58 0.98 Etc

Apart from the mathematical differences, both encodings also differ in the way they 
represent the real world. Feature encoding represents an encoding which is close to 
the lower-level visual or semantic properties of objects.  Examples of such properties 
are ‘roundness’, ‘color’, ‘moving’, ‘have legs’. Using feature encoding, one assumes 
that these ‘raw’ sensory data can be input for the learning approach. So, feature 
coding implies the assumption that there is no single unit representing the meaning of 
a word – instead, the grounding vector refers to a bundle of properties.
In contrast, the conceptual encoding assumes that the grounding information must be 
provided on a more cognitive level. In this case, the individual components of the 

http://www.waisman.wisc.edu/infantlearning/publications/Saffran.Werker.Werner.2006.pdf
http://www.waisman.wisc.edu/infantlearning/publications/Saffran.Werker.Werner.2006.pdf


grounding vector do not refer to individual low-level properties of the referent, but to 
activations or similarities between the referent and other referents.

Both encoding systems can be considered as extensions of the crisp invariant tag 
coding: The use of crisp invariant symbolic tags is a special case of both systems. For 
example it is equivalent to the use of a unique conceptual encoding for each keyword. 
With crisp tags, the input is equivalent to a vector with one active unit, e.g. ‘0 0 0 1 0 
0 … 0’ with the fourth unit representing a certain concept such as ‘car’, or, 
alternatively, with a vector that has a non-zero activation for only one concept.
Both encoding systems are extensions of the crisp invariant coding, and they can 
handle variation. However, the systems differ with respect to how exactly variation 
between types and tokens can be handled. This is topic of the next subsection.

3.3 Variation across types and tokens

Both encodings deal in different ways with the between-type distance. That is already 
an improvement compared to the crisp tags. In the case of crisp tags, the between-type 
distances between (for example) ‘man’ and ‘woman’ and between ‘man’ and ‘car’ are 
basically the same. By using a suitable feature or conceptual encoding, the between-
type distance for ‘man’-‘woman’ may be smaller than for ‘man’-‘car’ (but still the 
same for each token (instance) of ‘man’ or ‘car’). In that sense, the (visual) feature 
encoding and the conceptual encoding are already more realistic than the crisp tags.

What about between-token variation? Both encodings can handle this, albeit in 
different ways. 
The feature encoding can handle between-token variation by appending token-specific 
binary feature vectors. This appended pattern may be a random pattern. In such a case 
the feature encoding of a referent consists of a type-specific fixed part, augmented 
with a token-specific random part (indicated bold italic)

legs movi
ng

round eatin
g

alive soft Etc aug
m

aug
m

aug
m

Etc

Car1 0 1 0 0 0 0 Etc 0 1 1 Etc
Car2 0 1 0 0 0 0 Etc 1 1 0 Etc

Introducing between-token variation in the case of visual features
(‘augmented binary visual feature encoding’)

The conceptual encoding can handle between-token variation by adding random 
variations to the same type-specific conceptual encoding. In such a case, the 
conceptual encoding of a referent might for example consist of a sum of a type-
specific fixed conceptual vector and a token-specific random vector.

apple airplane Daddy truck car Etc
Car1 0.083 0.114 0.007 0.56 0.979 Etc
Car2 0.076 0.125 0.008 0.59 0.991 Etc

Introducing between-token variation in the case of conceptual features
(‘fuzzy’ conceptual encoding)

Between-type and between-token variation makes it harder for the algorithms to know 
whether two visually presented objects do indeed pertain to the same concept with the 



same name, making it harder to know whether a new internal representation is 
required or not. This will be shown in the following sections, in which experiments 
are described in which different feature encodings are used. Subsections 3.5-3.8 deal 
with different experiments using different encodings without between-token variation. 
Between-token variation is introduced in 3.9-3.11. For example, the augmented binary 
visual feature encoding is presented in section 3.10, the ‘fuzzy’ conceptual encoding 
in section 3.11.

The use of these encodings can be motivated on a linguistic basis by the fact that 
under- and over-generalisation can be modelled by these encodings. For example, in 
language acquisition children sometimes under-generalize, i.e. they don’t apply the 
word they know for an object if it seems significantly different from the tokens that 
we previously classified as that object (i.e. they might not call a white rose a rose, 
because so far they have only seen red roses). Also over-generalisation (children often 
name somewhat similar objects (e.g. a cat and a dog) with the same word) can be 
adequately dealt with by the proper use of either feature or conceptual encoding.

An example of feature encoding in which over-generalisation (cat  cat, dog 2  
cat) might appear is presented below.

legs moving Animal hard alive barks Etc
Cat 1 1 1 0 1 0 Etc
Dog 1 1 1 1 0 1 1 Etc
Dog 2 1 1 1 0 1 0 Etc

3.4 Multiple referent decoding and evaluation

When one wants to apply feature or conceptual encodings, there are at least two 
additional issues to solve.

1 Above, we discussed the encoding of a single referent. How to encode an 
utterance in which several different referents occur, such as in ‘There I see 
a green duck with an aeroplane’ (all target words italicized)?

2 How to evaluate the learner? If the learner is reconstructing certain feature 
vectors or conceptual vectors, it is likely that these hypotheses are not 
exactly the same as what has been presented during training. What is the 
best metric to be used?

Multiple referent encoding
A sentence in the Y2 database may contain more than one (of 50) keyword. The 
encoding of a single keyword is straightforward, but the encoding of a scene in which 
multiple keywords make sense is not. For example, the encoding of ‘There I see a 
green duck with an aeroplane’  depends on the way how the word-based encoding for 
‘see’, ‘green’, ‘duck’ and ‘aeroplane’ are combined into one single visual feature 
vector or matrix. In most experiments, we opted for the addition of feature vectors. 
That is, if a feature is present in more than one keyword, the corresponding values are 



added. This addition option is used in the experiments described in the following 
subsections.
Another option (which is not tested here) would be to apply other ways to combine 
features, different from straightforward addition, for example based on visual scene 
analysis.
This multiple referent encoding issue addresses both the concept of the encoding as 
well as the way in which the back-end learning algorithm deals with this encoding.

Evaluation
The evaluation of tests in which complex encodings are used may become 
complicated. To explain this, we take NMF-based learning as a starting point. Of the 
two different encodings, a relatively simple case is the use of the high-level 
conceptual (canonical) features. In this case, the model estimates (reconstructs) the 
conceptual features from the acoustic part of the test stimulus. During the evaluation, 
the ‘ground truth’ (given in the original stimulus) can be compared to the learner’s 
reconstruction. One may e.g. apply a ‘winner takes all’ strategy on the learner’s 
hypothesis – this makes sense since the individual components refer to similarities of 
the presented referent with other referents.
In the case of the lower-level visual feature encodings, however, the model will 
attempt to reconstruct these low-level features (from the acoustic ones). What is a 
good metric to measure the (dis)similarity between the ground truth and the 
reconstruction as hypothesized by the learner in this case? There is no obvious 
relation between distances in the ‘visual property domain’ and the distances in the 
‘concept domain’. In other words, although one might measure the Euclidean (or 
other) distance between the true visual features and the estimated ones, it is difficult to 
interpret this distance in terms of the error rates that we are used to deal with (such as 
concept error rate, tag error rate). Moreover, we are not interested in the learner’s 
capability to reconstruct individual properties of the referent (if that would make 
sense at all, based on audio) – instead, we are interested in the referent itself. This 
issue is addressed in more detail in subsections 3.5-3.8.
 

3.5 Feature matrices: F and C
As observed above, by using visual feature encoding one represents an object by a set 
of characteristics or features which hold or do not hold. A particular instance of an 
apple may have the features “round”, “green”, “eatable” and does not have the 
features “black”, “four-legged” and “furry”.
In this case, it is no longer possible to determine that an object is present from the 
observation of a single feature, e.g. the feature “round” may apply to the objects 
“ball” and “apple”.

In order to perform experiments, we need explicit definitions for both visual features 
and conceptual features. For the ACORNS Y2 database, we defined a set of 64 binary 
visual/semantic features, listed in appendix A (at the end of this section), resulting in a 
feature matrix F (of size 64x50 = #features x #words). This matrix defines features for 
the 50 words occurring in the Y2 UK database. The visual-feature experiments will be 
using this feature matrix F. 

For the conceptual/canonical representation, we will denote the grounding matrix by 
C, i.e. a matrix with 50 rows that has a “1” in entry i,j if the i-th keyword occurs in the 
j-th utterance and zeros elsewhere. 



3.6 Database, training, evaluation and baseline
As already mentioned, the Y2 UK database has a 50 keyword vocabulary. These 
words can refer to objects, actions, colours or size; here they will be referred to as 
keywords. There are 9821 utterances for training and 3268 for testing. Each training 
utterance contains between 1 and 4 keywords (1994 utterances contain 1 keyword; 
695 utterances contain 2 keywords; 3819 utterances contain 3 keywords and 3313 
utterances contain 4 keywords). A similar distribution is observed on the test set. The 
number of keyword occurrences in the test data is shown in Figure 1.

Figure 1: number of keyword occurrences in the test set.

We use the Histogram of Acoustic Co-occurrence acoustic representation with the 
NMF learning method (Van hamme, 2008). The acoustical features used for learning 
are the WP1 MFCCs, which are quantized with codebooks of sizes of 150 (static), 350 
(velocity) and 200 (acceleration )1, each with lags 2, 5 and 9. The number of co-
occurrence features is 555,000.
In the experiments described below, the NMF uses 75 internal representations (so W 
and Wg have 75 columns). The classical NMF equation reads:

(1)

Hence, there are about 50 representations that should be associated with the 
keywords, while (only) 25 representations (i.e. the remaining columns of W) can be 
used for the words in the carrier sentences and for deviations from the linear model. 
The matrix G contains the feature values for each utterance (column), V are the 
acoustic features. W, Wg and H are estimated on the training set. 

For the baseline, we learn from the canonical features, i.e. G are the canonical 
features for each utterance (column), i.e. G = C. For initialization with canonical 
features, Wg is initialized as a diagonal matrix (it is non-square: 50xR) plus some 
random noise. The diagonal structure directs the NMF (which is sensitive to local 
extrema) towards a solution in which each keyword is associated to exactly one 
column in W. The noise is added to Wg such that better solutions can be found where 
a keyword would have multiple columns in W (internal representations). 

The random initialization may lead to different solutions as there is no guarantee that 
the multiplicative NMF update algorithm leads to the global optimum of the 
Kullback-Leibler (KL)-divergence. Therefore, in the experiments reported on in this 
section we always perform 5 independent trials and report the lowest and the mean 
error rate.

For evaluation of the baseline, only the acoustics are assumed to be available, i.e. 
using only the acoustics V and the trained model W, we determine H with a “one 
sided NMF” (convex problem) and determine the word activations as A = WgH. Per 
column of A, we now have the activation levels of each word and we threshold these 
with a fixed, utterance and word-independent threshold θ. If the activation is above 
the threshold, we conclude that the word was present in the sentence, else it is absent. 
As θ increases, there will be more missed detections and fewer false alarms. Since the 
threshold may depend on parameters such as codebook sizes, training data etc., we 

1 Following Meng’s experiments done in Leuven, this is known to be suboptimal for accuracy.
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factor out θ by plotting the DET-curve (i.e. false alarm rate vs. missed detection rate – 
see also ACORNS deliverable D4.1) and always take the equal error rate (EER) point 
as the operating point. We then report EER in % for all experiments. (Notice that this 
operating point does NOT lead to equal insertion and deletion rate, since a word is 
more often not present than present).
These baseline results are presented in Table I in the lines “Canonical”. The first line 
uses the initialization method described above. The second line uses a fully random 
Wg. We notice that both initialization methods lead to comparable error rates. 

As already observed in subsection 3.4, the evaluation of tests with low-level visual 
(‘semantic’) features is not that trivial. Since the grounding matrix G will now contain 
the semantic features, we would be tempted to reconstruct and evaluate on each of the 
64 features and not on the 50 keywords, which is very different from acoustic 
recognition of an object. The question asked would then be “did you hear a word that 
has the feature round ?” instead of the question used in the baseline “did you hear the 
word apple ?”.  To proceed with evaluation at the keyword level instead of at the 
feature level, we observe that the internal structures do contain word activations in H, 
though there may be more internal representations (75) than keywords (50). These 
additional representations model words from the carrier phrases as well as deviations 
from the linear model (i.e. an observed V has a higher rank than is implied in V = W 
H ).
In order to make evaluation at the keyword level possible, we estimate a new matrix 
Q such that C=Q H on the training data, i.e. a transformation that maps the internal 
representations directly onto the intended keywords. The matrix Q ‘peeks’ into the 
brain of the learner. In the simplest of cases, the method builds a single internal 
representation for each keyword and the peek matrix Q has (modulo permutations) a 
diagonal structure (beware: it is not square). It is also possible that a keyword received 
multiple internal representations, in which case the peek matrix Q will combine their 
activations to a single word activation. Inspection of this matrix reveals if the training 
was successful in the sense that every keyword or canonical feature has at least one 
internal representation. If a single representation is used for two different keywords, 
they are bound to be confused and lead to errors.
During the test, we can compute the activations of the representations H from the 
acoustics, then multiply with the peek matrix Q to estimate which keywords these 
activations correspond to. Moreover, we can construct the keyword activation matrix 
Q H on the test data and construct a DET-curve, similar to the case of 
conceptual/canonical features, and also compute the EER on this curve. This way, the 
error rates become comparable to the baseline.

3.7 Using binary visual (semantic) features in combination 
with object recognition

The binary visual (semantic) features are obtained by multiplying the conceptual 
(canonical) features C with the feature matrix F, i.e. G = F C. 
This linear model is an ideal case for NMF since the linearity applies to both the 
grounding and the acoustic part of the data. Whether this is realistic, is debatable. In 
subsection 3.4 we addressed the question how to combine features in the case of 
multiple referents. Do features add when they are present multiple times? This is 
reasonable if we assume that the learning system recognizes L separate objects with 
their features. Adding the feature values of the separate objects is a possible way for 
NMF to deal with multiple objects in the visual scene. Alternatively, methods could 
be designed that use the L feature vectors separately instead of adding them.



Initialization. The W-matrix (acoustic part) is always initialized randomly. In the 
case of the high level conceptual/canonical features, Wg was initialized as a diagonal 
matrix plus some random noise. This diagonal initialisation not a good choice for the 
present situation, as we might direct the NMF towards a solution where W-columns 
would be associated to features rather than keywords. We therefore consider three 
types of initialization:

1) Initialization with F (plus some random noise). This is a “cheating” 
experiment since actually F is unknown to the learner. Started sufficiently 
close, we expect to find the global optimum of the NMF. 

2) Random initialization for Wg.
3) Using singling out. Singling out means that we first try to recognize simple 

sub-scenes from more complex scenes. Relating this method to human 
learning, it is as if we ignore complex scenes and first try to make sense of the 
simple scenes. This is typically what we do in learning: we start by using 
simple language to our children if we present them with learning stimuli: 
caretakers will simplify their language and not read from the Financial Times. 
Mathematically, this is done as follows: given G, we try to remove scenes that 
can be written as an additive combination of other scenes. To reduce 
computational load, we first remove doubles in the columns of G, which only 
makes sense for integer-valued G. For noisy data, there will never be an exact 
match, so we work with a threshold. The following pseudo-code is applied:
θ initialized to some small value.
repeat
   for all columns gk of G 
      if KL(gk, Gka)< θ, remove column k from G
         (where a≥0 and Gk is G with its kth column removed)
multiply θ with 1.3 (or something like that)
until size(G,2)≤R

In the third line of Table I, we observe that the semantic features are more difficult to 
handle than the canonical features, even if initialized with F.  

Feature stream weights. In past experiments with canonical features, we have found 
that the weight of the semantic vs. acoustic stream has only a minor effect on the 
accuracy. This is questioned here, since we are concerned about converging to 
internal representations that reflect features rather than keywords. For normalization, 

a first weight is applied such that 
,

ij
i j
∑ V is 1 for both streams. Then we multiply the 

acoustic stream with the weight indicated in Table I. We notice that – at least for 
semantic features – the weight of the semantic stream is to be large enough. With too 
strong a weight on the acoustics, we fall back to completely blind (unsupervised) 
acoustic pattern discovery. This worked ok for small vocabulary (11 digits) (Stouten 
et al., 2008), but for the larger vocabulary where not all words correspond to a tag, it 
does not seem to work as well.
 
Notice that initialization with F cannot be applied to real-life data, since F is 
unknown. The singling out method, which addresses this issue, seems to be effective 
here and leads to the same recognition rate as the canonical features (last line of 
table).



acous t
Method weight Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Bes t Avg.
Canonical, initialization with identity 1 2,19 2,09 2,16 2,10 2,08 2,08 2,12
Canonical, random  initialization 1 2,18 2,35 2,03 2,35 2,61 2,03 2,30
Init with F 0,01 3,11 3,14 2,96 2,99 2,95 2,95 3,03
Init with F 1 6,16 4,69 5,14 5,09 6,13 4,69 5,44
Init with F 100 23,8 23,5 22,5 23,4 24,4 22,5 23,52
Random  init 1,E-04 7,47 5,87 6,86 7,15 6,29 5,87 6,73
Random  init 0,01 7,45 6,49 5,92 7,30 6,61 5,92 6,75
Random  init 1 7,26 9,66 7,81 9,85 7,40 7,26 8,40
Random  init 100 24,4 23,7 23,3 23,8 23,4 23,3 23,7
Only acous tics N/A 23,5 22,9 23,3 23,8 23,9 22,9 23,5
Singling out 0,01 2,88 2,54 2,86 2,95 2,62 2,54 2,77

Trial

Table 1: Equal Error Rate in % on the ACORNS Y2 UK database. Detection of 50 words.

Inspection of the internal representations. The ‘peek’ Q-matrix introduced above 
allows to inspect the mapping between internal representations and keywords. Its 
columns are always permuted to obtain a maximally diagonal structure. Internal 
representations are on the abscissa, keywords on the ordinate.

1) Canonical features: random versus identity initialization
Random initialization only marginally increases EER. Comparing Fig 2 and 3, we see 
that some keywords receive two internal representations. Representation 70, however, 
models two words (“mummy” and “like”) and might be the cause of the increased 
error rate.

Figure 2: with canonical semantic features and “identity” initialization, a nice diagonal structure 
is obtained, i.e. all keywords have one internal representations. Other internal representations 
are used to model non-keywords and approximations.



Figure 3: with canonical features and random initialization, some words get more than one 
internal representation.

2) Semantic features
At acoustic weight of 0.01, the cases of F-initialization, random initialization and 
singling out initialization are shown. With F-initialization, we notice that “ball” and 
“bottle” get a common representation, as well as “Porsche” and “airplane”, which is 
bound to cause increased error rates over canonical features. “Porsche” does not have 
its own representation and leads to recognition errors.

Figure 4: F-initialization. “Porsche” gets no representation. “Bottle” is cluttered by “ball”, which 
still has its own representation.

Figure 5: Semantic features with random initialization. Confusions caused by semantic similarity 
are apparent.

With singling out, some confusions still remain (“airplane”/”Porsche”; 
“bottle”/”ball”), but the EER is surprisingly good despite the fact that these words do 
occur in the test.

Figure 6: confusions for the “singling out” approach.



3.8 Using binary visual (semantic) features without object 
recognition

In the previous section, we assumed that the features of all objects were observable 
separately. Then we processed the semantic stream by adding up all features. In the 
present case, we assume that we dispose of a video stream in which we can detect 
features, but they are not grouped into objects. The feature is present or not in the 
image as a whole, i.e. there is no weighting for multiple occurrences. Mathematically 
speaking, the original semantic feature matrix G is now replaced by the binary matrix 
G>0.5. 
For the high-level conceptual/canonical features, there does not seem to be a 
significant impact of this deviation from linearity (see first 4 rows of Table 2). With 
our data, the canonical case is actually the same as the previous section: every 
keyword occurs at most once in every utterance, so in both cases, G contains at most 
one ‘1’ per utterance.
For the low-level visual/semantic features, the situation is different: a given feature 
can apply to multiple keywords in a sentence and now G of the previous section did 
contain values greater than 1. After mapping these to 1, the linearity in equation (1) is 
broken. For the model, it is like introducing noise.
From Table 2, we observe that the use of these low-level visual semantic features, 
even with the ‘cheating’ initialization using F, does impact the error rate negatively. 
The word confusions are apparent from Fig 7. We see that keywords like “apple” and 
“ball” have a common internal representation, as well as “cat” and “dog”. Singling out 
does not work as well as before (see last 2 rows of Table 2 and Figure 8 where we 
observe many keyword pairs that receive a common representation), but is still below 
the error rates obtained with random initialization with visual object recognition.
By this comparison, we conclude that not having high-level object-related 
features makes the task much harder for the NMF-algorithm. This has to do both 
with the deviation from linearity in the visual stream as well as with convergence 
issues.

obj acous t
Method ects weight Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Bes t Avg.
Canonical, initialization with identity yes 1 2,19 2,09 2,16 2,10 2,08 2,08 2,12
Canonical, init with identity no 1 2,08 2,20 2,08 2,16 2,13 2,08 2,13
Canonical, random  initialization yes 1 2,18 2,35 2,03 2,35 2,61 2,03 2,30
Canonical, random  init no 1 2,14 2,27 2,89 3,09 2,24 2,14 2,53
Semantic, init with F yes 0,01 3,11 3,14 2,96 2,99 2,95 2,95 3,03
Semantic, init with F no 0,01 5,18 3,94 4,05 4,25 4,95 3,94 4,47
Semantic, s ingling out yes 0,01 2,88 2,54 2,86 2,95 2,62 2,54 2,77
Semantic, s ingling out no 0,01 6,76 7,25 6,57 7,32 6,82 6,57 6,94

Trial

Table 2: Impact on EER of having a visual stream that recognizes objects (objects=”yes”) and 
associates the visual features to these, or having a visual stream that does not distinguish objects 
(objects=”no”) and detects the presence or absence of features in the scene as a whole.

Figure 7: word confusions when the vocabulary is acquired in a setting where features are 
detected in the whole scene and NOT per object. Initialization with F.

Figure 8: word confusions in the same case as Fig 7, but initialization with singling out.

In the next three subsections, experiments are presented in which the visual encoding 
is modified. In 2.9 we use unobserved (‘obscured’) featyres, while in 3.10 and 1.11 
we deal with various types of variation.



3.9 Unobserved features
In realistic scenario’s, it may happen that some features cannot be observed. For 
instance, a color cannot be seen when there is not enough light, objects may be 
occluded so we cannot determine their shape correctly or we may not know if an 
animal can fly, for it sits on the ground presently. To simulate occlusion, we assume 
that objects can be identified in the visual stream and we randomly decrease the count 
in G by one. The total number of decrements in G is a parameter in this experiment. 
Table 3 shows that with proper initialization, the method can withstand quite a lot of 
missing features. The error rate increases smoothly with the amount of noise and does 
not really break down at a certain noise level. The initialization with singling out 
produces a slightly higher error rate than the ideal initialization using the matrix F. 
The solution seems acceptable but is not perfect.

acoust
Method weight Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Best Avg.
Canonical, initialization with identity 1 2,19 2,09 2,16 2,10 2,08 2,08 2,12
Canonical, random initialization 1 2,18 2,35 2,03 2,35 2,61 2,03 2,30
Init with F, 0 % noise 0,01 3,11 3,14 2,96 2,99 2,95 2,95 3,03
Init with F, 5 % noise 0,01 4,75 4,65 4,45 4,39 4,59 4,39 4,57
Init with F, 10 % noise 0,01 5,75 5,39 6,00 5,72 5,68 5,39 5,71
Init with F, 15 % noise 0,01 6,57 6,97 6,67 6,86 5,75 5,75 6,56
Init with F, 20 % noise 0,01 7,72 7,65 8,19 7,93 8,56 7,65 8,01
Init with F, 25 % noise 0,01 8,84 8,76 8,91 9,09 9,50 8,76 9,02
Singling out, 0% noise 0,01 2,88 2,54 2,86 2,95 2,62 2,54 2,77
Singling out, 5% noise 0,01 5,98 6,08 5,51 5,58 5,83 5,51 5,80
Singling out, 10% noise 0,01 7,53 7,16 7,07 7,48 6,64 6,64 7,18
Singling out, 15% noise 0,01 9,6 8,97 8,68 9,3 8,11 8,11 8,93
Singling out, 20% noise 0,01 9,57 10,3 9,92 9,92 9,81 9,57 9,90

Trial

Table 3: the impact of unobserved features. “x % noise” means that x% of the per-object visual 
features are unobserved.  

We did not conduct experiments with the opposite noise type where some features are 
falsely detected, for this seems to be less relevant.

3.10 Irrelevant features
In real scenario’s objects usually have a lot of features which are irrelevant for 
recognizing the object as such. For instance, the color is not a relevant feature for a 
chair for its basic property ‘on-sit-able’.
We simulate this by adding L random rows to the low-level visual semantic features. 
However, we should select the distribution of the noise we add carefully, i.e. the 
number of features that are present/absent in this noisy stream should be realistic. To 
ensure that these added rows of G have the same sparsity as the relevant rows of G, as 
we draw them from G and randomly permute along the columns. The impact of noise 
rows is shown in Table 4. Remember that there are 64 relevant visual features. We 
again see a gradual (‘graceful’) degradation of the recognition accuracy. However, in 
any realistic scenario, the number of irrelevant features will be higher than what is 
simulated here and context-dependent feature selection mechanisms are required. 
Again, we see that singling out adds to the error rate (last row) and is not capable of 
fully solving the initialization problem for the NMF.



# irrelev.
Method features Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Bes t Avg.
Init with F 0 3,11 3,14 2,96 2,99 2,95 2,95 3,03
Init with F 1 3,38 2,94 3,51 3,38 3,53 2,94 3,35
Init with F 2 3,67 3,19 3,61 3,12 3,07 3,07 3,33
Init with F 5 3,89 3,44 3,69 4,84 4,24 3,44 4,02
Init with F 10 4,48 3,67 3,36 5,06 3,61 3,36 4,04
Init with F 20 4,41 4,51 4,41 4,51 5,50 4,41 4,67
Init with F 50 7,31 7,72 8,28 8,83 7,72 7,31 7,97
Init with F 100 9,05 8,49 8,69 9,97 8,22 8,22 8,88
Singling out 0 2,88 2,54 2,86 2,95 2,62 2,54 2,77
Singling out 1 3,64 3,44 4,07 3,49 4,08 3,44 3,74
Singling out 2 2,99 3,62 3,23 3,23 3,26 2,99 3,27
Singling out 5 7,08 7,84 8,73 7,06 8,38 7,06 7,82
Singling out 10 9,41 8,98 11,69 9,47 9,04 8,98 9,72
Singling out 20 9,91 10,34 10,16 9,68 10,18 9,68 10,05

Trial

Table 4: The impact on EER (in %) of irrelevant features.

3.11 Fuzzy features.
In reality, we only have noisy observations of features. Features such as transparency, 
softness, noisiness, … are valid to some degree. Here, the features are not binary any 
more, but real-valued numbers. To simulate this, we add multiplicative noise to the 
non-zero values of G. Non-zero values are multiplied with |x|, where x is normally 
distributed with mean 1 and standard deviation sigma. Zero elements are replaced by 
an exponential distribution

1( )
x

P x e µ

µ
−

=  

which has mean µ and variance µ2, hence MSE of 2µ2. Table 5 shows how this type of 
noise degrades performance. Again, we observe that quite a lot of noise can be 
allowed. 

zero's nonzero's
Method µ σ Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Bes t Avg.
Init with F 0 0,0 3,11 3,14 2,96 2,99 2,95 2,95 3,03
Init with F 0,05 0,1 2,77 2,77 3,30 3,07 3,03 2,77 2,99
Init with F 0,05 0,5 7,15 7,18 6,50 7,35 7,40 6,50 7,12
Init with F 0,01 0,1 3,25 3,41 3,28 3,63 3,59 3,25 3,43
Init with F 0,01 0,2 3,16 3,89 3,55 3,32 3,37 3,16 3,46
Init with F 0,2 0,1 5,74 4,73 4,21 4,36 5,73 4,21 4,95
Init with F 0,2 0,5 9,03 8,91 9,20 8,97 8,07 8,07 8,84
Init with F 0,2 1,0 10,9 10,4 10,2 10,6 10,2 10,2 10,5
Init with F 0,5 1,0 15,4 15,0 15,4 15,2 15,2 15,0 15,2

Trial

Table 5: the impact of fuzzy feature observation.

3.12 Conclusions
When learning from visual features instead of conceptual/canonical features, the NMF 
algorithm is not always able to find the correct mapping between keywords and 
internal representations. This is a problem of local extrema in the NMF cost function: 
if initialized close to the solution, a valid solution can be found. The technique of 
“singling out” was proposed to produce a better initialization, but the method is not 
always satisfactory.



To simulate the fact that visual information is ‘noisy’ in practical learning situations, 
we added various types of noise to the data. We observe that the NMF can handle 
noisy input and degrades gracefully as more noise is added. It is advisable to filter 
inputs to alleviate the impact of the introduced between-token variation.
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Appendix A
Binary semantic features for the 50-word vocabulary from the Y2 UK database, version of March 13, 2009.
  airplane:  0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
    animal:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     apple:  0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      baby:  0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      ball:  0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
    banana:  0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
       big:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
      bird:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      blue:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
    bottle:  0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
       car:  0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
       cat:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     clean:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    cookie:  0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
       cow:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
    crying:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     daddy:  1 0 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     dirty:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
       dog:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      doll:  0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      duck:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     eagle:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
   eatable:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
      fish:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      frog:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      give:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
     happy:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
      have:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
     horse:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
      like:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
      lion:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
   look_at:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
       man:  1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     mummy:  0 1 1 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
   porsche:  0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
       red:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
     robin:  0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     round:  0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
       sad:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
       see:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
     small:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
   smiling:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    square:  0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
      take:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
  telefone:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
       toy:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
      tree:  0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     truck:  0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
     woman:  0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
    yellow:  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0





4 Deviating from the ‘ideal’ interaction
The following two sections (4A and 4B) are narrowly related: both deal with 
experiments in which the interaction between caregiver and learner deviates from the 
‘ideal’ interaction. ‘Ideal’ refers to the situation in most ACORNS experiments: the 
caregiver presents consistent stimuli (maybe noisified), and the learner takes each 
stimulus ‘as it appears’. That is, the learner assumes the stimulus to be consistent, and 
does not doubt the consistency between the modalities in the stimulus.
One may deviate from this idealized-world scenario in several ways.

• At the caregiver side: the caregiver may present a certain proportion of stimuli 
that are inconsistent, in addition to others that are consistent. This 
compromises the belief of the learner that all stimuli are consistent.

• The learner may take a much more active role. For example, an internal 
confidence mechanism may be active such that the learner might assume her 
OWN hypothesis being true, irrespective of what was presented in the 
stimulus. This directly means that the learning becomes less supervised.

Section 4 consists of two related parts that both deal with deviations from the ‘ideal’ 
interactive setting:
4A Learning meaningful units from multimodal input – the effect of interaction 
strategies. Here we investigate four different interaction strategies between caregiver 
and learner. The reason to keep this section separate from 4B is that this text has been 
published in and presented at the WOrkshop for Child-Computer Interaction WOCCI-
09 (ten Bosch, Boves & Räsänen, 2009).
4B Deviating from strict supervision during training. Here we show that a certain 
level of ‘contrariness’ at the learner’s side helps to overcome inconsistencies in 
stimuli from the caregiver.
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ABSTRACT
This paper describes a computational model of language acquisition based on meaningful 
interaction between an infant and its caregivers. Learning takes place in an interactive loop between 
a (virtual) caregiver and (virtual) learner who only uses general and cognitively plausible learning 
strategies and who does not rely on unrealistic prior knowledge about linguistic categories. In this 
work, the model is used to study the effects of different attentional factors in learning of word-
object paring during learner-caregiver interaction.

Categories and Subject Descriptors
H.1.2 [Information Systems] User-Machine Systems – Human Information Processing; I.2.6 
[Computing Methodologies] Learning – Concept Learning, Knowledge Acquisition; I.6.m 
Simulation and Modeling – Miscellaneous

General Terms
Algorithms, Human Factors, Theory.

Keywords
Interaction, learning, language acquisition

4A.1. INTRODUCTION

Most (human) learning happens as a side effect of interaction, often between high- and lower-
proficient participants. Language learning, which takes place through interaction between infant 
and caregivers, is a clear example. Caregivers are usually high proficient users of the language that 
is learned by the infant. Even if learning happens in a situation where a beginner interacts with one 
or more competent ‘agents’, several conditions must be distinguished. These conditions depend on 
the way in which errors that are made by the lower-proficient agent are corrected by the higher-
proficient agent, and on the way the lower-proficient agent is paying attention to the input from the 
higher-proficient agent. In language acquisition the caregivers may or may not explicitly correct 
‘errors’ of the infant, and the infant may or may not accept every sensory stimulus that it perceives 
as relevant. For example, an infant might hear an utterance from the caregiver, while at the same 
time not paying attention to exactly those objects referred to in that utterance. It will be evident that 
the way how and to what extent errors are corrected and to what extent information in a stimulus is 
processed will affect the eventual learning result and the shape of the learning curve. Literature on 
first language (L1) acquisition (see e.g. Kuhl, 2004; Houston & Jusczyk, 2000; Jusczyk & Aslin, 
1995; Singh et al., 2004; Newman, 2008) suggests that young children are not very sensitive to 
systematic correction – but a recent longitudinal study suggests that word learning can be supported 
by subtle tuning by caregivers (Roy, 2009). For L2 acquisition, it is often assumed that error 
correction during language acquisition may affect the rate of learning; the stages, however, remain 
unaltered.



Given these findings, it is interesting to connect observations from language acquisition on the one 
hand with a study about the effect of interaction strategies on learning performance on the other 
hand. Since language acquisition is closely related to the detection of potentially meaningful units 
(words, word-like units), we can make a bridge by investigating the effects of different interaction 
strategies on the learning performance shown by a computational model of language acquisition 
which focuses on the detection of words. In this paper, we explore this idea by investigating the 
impact of different learning strategies on the performance of a specific computational model. The 
model, developed in the ACORNS project (www.acorns-project.org), simulates language 
acquisition as a process in which infants learn associations between speech signals and objects or 
events in their environment. The model is extensively described in the literature (e.g. ten Bosch et 
al., 2009abc; Boves et al., 2007; see also Stouten et al., 2007; Van hamme, 2008; Klein et al., 
2008), and is briefly summarized in section 2 for the sake of clarity. The model assumes that 
learning takes place through interaction between caregivers and learner. Thus, we need to define 
one or more interaction strategies. In section 3, we discuss possible strategies and investigate the 
effects on learning. Sections 4 and 5 present an experiment and contain a discussion, respectively.
Although the model was designed for simulating the discovery of meaningful speech units, it may 
be useful in a wider perspective for the study of internal learning models and possibly of user 
modeling and adaptation.

4A.2. THE LEARNING FRAMEWORK

The model assumes a (virtual) learning environment in which a caregiver interacts with an infant. 
In each interaction cycle, the (virtual) caregiver presents a multimodal stimulus to the (virtual) 
learner. The learner processes this input and attempts to detect recurring auditory patterns in the 
speech signal and associate these acoustic elements to elements of the visual input. In this way,
internal word representations are hypothesized and adapted during one training. To that end, the 
learner is able to extract features from the input signals, to encode and store the representations in 
its internal memory, to retrieve representations from its memory, and to produce a (virtual) 
response which is provided to the caregiver. After that, the next stimulus is presented to the learner.
In combination with the response (i.e. the hypothesis that a certain concept corresponds to the 
acoustic input), the learner can provide the confidence measure associated to that hypothesis. Each 
stimulus activates each of the internal representations according to the match between the signal 
and the internal model. Based on these internal activation scores, the learner can provide to the 
caregiver the confidence measure of a concept which indicates the level of certainty that the learner 
has about her response. The use of confidence measures opens the possibility of handling cases in 
which the stimulus is underspecified or inconsistent – for example, if the learner is sufficiently 
confident about a certain hypothesis, the learner may overwrite (or ignore) the information as 
present in the original stimulus, and instead believe in its own hypothesis. Used in this way, the 
confidence score is comparable to the way how humans (or infants) behave if they are use or not 
sure about their answer.
Considerable attention has been given to the cognitive plausibility of the design (architecture) of 
the model, especially concerning the data presentation (the input of speech and visual information), 
the data processing (Kuhl, 2004; Smith & Yu, 2008) and memory structure (Baddeley, 1986; Bar, 
2007; see also Lewkowicz, 2002).
The learner makes use of two basic principles that play a major role in language acquisition (e.g. 
Smith & Yu, 2008): detection of recurrent patterns in the speech signal, and cross-modal 
association between co-occurring acoustic and visual patterns (also called ‘form-referent pairing’). 
The learning starts without prior knowledge about speech – for example, the learner does not know 
about specific language-dependent sound inventories, nor does it know about words. Also the 
processing itself is not assumed to be speech specific or language specific – the learning algorithms 



are based on general cognitive principles (see also Thelen et al., 1995; Grabowski et al., 2007; 
Markovitch & Lewkowicz, 2004).
In ACORNS, we have designed and tested three different computational approaches for word 
detection from multimodal data: Non-Negative Matrix Factorisation (NMF, e.g. Van hamme, 
2008), DP-Ngrams (Aimetti, 2009; Aimetti et al., 2009) and Concept Matrices (e.g. Räsänen et al., 
2009). For the sake of clarity, one of the approaches, Concept Matrices (CM), will be discussed in 
more detail here.

4A.2.1 Concept Matrices

CM is a technique able to find structure in data by discovering and memorizing associations 
between internal states of the learning system and multimodal external data. The input for the 
technique consists of a time series of discrete elements or sampled spatial information to form one-
dimensional sequences, and in the training phase, tags specifying some events associated with these
sequences. These discrete elements may be based on e.g. the use of a vector quantization (VQ) 
codebook. The concept tags are discrete elements (in our case integer values) that represent 
invariant outputs of another perceptual modality than auditory perception. For example the tags 
may represent information from the visual or haptic modality (Räsänen et al., 2008, 2009).
In this way, CM is able to combine information from the combination of modalities to boost the 
detection of potentially meaningful patterns in one of these modalities. More generally, the method 
allows construction of statistical associations between different modalities. As mentioned above, 
this association is one of the key aspects in learning of meaning (by agents and humans).
During training, when a label sequence s and a corresponding concept tag sequence c is presented, 
the algorithm starts to collect frequency data regarding the occurrences of label pairs in the 
sequence at specific temporal lags. This ‘bigram’ data is stored into histogram tables T(l, c)  
specified by the lag l and c, i.e., a  separate table exists for each tag at each lag, yielding a total of 
Nl*Nc tables where Nc is the total number of all possible tags, and Nl denotes the number of used 
lags. This first step shares properties similar to those of the NMF-based HAC-model proposed by 
Van hamme (2008). In the next step, these tables T are normalized to an activation matrix P(l,c) of 
size Nq x Nq, where Nq is the size of the label codebook.
During recognition, the label transitions in a novel input sequence are used as weighted pointers to 
the activation matrices P. The activation level of a certain concept c at time t given a new input 
sequence s can then be computed by adding the probabilities of observing c according to the 
activation matrices P (see Räsänen et al., 2009, for mathematical details). This activation can be 
computed in parallel for all concepts in order to see what concept is most likely given the present 
acoustic input.
This procedure provides a temporally local activation estimate for each concept candidate. In many 
applications it is useful to examine the activation output in a larger temporal window since the 
events that are being recognized may spread over several subsequent time frames. One possible 
way by which good results were achieved is to apply a low-pass or median filter on all activation 
curves, in order to hypothesize a sequence of long-term winning concepts.

4A.2.2 Dialogue

In the present implementation of the model interaction adheres to ‘ideal’ turn-taking behavior. By 
this we mean the following. In real life, natural turn taking between two human participants is 
characterized by a high number of interruptions, incomplete utterances, ungrammatical turns, and 
by specific discourse dependent collaborative behaviour, such as mutual completion of a single 
phrase by the discourse participants. In contrast, ‘ideal’ turn-taking behavior as used here refers to 
interaction during which participants take turns without interruptions. The ‘ideal’ interaction is a 



sequence of single interaction cycles. Each interactive cycle consists of one stimulus from the 
(virtual) caregiver to the model, and the response of the model to the caregiver. The agents wait for 
the response of the other agent and do not interfere with each other’s process.

There is another difference between the interaction as used here and ‘natural interaction’. In the 
‘ideal’ interaction, the auditory and visual input channels are always synchronized, while in a real 
interaction, the association between auditory information and visual information may be vague, 
asynchronous or even absent.
Recent studies show that the form-referent pairing by young infants is supported by a consistent 
synchronized presentation of cross-modal information (Cogate et al., 2006), but that young infants 
are capable of making these associations also in cases where individual situations are more fuzzy 
(e.g. Smith & Yu, 2008 and references therein).
Despite and due to these simplifications, it is possible to investigate different interaction and 
learning strategies. These are described in more detail in section 3.

4A.3. INTERACTION STRATEGIES

The simplest setting for the interaction between caregiver and infant is one in which it is assumed 
that the speech of the caregiver always refers to visible objects in the environment and the learner 
pays attention to those objects. Moreover, the learner assumes that the association between speech 
and visual representations in each multimodal stimulus is always ‘correct’. This ‘baseline’ strategy 
will be indicated as condition (strategy) A.
In a slightly more complex setting, the association between audio and visual input in the stimulus is 
always ‘correct’, yet the learner can make mistakes in the association; this setting is indicated as 
condition B. Condition B is more complex than condition A, since the learner can overrule the 
information that is presented during training on the basis of her own hypothesis.
The interaction complexity can be further increased when it can no longer be guaranteed that that 
learner always looks at the objects referred to in the speech (condition C) or the learner looks at 
another object than the one referred to in the speech (condition D). Condition C is one in which the 
caregiver does not always provide complete multimodal stimuli, for example in the case of a single 
unimodal stimulus. Condition C is more difficult than condition B: in condition B it is left to the 
learner to hypothesize, while the stimulus itself is complete, correct and consistent; in condition C 
the learner is forced to hypothesize since not all stimuli are complete. Finally, condition D is the 
most challenging, because in this case stimuli may be misleading providing faulty information 
rather then just being incomplete.
Obviously, in conditions C and D the learner may or may not associate the speech with the ‘correct’ 
objects, depending on the confidence attached to such a cross-modal association. These settings in 
the learning and interaction strategies are strongly reminiscent of conditions used in game theory 
(e.g. Camerer, 2003).

4A.4. EXPERIMENTS

In order to compare the different strategies on the learning result, we have conducted experiments 
with a fixed threshold for the confidence level in conditions B, C and D and a fixed proportion 
(20%) of non-ideal stimuli in settings C and D. Training and test sets were identical – the only 
difference between the experiments is the way the learner deals with the stimuli presented by the 
caregiver and the way in which the stimuli are presented to the learner.



Figure 1. Results of the model using strategy A (condition A) on 10 different test sets (10 different speakers), using one  
fixed particular training set. There are ten learning curves - each curve is related to one of the test sets (i.e. one test  
speaker). One point (x, y) specifies the performance of the learner (y) on the test set after having observed x stimuli in  
the training set. (Results by Concept Matrix approach, Räsänen et al., 2009).As can be observed, four test speakers  
perform particularly well – these are exactly the speakers that are also present in the training set (indicated M1, M2,  
F1 and F2).

The training set consists of about 500 multimodal stimuli from four different speakers of (British) 
English: two male speakers (indicated M1 and M2) and two female speakers (F1 and F2). The 
number of target words (concepts) that are to be learned is 10 (so there are some 50 acoustic 
realizations for each of the concepts, about 12 per speaker).
Figure 1 presents a typical example of learning curves using strategy/condition A using this training 
set on 10 different test sets. Under the baseline condition A, the learner is able to discover 
associations between stretches in the speech signal and corresponding visual representations that 
are almost perfect after having processed some 500 interaction cycles (500 stimuli).
However, the learned associations are highly speaker-dependent. When confronted with a new 
speaker (a speaker not earlier observed during training) the learner still makes a large number of 
errors. That can be seen in Figure 1: the 6 less performing speakers are those that are novel 
compared to the training set.
Figure 2 compares the use of different conditions A, B C and D on one of these 10 test sets, the test 
set associated to speaker M1 in fig 1. Therefore plot A (open circles) in figure 2 corresponds with 
the M1 plot in figure 1. As could be expected, among all conditions, condition A is the best with 
respect to learning rate and performance, and deviations from this condition A lead to a less 
favorable training. For example, for condition B performance starts lower but the eventual 
performance is comparable to condition A. For condition C, the learning rate is lower than 
condition B and performance drops significantly. An analysis of all the errors made shows that 
incomplete input stimuli are completed but at a price of introducing new errors, with no significant 
gain as net result. Condition D is worst: the learner makes about 30 percent errors, i.e. more than 
were in the input (20 percent). As could be expected, learning suffers more if the infant happens to 
focus on another object than the one referred to in the speech utterance than when there is no visual 
object to accompany the speech.



Figure 2. Comparable learning curves for conditions A, B, C, D. Significant differences are indicated by the red ‘yard  
stick’.

The results show that the learning model can be used to investigate the effect of various learning 
schemes on the learning rate and eventual performance of the learner model. The results show that 
the model can support the study of alternative behaviour during learning, of internal learning 
models and of improved user modeling and adaptation.

4A.5. DISCUSSION

Although the model was designed for simulating the discovery of meaningful speech units, it may 
be useful in a wider perspective for the study of internal learning models and possibly of user 
modeling and adaptation.
We have shown that the baseline condition A is the best with respect to learning rate and 
performance. Deviations from this baseline condition lead to a less favorable training. For example, 
if the learner is less passive and is allowed to overrule information presented in the input (condition 
B), the learning curve starts lower that in condition A but the eventual performance is comparable 
to condition A. Apparently the learner has some problems with the bootstrapping of the learning, 
and probably with the internal evaluation of the ‘confidence score’ as well after having seen only a 
few data points.
For condition C, in which some of the information presented by the caregiver is incomplete, the 
learning rate is lower than condition A or B and the eventual performance drops significantly 
compared to condition A and B. And, as could be expected, condition D (deliberate inconsistencies 
in the input) is worst: the learner makes more errors than were in the input, implying that from an 
epigenetic point of view the training regime passed a critical boundary and has run into unstable 
regions in the learning state space (cf. Thelen & Smith, 1995).



The experiments show that the learning curve as well as the eventual learning performance 
significantly depend on the exact way how the caregiver and learner deal with the information and 
on the extent to which it is allowed to overwrite or ignore presented information.

In the future, it would be interesting to develop the learning platform further by incorporating 
simulations of actual consequences of communicative behavior instead of simple turn taking 
procedure (“correct”, “wrong, try again”). It is clear that the result of a learning process depends on 
the way the information is presented by the teacher (in our experiments: caregiver), the way the 
learner deals with this information, and how errors made by the learner are handled by the 
caregiver. A rich set of strategies in the computational model would enable simulation studies 
where the needs and novelty seeking behaviour of a learner would drive the learning process by 
itself instead of being dependent on ‘passive’ audiovisual perception. Behavioral consequences 
would “force” the learning algorithms to differentiate between perceptions that affect differently 
the state and rewards of the learner, whereas some other percepts in a specific context could be 
considered as equal. This way it is possible to study the development of categorical and semantic 
representations of the surrounding world.
Evidently, the design and implementation of such simulation platform in a plausible but yet flexible 
way is not a simple task.
But the flexibility of computational models as a test bed for these and similar simulations is shown 
in this paper. Ultimately, the challenge is to derive useful information regarding real world learning 
processes, rather than building simulations where learning algorithms have very specific a-priori 
mechanisms for reverse engineering the expert designed learning environments.
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4B Deviating from strict supervision during training

4B.1 Introduction

In section 3, we discussed the various scenarios if one ‘noisifies’ the visual channel, while section 
4A presented the effect of different learning conditions on the performance of the learner. Both 
studies show that, as soon as one deviates from the situation without variation, with consistent 
stimuli, and with a passively believing learner, the performance of the learner deteriorates, almost 
always in a graceful manner.
In section 4B, we will investigate in more detail what happens in the caregiver-learner interaction, 
with a focus on the relation between ‘proportion inconsistent stimuli’ (as presented by the 
caregiver) and the amount of contrariness (implemented by using internal confidence measures at 
the learner’s side). By doing so, section 4B also addresses the issue of supervision during learning. 
Using hindsight we conclude that in most experiments done so far we have investigated what is 
essentially supervised learning. This issue was also discussed during the January 2009 review.  In 
most experiments the correct visual tag was appended to the speech stimulus after it was first 
presented to the learner, and the learner believed the presented stimulus ‘as is’ (as ground truth), 
even if the learner’s hypothesis was wrong. That is:

• The caregiver presents coherent, complete, true combinations of auditory and visual 
information in each stimulus, or noisified versions thereof

• The learner takes these inputs ‘as is’. The stimulus is incorporated into the learning 
mechanism, without doubt about the internal (in)consistency of the stimulus.

Especially the second point represents an unrealistic setting for learning, and it would be interesting 
to investigate situations that deviate from this ‘blind-belief’ (‘blind-trust’) situation. The relevance 
within the ACORNS project to investigate other types than strictly supervised learning relates to 
the fact that language learning is actually only very mildly supervised.

Another motivation to investigate semi-supervised learning is the role of the learner during 
learning. In the experiments presented so far, the role is (quite) passive in the sense of ‘taking 
everything for granted’. This is not realistic. It is very likely that the role of any learning system 
must be more ‘pro-active’ - especially in the case where the truth or consistency of learning stimuli 
cannot be taken for granted. In a realistic teacher-pupil scenario, and probably also in a caregiver-
infant situation, the level of suspicion at the learner’s side will probably rise if the teacher makes 
occasional errors. That means that the communication between teacher and pupil, and between 
caregiver and infant, is a dynamic process: ‘if I start doubting what you say, I increase my 
contrariness levels and may become more cocksure’. This mutual balancing between ‘belief’ and 
‘suspicion’ is probably a basic mechanism in many, if not all, forms of human-human 
communication. 

4B.2 Semi-supervised learning

In this section we will investigate a route towards semi-supervised learning. The experimental 
results suggest the computational modelling of the ‘belief-suspicion balance’ at the learner’s side. 
The following two directions are explored:

- At the caregiver side: the caregiver may present stimuli that are inconsistent. The 
probability of presenting an inconsistent stimulus is denoted p. (0 ≤ p ≤ 1). Compared to the 



noisified visual presentations in section 3, the inconsistencies are very drastic: either the the 
stimulus is entirely consistent (i.e. no noise or variation), or it is entirely inconsistent.

- At the learner’s side, an internal confidence mechanism is implemented such that if the 
confidence about a certain hypothesis exceeds a certain threshold θ (0 ≤ θ ≤ 1), the learner 
assumes that its own hypothesis is true. In that case, the learner ignores the information in 
the grounding section of the presented input stimulus. Instead, the own hypothesis is put in 
short term memory for later reuse, and so is assumed to be of value for all later internal 
updates. 

The situation is depicted in Figure 1. The ‘ideal’ situation is the one combining ‘coherent and 
correct’ with ‘always believe’. The parameter p (0 ≤ p ≤ 1) models deviations along the vertical 
axis; θ (0 ≤ θ ≤ 1) models deviations along the horizontal axis. The vertical arrow left refers to the 
probability of presenting inconsistent audio-visual pairs to the learner. At the caregiver’s side, the 
value p=0 is represented by the left upper option, higher values are referred to by the option 
‘incomplete or incorrect’. Horizontally, the choices are determined by θ at the learner’s side. A 
value of θ =1 corresponds to the middle column; the lower θ, the lower the learner’s internal 
threshold to believe herself and the more ‘cocksure’ the learner will be.

Caregiver-learner interaction

caregiver learner
Always
believe

Cocksure (overwrite/fill-
in) if self-confident, 
believe otherwise

Coherent and correct studied ?

incomplete or incorrect ? ?

Self-confidence

P(mismatching modalities)

Figure 1. The parameter p models the vertical axis; θ models the horizontal axis. The vertical arrow left refers to the 
probability of presenting inconsistent audio-visual pairs to the learner. At the caregiver’s side, the value p=0 is 

represented by the left upper option, higher values are referred to by the option ‘incomplete or incorrect’.  
Horizontally, the choices are determined by θ  at the learner’s side. A value of θ =1 corresponds to the middle column; 

the lower θ , the more ‘cocksure’ is the learner.



Learner 
Incoherent with probability p If thr (θ ) = 1, learner as before

Figure 2. This figure shows how the learner is extended for the experiments described here. The input stimulus is  
recognized on the basis of its acoustic (audio) part. Next, the confidence is evaluated on the basis of all activations of  
the internal representations. In the following step, this confidence value is compared with a threshold (‘thr’, θ) – this 
comparison determines the behaviour of the learner, in particular what is stored in the learner’s Long Term Memory.  
If the threshold has a value of 1, the learner assumes that all stimuli are correct. If the threshold equals 0, the learner  

is cocksure for all stimuli.

Semi-supervised learning means that the learner must be able to overrule the ‘ground truth’ as 
presented in the stimuli, and so the learner plays a more ‘active’ role than during fully supervised 
training. This more active role may vary from ‘filling in’ missing information to ‘overruling’ the 
information in the presented stimulus. In effect, this experiment exploits the possible types of 
interaction between caregiver and learner in such a way that the experiments done in the first 
ACORNS year can be considered as a special case (i.e. large θ). 
The changes made in the learner as depicted in Figure 2. The learner does not passively assume any 
more that inputs are ‘correct’. Instead, it uses an internal confidence measure to quantify its own 
belief in the labelling of an unseen stimulus, and if the learner is sure enough (of the internal 
confidence exceeds a certain threshold), it assumes its OWN hypothesis to be correct. The learner’s 
internal threshold is denoted ‘thr’ (= θ, the value of this threshold can be set by the experimenter). 
The confidence measure that the learner evaluates for each input stimulus, in combination with this 
threshold, determines how the learner proceeds after having recognized the stimulus. In concreto, 
the steps are as follows:

• During test, a novel stimulus is presented to the learner
• The audio part of the stimulus is used for recognition, in combination with the internal 

representations. A hypothesized conceptual feature vector is reconstructed by the learner. 
In combination with the reconstructed conceptual decoding, a confidence measure c is 
evaluated. This value is defined by c =  (aN-aN-1)/Σai, where aN and aN-1 denote the 
confidence attached to maximum and second best element in the reconstructed visual 
feature vector, respectively, and Σ ai  represents the sum of all elements of this feature 
vector. Figure 3 shows the effect of this particular definition of confidence on the 
performance of the learner: the larger the learner’s confidence value, the more likely it is 



that the recognition was actually correct. The lower black curve corresponds to a 
confidence threshold of 0 and therefore includes all stimuli. By selecting the stimuli by 
increasing the condfidence threshold (0.04 and 0.08 refer to the middle red and upper 
purple curves, respectively), the performance increases, showing that the more confident 
the learner was, the larger the likelihood of the hypothesis being correct.

• In the current implementation, the learner uses this internal confidence measure c in the 
following way. If the confidence measure c exceeds a certain (experimenter defined) 
threshold θ (i.e. c > θ), the learner assumes its own hypothesis is correct (no matter the 
label in the actual stimulus). In that case, the hypothesized label is assumed to be correct 
and (in combination with the audio part) stored in Long Term Memory (LTM). Otherwise 
the learner assumes the information in the stimulus is correct, and the stimulus is stored in 
LTM. 

Figure 3. This figure shows the relevance of the chosen implementation of the internal confidence measure c. The three  
curves shown here (black, red and purple) all refer to the same training run. The black curve is the original plot of the 
accuracy of the learner, varying over time. The red curve is based on the same data, but restricted to all recognition 
results with c > 0.04. The purple curve displays the data for which c > 0.08. The higher the confidence of a certain 

hypothesis, the higher the likelihood of this hypothesis being correct.

4B.3 Results

Each combination of (p, θ) leads to a specific performance of the learner. This is shown in figure 4 
(left and right). This figure shows a contour plot of the performance of the learner as a function of 
p (in the figure referred to as the noise in transmission, along the horizontal axis) and θ (confidence 
threshold, along the vertical axis). The ‘ideal’ training condition is in the upper left part of the plot. 
The more the training condition deviates from this position, the worse the learner’s performance (in 
general). Interestingly, the effect of both parameters is different: while in one direction one can 
detect a ‘graceful’ degradation, the effect in the other dimension is very drastic. It is interesting to 
see that a certain amount of ‘contrariness’ does not deteriorate the performance. On the contrary: 
for certain amounts of incoherence in the stimuli (i.e. along one vertical slice) a certain level of 
contrariness at the learner’s side even improves the learner performance. 



Figure 4 further suggests that the learner is robust against inconsistency in the input as long as the 
confidence threshold is low enough. Even a value of p = 0.5 (audio-referent pairing is incorrect in 1 
out of 2 stimuli) may lead to a correctness of 0.75. In this direction, degradation is graceful
The effect along the vertical dimension is made clearer in figure 5. This figure displays a section of 
the contour plot shown in figure 4, right panel, along the vertical slice p  = 0.25 (this means that the 
audio-referent pairing in 1 out of 4 stimuli is incorrect). At the right hand side, θ=1 and the learner 
assumes all stimuli are coherent. According to figure 5, this leads to less optimal performance than 
the situation in which the contrariness is higher (that is, lower values of θ), with an optimum for θ 
around 0.1. Interestingly, this means that the learner can improve its own performance, compared to 
the fully-believing case, by being much more cocksure and only take the stimuli for granted in 
those cases where the learner itself is not sufficiently sure.
Another interesting fact is that in this dimension, degradation is not so graceful any more. If the 
learner is too ‘cocksure’ (θ  0), the learning radically breaks down.

Figure 4. Performance of the learner, as a function of the probability p (horizontal axis) and the confidence threshold 
θ (vertical axis). Small grid (left) and large grid (right) A contour plot of the performance of the learner as a function 

of p (in the figure referred to as the noise in transmission, along the horizontal axis) and the confidence threshold 
along the vertical axis. The contour plot suggests that the learner is robust against inconsistency in the input as 

long as the confidence threshold is low enough.



Figure 5. A cross section of the contour plot along the vertical slice p  = 0.25 (this means that the audio-referent  
pairing in 1 out of 4 stimuli is incorrect). At the right hand side, θ=1 and the learner assumes all stimuli are coherent.  
Evidently this leads to less optimal performance than the situation in which the contrariness is higher (that is, lower 
values of θ), with an optimum for θ=0.1. This means that the learner can improve, compared to the fully-believing  

case, by being much more cocksure and only take the stimuli for granted in those cases where the learner itself is not  
sufficiently sure. If the learner is too ‘cocksure’ (θ  0) the learning breaks down.

Figure 4 and 5 have been based on a grid computing in which various values of (p, θ) were 
explored. Each combination of (p, θ) in the square [0, 1] x [0, 1] leads to an entire learning curve. 

4B.4 Conclusions

This section discusses the effect of deviations from an ‘ideal’ setting of caregiver and learner on the 
performance of the learner. An experiment was done by systematically investigating the effect of 
two parameters. The results show that the performance of the learner can gain from a certain 
amount of contrariness at the learner’s side. It is the computational equivalent of a ‘belief-
suspicion’ balance between caregiver and learner. It is to be investigated how this contrariness level 
can be adjusted in an automatic way during training.
Interestingly, the experiment also shows various degrees of graceful degradation. The degradation 
of the learner’s performance is graceful along one dimension (the inconsistency in the input). This 
is in line with the findings reported in section 2B. However, along the other dimension, degradation 
might not be graceful, and looks actually rather catastrophic. Both the graceful and less graceful 
form of degradation are shown in figure 4 (right).
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5 Alternative features

5.1 Introduction
One of the tasks in WP1 is the design and test of features that deviate from the standard features 
that conventional speech decoding algorithms use (MFCCs). In WP1, two new types, MMFCC and 
SA-MMFCC features, were designed in such a way that they optimally encode acoustic details in 
the signal. The differences between the novel features is basically the dimension of the resulting 
feature vector and the way how the features are selected from a constrained search space. In the 
ACORNS approach, computational models of the human hearing system were involved for 
optimizing the features. In experiments, the novel features are then contrasted with the more 
conventional MFCCs. 
The hypothesis is that once features are tuned towards the human hearing system, they are 
principally better equipped to capture details from the speech signal that appear relevant for 
upstream processing of human speech across many conditions. For example, it was expected that 
certain feature types could outperform MFCCs in adverse conditions. In total, three feature sets 
have been compared in various noise conditions:
(a) the classical MFCC-based features (dim 39)
(b) modified MFCC (MMFCC) features (dim 39)
(c) features specifically found by using auditory model optimisation SA-MMFCC (dim 51)

For the description of these features we refer to deliverable D1.3. In this deliverable it is described 
how the features are constructed and how the computational model of the human auditory system in 
involved in the improvement of the features. The deliverable also mentions the various tests to 
show that these features indeed make sense for improving the recognition rates on specific test sets 
in specific conditions. These tests were based on the conventional HMM-ASR framework

The question remains to what extent MMFCC and SA-MMFCC could improve results when they 
are combined with other back-ends, such as the three ACORNS learning algorithms.

5.2 MMFCC
In order to test the performance of MMFCC and to contrast these results with the classical MFCCs, 
a large-scale experiment was done with the following independent experimental factors:

- training sets (5: varying in speakers)
- test sets (10: one speaker per test set)
- noise type (3 or more: clean, white20 (20 dB SNR), white10, factory, …)
- channel normalisation (2: CMVN, no-CMVN)
- feature type (2: MFCC, MMFCC)
- learning algorithm (2: NMF, CM (DP-Ngrams))

This experiment provided a substantial amount of results for at least 1200 different combinations of 
independent factors. The result of each combination was reflected in one single number (the 
performance of the learner on the entire test set).

The results can be summarized as follows.

The modified MFCC (MMFCC) features perform significantly better than MFCC in almost all 
cases (independent of the computational method NMF, DP-ngrams, and CM). In absolute terms, 
the improvement in accuracy varies between 3 and 8 percent. 



In 4 percent of all comparable cases, MMFCC does NOT lead to improvement of the measured 
accuracy compared to MFCC. This effect is attributable to the random initialisation effects that are 
inherent in all training runs. The same training rerun may yield a (slightly) different performance, 
with a certain underlying statistical distribution. Since each training run also depends on (random) 
initialisations, it can happen that the MMFCC variant turns out at the low side and the MFCC 
variant at the high side of this distribution. Under the assumption of this effect being normally 
distributed, the probability of this ‘flip’ happening is estimated between 3 and 5 percent.
The amount of improvement depends in general on the type of background noise applied and 
whether cepstral mean and variance normalisation (CMVN) is used or not. In case of stationary 
noise (white 10 dB SNR, white 20 dB SNR) the gain is higher than for non stationary noise. 
Also CMVN helps the improvement between MMFCC and MFCC, with an average of 1.9 percent 
absolute.

5.3 SA-MMFCC

In order to test the performance of SA-MMFCC and to contrast these results with the classical 
MFCCs and with MMFCCs, a small-scale experiment was done with the following independent 
experimental factors:

- training sets (5: varying in speakers)
- test sets (10: one speaker per test set)
- noise type (3 or more: clean, white20 (20 dB SNR), white10, factory, …)
- one learning algorithm: DP-Ngrams

The SA-MMFCC features have only been tested in combination with DP-ngrams – it is not 
combined with NMF and CM. The reason for this was that building reasonably optimal code books, 
such that a fair comparison is possible, for NMF en CM is prohibitive: the dimension of the MFCC 
and MMFCC vectors is 39; the dimension of the SA-MFCC vector is 51. The design of a good 
codebook allows a few degrees of freedom (number of codewords, the sampling accuracy, the way 
in which multiple streams are weighted and combined), and therefore the creation of fair and 
comparable codebooks on features with an entirely different type of content and statistical character 
is not evident. For that reason, it was decided to limit the SA-MFCC tests to DP-Ngrams, the only 
method of the three that could be tested right away without codebook.

The results obtained for SA-MFCC appeared less promising, for reasons that became clear only 
after having analysed the results of these preliminary experiments. In these experiments, it 
appeared that by using DP-grams, the results show significant deterioration compared to both 
MFCC and MMFCC. One of the results is plotted in Figure 1



Figure 1. The figure shows the results for MFCC, MMFCC and SA-MFCC in clean condition, for four 
different speakers F1, F2, M1 and M2. The computational approach is DP-ngrams. The figure shows that  
MMFCC clearly outperforms MFCC, but the results with SA-MFCC are substantially worse (as can be seen 
by e.g. comparing the plots with the downward triangle for speaker F1). Graph made by Guy Aimetti.

Discussion SA-MMFCC

Prior to the ACORNS data, the novel features MMFCC and SA-MFCC have been tested on other 
data and other recognition tasks (Deliverable 1.3). In the case of phone decoding tasks (on TIMIT) 
and word recognition tasks on Aurora-2, these modified features (both MMFCC and AS-MFCC) 
gave better results than MFCC with an HMM-ASR system (Hidden Markov Toolkit, HTK) as 
recognition back end. 
Given these results, it appears that these HMM-ASR-based results cannot be directly generalised to 
the DP-Ngrams approach in ACORNS. So far, all results point to the issue of feature correlation 
between the input features as the most likely hampering effect. The HMM-ASR-based 
improvements were obtained with a Gaussian mixture per state. Since DP-Ngrams uses Euclidean 
distances, the rather low SA-MFCC results may be due to correlation in the SA-MMFCC features. 
The amount might be low enough to be adequately coped with by HTK Gaussian mixtures but too 
high to be captured by the L2 norm in DP-ngrams. 
In general, a mixture of Gaussians is able to cope with correlated data, by explicitly modelling the 
correlations between the features of the input vectors using a weighted sum of diagonal covariance 
Gaussians. In total, this means that pretests with an HMM-ASR system using Gaussian mixtures 
may obscure the usefulness of the novel features in DP-ngrams, and that a de-correlation step must 
be applied between the feature extraction and the recognition back end. 
Another possible cause is the non-gaussianeity of the SA-MMFCC features compared to the MFCC 
and the MMFCC features.



These effects will be investigated in subsequent research. Within the ACORNS project, there is 
hardly time left for investigating the precise effect of correlation. Within the ACORNS time frame, 
only a few limited small-scale tests could be performed due to the late availability of the novel SA-
MMFCC features.



6 Conclusions

In section 2, we have seen how the different computational approaches could be compared, and to 
what extent it was possible to relate model results to findings described in the literature on language 
acquisition. One of the literature findings, reported in Newman (2008), provided a good example of 
an empirical result that could be compared and contrasted with results obtained by computational 
simulation. Newman’s statement is that young infants are better in recognizing novel speakers if 
they have been exposed to more different speakers earlier. This observation is narrowly related to 
the current debate about episodic and abstractionist processing of speech (see e.g. McQueen, 2007) 
and therefore opens the discussion to what extent episodically-based algorithms can/should deal 
with abstraction and generalisation.
The experiment was a opportunity to contrast the three computational approaches NMF, CM, and 
DP-Ngrams, which was one of the recommendations of the reviewers. It was explicitly not the 
intention to see which algorithms performs ‘better’ than other algorithms. Instead, the comparison 
was meant to gain insight in the different types of behaviour, based on different learning principles. 

In section 3, different alternatives for the visual encoding are discussed and NMF-based 
experiments are reported in which the visual channel is noisified in a number of different ways.
When learning from visual features instead of canonical/conceptual features, the NMF algorithm is 
not always able to find the correct mapping between keywords and internal representations. This is 
a problem of local extrema in the NMF cost function: if initialized close to the solution, a valid 
solution can be found. The technique of “singling out” was proposed to produce a better 
initialization, but the method is not always satisfactory.
To simulate the fact that visual information is noisy in practical learning situations, we added 
various types of noise to the data. We observe that the NMF can handle noisy input and degrades 
gracefully as more noise is added. It is advisable to filter inputs to alleviate the impact of the noise 
at the learner’s side.

Section 4 (4A and 4B) discusses the way caregiver and learner interact which each other. In most 
ACORNS experiments, we have assumed that the caregiver always present complete and consistent 
stimuli. Each stimulus consists of an audio part and a ‘visual’ (grounding) part. In the experiments 
so far, the learner takes each stimulus ‘as it appears’. That is, the learner assumes the stimulus to be 
consistent, and does not doubt the consistency between the modalities within the stimulus (learning 
condition A)
We have done experiments with the aim to investigate what would happen if the interaction 
between caregiver and learner was modified towards less strict forms of supervision during 
training. We have shown that the baseline condition A is the best with respect to learning rate and 
performance. Deviations from this baseline condition lead to a less favorable training. 
A certain contrariness at the learner’s side can help to overcome the inconsistency that is present 
within the input stimuli. It was also shown that degradations of the learner’s performance are 
graceful along the dimension of inconsistency in the input (a higher inconsistency leads to a 
graceful degradation of the learner’s performance). However, the change in learner’s contrariness 
levels does not lead to graceful degradation of the performance. Along this dimension, a rather 
catastrophic degradation can be observed.

Section 5 briefly addressed the question what would happen in the case of realistic noise in the 
audio part when we use novel features. This task does relate to WP1 (features) in combination with 
WP5 (experiments). Since the computational approaches (NMF, CM, DP-Ngrams) differ with 



respect to how episodic information is dealt with during the learning, it is expected that they differ 
with respect to their robustness against background noise. In theory, episodic approaches (such as 
DP-Ngrams) will deal with noise in another way than less-episodic approaches. Moreover, it was 
expected that the novel features that were designed in WP1 show better performance in adverse 
conditions. WP1 designed two novel types of features (‘modified’-MFCC and ‘static adaptive’-
MFCC); both these features were subject to various tests.
It appears that the modified MFCC features (MMFCC) outperforms MFCC, but that SA-MMFCC 
scores lower than both MFCC and MMFCC for DP-Ngrams. The discussion focuses on the amount 
of correlation in the features, and non-normality within the features and the way how HTK and DP-
Ngrams deal with correction in different ways.
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