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1 Introduction 
 
This WP3.3 report consolidates the findings related to the memory architecture produced 
as part of the ACORNS project.  This consolidation brings together the findings by 
relating them to the WP3 objectives of: 
 
• Creation of a synthetic memory structure that exhibits recognizable psychological 

behaviour as an emergent bi-product. 
 
• Design and implementation of mechanisms and computational models of working 

memory architecture and access. 
 
• Inclusion of attention within the overall memory architecture. 
 
• Investigation and implementation of episodic and semantic memory within the memory-

prediction framework. 
 
• Linking memory-prediction framework with dual-purpose sensory-motor 

representations 
 
Devised and developed over the ACORNS project, the ACORN memory architecture 
forms the basis for various memory models to achieve the objectives outlined above.  
Examining these models offers the opportunity to consider how combining various 
components of the memory architecture (sensor and motor working memory, semantic 
long-term memory, episodic long-term memory, motor long-term memory and attention) 
direct them.  For speech acquisition this memory architecture combines attention, working 
memory and long-term memory.  According to Burgess and Hitch (2005), many 
computational models of human memory concentrate on working memory or long-term 
memory at the expense of the other.  However, the ACORNS memory architecture 
incorporates the interaction between working memory and long-term memory into a single 
architecture.  The memory models developed within the memory architecture for speech 
acquisition split into three main areas: (i) attention based mechanisms, (ii) combined 
working memory and semantic long-term memory, and (iii) combined working memory 
and episodic long-term memory.  In addition, there is a consideration in this report of a 
sensorimotor representation approach to incorporate speech production in the ACORNS 
memory architecture.   
 
In this report, we will concentration on two episodic long-term memory models: the 
Acoustic DP-Ngram and Temporal Episodic Memory Model (TEMM).  However, two 
further episodic long-term memory models, which incorporate inspiration from the 
ACORNS memory architecture, were developed within the ACORNS project and are the 
exemplar-based model and the activation based matching system.  Demuynck (2009) D4.3 
- ‘Report on exemplar-based and activation based matching’ describes these second two 
episodic long-term memory models in a great deal of detail.  It is possible in D4.3 to find a 
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description of how the exemplar-based model and the activation based matching system 
relate to the ACORNS memory architecture and a comparison with other ACORNS 
memory models.   
 
The ACORNS memory architecture inspired models perform various activities required 
for an automatic speech recognition system including selective attentional focus modelling, 
speech/non-speech attention, self-organised association of speech and semantic (visual) 
features, keyword recognition, early vocabulary acquisition, phone/word labelling, and 
building word-like units from cross-modal stimuli.  These models include approaches that 
are new to the field of speech recognition and are more long-term with regards their likely 
impact on speech recognition technology.  Some of the ACORNS memory models make 
use of speech data less complex than the ACORNS database recordings as an initial test of 
the approach. However, they offer the opportunity to use the ACORNS speech data in the 
future.  This report outlines extension of the current memory models described in WP3.2 
as well as new ones.  Table 1 gives an initial comparison of the models produced within 
the ACORNS memory architecture with greater details provided throughout this report 
and summarised in Table 4.  Table 1 gives an initial description of the memory models by 
indicating their applications, the memory structures from the ACORNS memory 
architecture the models are based on, whether the models provide results or are at the 
conceptual stage, and the auditory database they use.  For instance, the attention gating 
(AG) model performs selective attention by speech/non-speech classification, takes from 
the memory architecture the interaction between working memory and semantic long-term 
memory, gives classification results, and uses the English ACORNS database recorded in 
period 1 and recordings of non-speech data. 
 
The structure of the remainder of this report is as follows: Chapter 2 describes the 
ACORNS memory architecture. Chapter 3 is a description of attention in the ACORNS 
memory architecture. Chapter 4 provides an examination of models inspired by the 
ACORNS memory architecture’s interaction between working memory and semantic long-
term memory.  Chapter 5 considers models based on the interaction between working 
memory and episodic long-term memory.  Chapters 3, 4 and 5 also include comparisons 
between the memory models and approaches typically used in speech recognition.  
Chapter 6 provides a comparison of the various semantic long-term memory and episodic 
long-term memory models developed within the memory architecture.  Chapter 7 
examines the relationship between the ACORNS memory architecture and sensorimotor 
representations.  Chapter 8 gives a summary of the findings from the rest of the report and 
final concluding remarks. 
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Table 1 Overview of the speech acquisition and recognition models developed within the ACORNS 
memory architecture. (WM - working memory, LTM - long-term memory, P -yes and O - no) 
 
  Interaction   
Model Application WM Episodic 

LTM 
Semantic 
LTM 

Motor 
LTM 

Produce 
Results 

Database 

Special attentional 
focus 

Attention P O P O P Finnish ACORNS 
Period 1 

Attention gating 
(AG) model 

Selected 
attention:  
Classifier 
speech/non-
speech  

P O P O P English ACORNS 
Period 1 
Non-speech 
sounds 

Hierarchical 
Recurrent self-
organising map  
(H-RSOM) 

Speech and 
semantic 
feature 
association 

P O P O P English ACORNS 
Period 1 

Restricted 
Boltzmann 
Machine (RBM) 

Spoken word 
recognition P O P O P TiDigits 

Hierarchical Non-
negative matrix 
factorisation (NMF) 

Early 
vocabulary 
acquisition 

P O P O Conceptual 
stage O 

Recurrent self-
organising model 
combined with 
Helmholtz machine 
(RSOM-HM) 

Keyword 
recognition P O P O Preliminary 

limited 
English ACORNS 
Period 1 

Acoustic DP-
Ngrams 

Keyword 
learning P P O O P English ACORNS  

Period 2 
TEMM (Temporal 
Episodic Memory 
Model) 

Character 
recognition P P O O P TI-ALPHA 

Sensorimotor 
control 

Sensorimotor 
representation P O P P Conceptual 

stage O 
Exemplar-based 
model (D4.3) 

Phone/word 
labelling  P P O O P 

Dutch ACORNS 
Period 2 

Activation based 
matching (D4.3) 

Phone/word 
labelling and 
segmentation 

P P O O P 
Dutch ACORNS 
Period 2 
TIMIT 
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2 Overview of ACORNS memory architecture  
 
The ACORNS memory architecture (Figure 1) [ACORNS 2008] introduces speech into 
the Echoic memory and visual samples into Iconic memory as separate modalities.  Next, 
the architecture introduces into working memory an attention-gated version of the current 
audio and visual (semantic feature) input (from Echoic and Iconic memory) that produces 
an activation representation of the input through weight-like structures stored in long-term 
memory.  Semantic features are used to approximate the visual inputs of an infant learner. 
Learning of weights occurs based on the activations produced in the working memory, so 
new examples of audio and visual samples become incorporated into long-term memory.  
Attention mechanisms control the updating of the learned long-term memory weights for 
other automatic speech recognition applications.  Whilst iconic memory through semantic 
features represents the complete scene, working memory represents, maintains and 
processes only the relevant object.  Changing the weight-structures of the model produces 
and updates episodic and semantic long-term memories.   
 
 

 

 

 

 

 

  

 

  

  

 

 

 

 

 

 

 

 
Figure 1 The ACORN memory architecture.  Boxes and arrows refer to data structures and 
processes, respectively.   
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Figure 2 shows a representation of the hierarchical structure of the ACORNS memory 
architecture.  This memory architecture offers a hierarchical organisation that allows the 
development of representations at speech sounds lower than the word, at the word level 
and finally at the utterance level.  At the lowest level, the model combines the audio and 
semantic (visual) feature inputs with the learned weights (long-term memory) to produce 
representations of speech.  Using the long-term memory weights 1W  and a speech input 
produces, in working memory, activation representations 1A  of speech sounds lower than 
the word.  Using learned weights 2W , this provides representations at the word level 2A  
by combining semantic (visual) features of words sA  with the phone representations 
previously produced by 1A .  The semantics (visual input) activations ( sA , see Figure 2) 
come from the representation in working memory of semantic features.  By using learned 
weights 3W  and activations 2A  for words this develops activation patterns for utterances 

3A .   
 

 
 

 

 

 

 
Figure 2 Hierarchical organisation of the ACORNS memory architecture. (After ACORNS 2008) 
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3 The role of attention in the ACORNS memory architecture  
 
Two mechanisms were developed within the ACORNS memory architecture that focus on 
selective attention.   

3.1 Special attentional focus model  
 
The first memory model that provides an attention mechanism to the ACORN memory 
architecture provides special attentional focus to keywords in utterances to facilitate word 
learning and recognition.  The word-learning algorithm uses a modified concept matrix 
approach (weight-like structures that are stored in semantic long-term memory) to track 
transitional probabilities of vector quantised speech, quantisation being provided by the 
clustering algorithm devised in WP2.  Two basic attentional learning situations 
implemented in the current version of the algorithm are tested. In the first situation, the 
learner has absolutely no feedback from the external world except for input consisting of 
spoken utterances, corresponding tags, and temporal locations of the keywords. This 
simulates a situation where the learner gets accurate information about the keyword 
location from some other process, e.g., by processing of the prosody of the input. In the 
second situation, which is a so-called reinforced learning environment, the learning agent 
obtains feedback for its decisions from the caretaker.   It was found that focused attention 
does not directly lead to better recognition results in this type of a learning problem, but it 
may help word segmentation and therefore acquisition of word models. However, a 
reinforced learning algorithm can also detect keyword locations with a moderate accuracy.  
A more detailed description of this selective attention model can be found in WP3.2 
report. 

3.2 Reinforcement Attention Gating (AG) mechanism to classify speech from non-speech 

 
The second attention model developed within the ACORNS memory architecture is the 
reinforcement attention gating (AG) mechanism to classify speech from non-speech.  This 
attention mechanism was original described in WP3.2 report and Elshaw et al. 2009a.  The 
attention-gating (AG) mechanism uses actor-critic learning to perform selective attention 
towards speech.  Through this selective attention approach, the AG mechanism controls 
access to working memory processing by only passing speech into the model.  There has 
been an extension of the model to include a simple voting system.   
 
A simple voting type system was incorporated in the AG mechanism and found to have a 
small positive impact on the classification rates previously achieved.  The simple voting 
approach involves taking a window over 5 classifications of the input sections and 
adjusting the classification based on the majority rate.  In Figure 3 the AG mechanism 
classifies 3 of the first 5 input sections as speech (black), and so the simple voting 
approach makes the first 5 input sections as speech.  Although this basic voting approach 
did not have a major impact, this method gives a small growth in the AG mechanism’s 
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classification rates.  Using the basic voting system achieves a 1.2% improvement to 81.2% 
on the ‘New utterances by training female speaker’ data.  For the ‘Unheard versions of 
utterances used in training from training female speaker’ and ‘Unheard non-speech 
samples from training crowd scenes’ data a classification improvement of 1% occurs, 
which takes the former’s classification rate to 81% and the latter’s to 94%.  The simple 
voting system achieves an improvement to the original AG mechanism classification rate 
of 0.5% for the ‘Utterances in the training set spoken by the second female speaker’ and 
the ‘New non-speech samples for scenarios not used in training’ data.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 The process involved in the basic voting system for the AG mechanism. 
 
As the AG mechanism uses reinforcement dopamine-like feedback, the opportunity exists 
to gate the input to working memory in a manner described by the ACORNS memory 
architecture.  In the model the reward feedback occurs in a similar manner to a child 
giving itself an immediate reward over the auditory input and the caregiver giving a 
delayed reward at the end of the auditory input.  The allocation of the immediate reward 
by a child could depend on the additional information of seeing a human nearby moving 
their lips in a talking manner and whether the child can produce the heard sound using 
their vocal cord.  Furthermore, the delayed reward could relate to feedback from the 
caregiver who gives a reward signal if the child attends to the speech or a punishment if 
they fail to show interest.  The AG model recreates the finding that infants learn to 
perform selective auditory attention by ignoring irrelevant auditory signals and concentrate 
on the speech signal [Mattock, and Burnham (2006)].  The AG model when compared 
with cognitively inspired speech/non-speech classification system, such as Shin et al. 
(2000) regression tree based technique, performances marginally worse.  Nevertheless, the 
AG mechanism use of the actor-critic model [Barton et al. 1983] has shown the benefits of 
using ACORNS memory architecture inspiration for attention and the opportunity for 
further developments.   
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4 Interaction between working memory and semantic long-term memory associated 
models from the ACORNS memory architecture 

 
Below is an examination of how the ACORNS memory architecture interaction between 
semantic long-term memory and working memory influences the memory models that have 
been developed. 

4.1 Restricted Boltzmann Machine (RBM) for spoken word recognition 
 
One of the approaches directed by the ACORNS memory architecture’s interaction 
between semantic long-term memory and working memory is the Restricted Boltzmann 
Machine (RBM) [Smolensky 1986] to perform spoken word recognition.  In this approach 
activations are created on various levels from an input representation and are stored in the 
working memory component of the ACORNS memory architecture.  Further, the RBM 
model trains weights that are stored in the semantic long-term memory component to 
perform learning.  After random initialization of weights and biases (stored in semantic 
long-term memory), an input vector is applied to the input layer and the hidden activations 
(represented in working memory in the ACORNS memory architecture) are computed 
from it.  Using downward activations, the inputs are reconstruction from hidden 
representations.  After that, reconstructed hidden activations are computed from the 
reconstructed input. Then the algorithm learns by increasing the weights and bias by the 
correlation of the input and the hidden units' activation minus the correlation of 
reconstructed input and hidden units (see Figure 4).  Once the weights (stored in semantic 
long-term memory) for a single RBM are trained, a number of RBMs can be stacked on 
top of each other to produce a deep belief network [Hinton et al. 2006].  Here, the hidden 
units of one RBM serve as input to the next RBM. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4 The RBM learning algorithm 
 
 
The network is trained and tested using 27700 files from the TIDigits database of spoken 
English numbers. From the sound files spectral representations are computed, time-
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normalised and transformed to 11 cepstral coefficients. The stimulus set is randomly split 
up into a training set of 26700 files and a test set of 1000 files. A three layer deep belief 
network is trained using the RBM algorithm. Using the hidden layer representations of the 
highest RBM as input, the learning using back-propagation (on both trained and untrained 
data) shows drastic improvement after only one training epoch; from 91.9% (chance level) 
to 0.66% for trained data and from 91% to 1.3% for untrained data.    
 
This study demonstrated the ability of an approach that takes inspiration from the 
ACORNS memory architecture to recognise spoken digits. The performance of the model 
is comparable with state of the art speech recognition algorithms, but is largely 
unsupervised, and does not use any a priori knowledge such as phonetic labels. In contrast 
to other more common algorithm it creates a hierarchy of representations and it uses a 
biologically plausible algorithm (similar to Hebbian learning).  Furthermore, we intent to 
replace the static representations used in this simulation with a more dynamic approach in 
which sound files of arbitrary length can be processes and word recognition in context will 
be simulated.   
 

4.2 Hierarchical recurrent self-organising map (H-RSOM) model 
 
A model inspired by the ACORNS memory architecture is the hierarchical recurrent self-
organising map (H-RSOM) architecture for emergent temporal speech representation.  
This model develops a representation of speech in a temporal emergent manner by using at 
the lower level a speech signal RSOM and semantic feature self-organising map (SOM) 
and at the upper level an associator RSOM.  The semantic long-term memory model 
approach applied to emergent speech representation uses the basic self-organising map for 
semantic (visual) features representation and recurrent self-organising maps [Voegtlin 
(2002)].  Although previously this model [described in WP3.2, Elshaw and Moore (2009), 
Elshaw et al. (2009b)]  was trained and tested using individual words, to consider how the 
model performs with more realistic speech full utterances from the ACORNS database 
were used.  The utterances are made up of carrier words and a key word.  The semantic 
SOM now uses semantic (visual) feature representations (produced as part of the 
ACORNS project and described in WP5.2) for keyword nouns contained in the utterances.  
The H-RSOM produces activations of the current input in a model of the working memory 
and incorporates trained weights from various networks that are stores in semantic long-
term memory.   
 
The activations from the trained two lower components of the H-RSOM train the 
associator RSOM  to associate the speech signal for the utterance (containing the carrier 
words and the keyword) and the semantic (visual) feature representations (keyword object 
representation).  The semantic SOM input for the keyword in the utterance is introduced 
over the full length of the utterance as if the object is in view all the time the words are 
spoken.  Through the association RSOM, an emergent speech representation develops that 
offers the possibility to associate speech and objects for grounding.  Association occurs by 
introducing the activation values associated with each speech time slice for the utterance 
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from the speech signal RSOM units, the activations for associator RSOM for the previous 
time-step and the semantic feature SOM unit activations for the appropriate utterance 
object keyword.  As the H-RSOM is based on the self-organisation map approach of 
Kohonen (1997), it is based on the best matching unit (BMU) approach that identifies the 
RSOM/SOM output unit that has the lowest activation value (See WP3.2 report).   
 
Examining the BMU sub-sequences from the utterances created by the speech signal 
RSOM, it is possible to establish that the representations produced are associated with 
phone-like speech sounds.  Further, the associator RSOM relates speech from utterances 
with semantic (visual) features for the keyword using a distinct representation based on 
BMU regions.  Turning to the full speech signal RSOM ouput layer, the model creates 
distinct regional associations, based on sub-sequence of BMUs from utterances, that 
match phones.  For instance, on an example training session units at the top left-hand area 
represent speech slices found in the ‘T’, ‘CH’ and ‘SH’ phones.  Words such as ‘fashion’, 
‘shoe’, ‘shy’, ‘matches’ and ‘hot’ include the phone speech sounds ‘T’, ‘CH’ and ‘SH’.   
 
The associator RSOM ouput layer in Figure 5 shows the location of BMU sequences 
related to speech sounds (from speech signal RSOM activations) for particular keywords 
(from the semantic feature SOM activations).  The keywords (from semantic SOM) 
associated with a unit are represented by the colour pattern of the unit.  The speech 
sounds (from the speech signal RSOM activations) the DARPA phonetic alphabet 
characters on the unit.  Various units of the network associate with specific speech signal 
sounds and keywords.  For instance, the ‘D AH’ speech sounds from carrier words in the 
utterances contain the keyword ‘book’ associate with unit 3 on x-axis and units 4 and 5 on 
the y-axis.  These are the black units with a ‘D AH’ on them.  When considering the 
sequences of BMUs, the ‘S’ speech sound from both carrier words and a keyword in 
utterances containing the keywords ‘shoe’, ‘daddy’ and ‘book’ locate close together on 
the map.  Speech sounds (from speech sound RSOM activations) for specific keywords 
(from semantic feature SOM activations) locate in close units on the associator RSOM.  
For instance, phone-like speech sounds from words (carrier and keyword) in utterances 
containing a specific keyword, such as ‘IY’, ‘S’, ‘IH’, ‘N’, ‘D’, ‘AH’ and ‘AY’ from 
utterances containing the keyword ‘Daddy’, occur together on the associator RSOM.   
Speech sounds (from speech signal RSOM) for semantically related words (from semantic 
feature SOM) locate in near units on the associator RSOM.  For instance, the phone-like 
sounds from the utterances containing ‘human keywords’, such as ‘Mummy’ (gray and 
white checkers) and ‘Daddy’ (grey and black strips upwards left to right), locate close 
together on the map.   
 
This H-RSOM architecture develops a representation that discriminates based on phone-
like sounds despite the acoustic similarity of certain phones [Kuhl (2004)].  By the RSOM 
model developing a representation of words in terms of phones this matches the findings 
of researchers in cognitive child development on infant speech encoding [Kuhl (1993)].  
Kuhl (2004) notes that infants use and recognise the phonetic characteristics of speech and 
the retention of such speech sounds aids the extraction and development of words.   In a 
similar manner to infants, the development of phonetic speech sound representations by 
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the H-RSOM architecture would aid a recognition system by providing the building bricks 
of speech already [Kuhl (2004)].  Although Voegtlin (2002) used this recurrent approach 
to represent written text inputs, this report and the WP3.2 report describes the RSOM’s 
first use on actual speech signals.  The H-RSOM approach offers an approach to ground 
speech in semantic (visual) features inspired by the ACORNS memory architecture. 
 
In terms of the working memory model of Baddeley (1992), H-RSOM activation patterns 
recreate functionality of the phonological loop by producing representations of the current 
speech signal.  The semantic feature SOM representation of keywords recreates part of the 
functioning of the visuospatial sketchpad in the working memory as it gives a 
representation of visual inputs.  The final speech representation of the associator RSOM 
recreates some of the functionality of the episodic buffer, in an abstract manner, by 
combining of the semantic (visual) features and speech signals.   
 
The H-RSOM despite being neural network based and taking inspiration from cognitive 
processing, does share certain characteristics with one of the most popular speech 
recognition approach the HMM.  Both approaches offer a temporal representation of 
speech, can be phone based, and consider the likelihood that the current speech input 
comes from a new speech sound to change the current active state.  Both approaches also 
face the problem that they rely on many features whose determination depends very much 
on previous experience and trial and error.  The HMM model depends on features such as 
the appropriate states and transitions.  A HMM makes use of probabilities that a specific 
outcome will follow another, which indicates in a string of speech whether one phone 
follows another, and so assists speech recognition in a noisy environment.  Although the 
RSOM model does not explicitly incorporate probabilities, the including of temporal 
information by the RSOM ensures the learning of common sequences in speech and so a 
high probability, through weight values, that a sequence of input slices will follow 
previous slices.   
 
Nevertheless the techniques do differ, for instance the RSOM approach does not make use 
of the high-level of supervised learning found in HMMs as RSOM approach offers 
unsupervised self-organised learning.  Further, the HMM architecture acts in a 
‘memoryless’ manner in that the conditional probability distribution for the next state 
given the current state does not dependent on states seen before [Karlof and Wagner 
2003].  However, by feeding back the activations from the output layer RSOM previous 
states influence the current representation.  HMMs use an acoustic model for training that 
typically indicate the phones in the speech and a language model that gives the words in 
the vocabulary and phones making up these words.  Moreover, the identification of a new 
phone or word requires the alteration of the acoustic and language models of the HMM to 
incorporate this.  However, the RSOM would not need any changes to produce a new 
representation for this newly identified phone and would represent the new word using the 
phone-like structures that have already developed.   
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Figure 5 BMU regions of associator RSOM associated with specific phone-like speech sounds and semantic (visual) features. 
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4.3 Early vocabulary acquisition using hierarchical NMF 
 
In this section of the report, we will describe how the NMF approach, which has been 
successfully used in the ACORNS project, can be conceptually extended by the hierarchical 
nature of the ACORNS memory architecture.  NMF (WP4 and Lee and Seung 2001) is an 
algorithm in which a non-negative matrix V of size MxN, with M and N typically large, is 
factorized into non-negative matrices W and H of sizes MxR and RxN respectively, for 
which R<<M and R<<N. The cost function that is minimized to this end is the Kullbeck-
Leibler divergence between V and the product WH. Each of the columns in V is closely 
approximated by a weighted addition of the columns in W, with the elements of the 
corresponding column in H serving as weights. This means that the contents of the columns 
in W can be interpreted as the models that underlie the data in V.  
 
We will now describe an experiment that has been performed which demonstrates the 
aptitude of NMF towards the task of early vocabulary acquisition.  The input data consists 
of Dutch sentences with a simple syntactic structure. There are four speakers (two male, 
two female) who provided 2000 utterances each, 1000 utterances of infant-directed speech 
and 1000 utterances of adult-directed speech. The result is a balanced set of 8000 
utterances in total. 7000 utterances are randomly selected as the training set. The remainder 
makes up the test set. Each of the utterances is designed to contain a single keyword 
embedded in a carrier sentence.  
 
To model the auditory periphery a spectral representation is vector-quantized i.e. mapped 
onto integers between one and N (the codebook size), called labels. This vectorized 
representation of the speech signal is called the Histogram of Acoustic Co-occurrences 
(HAC), and captures the spectral transition statistics of an utterance.  The use of co-
occurrences is psychologically motivated. It has been shown [Saffran et al. 1996] that 
infants during the initial stages of language acquisition are sensitive to differences in 
probabilities of acoustic transitions.   It is clear that the HAC-representations of the words 
that make up these utterances can be derived from the speech utterances with NMF. 
 
Information from several different sources can easily be combined in the NMF framework. 
For instance, aside from collecting static spectral information, one can also use 
information of spectral change by vector-quantizing spectral velocity and acceleration 
within the speech signal and accumulating the co-occurrences of those labels in a HAC-
vector. Also, one is not limited to deriving co-occurrence statistics at a single time offset 
τ . All speech information can be easily retrieved in a similar way for any number of values 
of τ .  
 
The experiment carried out as part of WP4 shows that NMF is well suited for learning 
patterns in speech. Within the hierarchical memory structure presented in this report, this 
opens up a number of possibilities for the NMF algorithm to act as a binding algorithm to 
bridge the gap from lower levels to higher levels.  As an example, given an utterance, 
NMF could use the HAC-representation of that utterance (in this context considered to be 



 
17 

the lowest level information) to detect the presence of e.g. phones in that utterance. Co-
occurrences of these phone-like units could then in turn be processed to detect words. We 
can write this as follows: 
 

WORDWORDPHOPHO

occco

PHO

PHOPHOHACHAC

HWVH

HWV

→

−

→

≈→

≈
                          (1) 

In these equations HPHO and HWORD are matrices that contain in each column the extent to 
which each speech pattern (column of W) is activated by the corresponding utterance, 
represented by columns in VHAC and VPHO respectively. The activations of phone-sized 
units, determined in every utterance, can be used to approximate the co-occurrence counts 
of phones in that same utterance. This way, the matrix VPHO can thus be calculated from 
HPHO. Finally, WHAC->PHO is the matrix with columns containing the HAC-representations 
of phone-sized units, whereas WPHO->WORD contains word models in terms of phone co-
occurrences. 

Conversely, NMF could be used to learn lower-level representations from higher-level 
representations. For example, the HAC-representation of word-like patterns could be 
decomposed into HAC-representations of phone like units. Concretely, this can be written 
as follows: 
 

WORDPHOPHOHACWORDHAC HWW →→→ ≈                           (2) 

where HPHO->WORD indicates to what extent each phone-like unit is present in each word-
like pattern. It is also possible in NMF to combine data from several levels to train speech 
representations, for instance: 
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WORDPHO

WORDHAC

PHO

HAC H
W
W

V
V


















→

→                               

 (3) 

In addition, meta-information similar to the semantic information in the above experiment 
could be added and/or combined with other data on any level of the memory architecture 
(we make no propositions of what this meta-information should look like, we merely wish 
to point out the possibility of adding it).  The flexibility and simplicity of the NMF 
algorithm within the memory architecture provides a myriad of ways in which multiple 
streams of information derived from a speech signal can be combined and processed, ever 
refining representations of speech at all levels of abstraction within the memory. Since 
every part of the hierarchical algorithm has been applied with cognitive plausibility in 
mind, this method shows an interesting way of thinking about the deep learning processes 
going on within the head of infants during the early, and not so early, stages of language 
acquisition.   
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4.4 Keyword prediction combining speech signal RSOM with the Helmholtz 
machine (RSOM-HM) 

 
Inspired by the ACORNS memory architecture, prelimary studies were performed to 
combine the speech signal RSOM from section 4.2 with a Helmholtz machine (Figure 6).  
For the speech signal RSOM and the Helmholtz machine model (RSOM-HM), the 
activation patterns produced on the two output layers relate to working memory in the 
ACORNS architecture and the weights relate to long-term memory.  Although currently 
performance of this keyword prediction systems is limited (32% correct classification of 
keyword objects associated with the appropriate speech signal), further consideration 
might offer the opportunity to overcome the limitation.   
 
The Helmholtz machine (HM) creates representations of data using an unsupervised 
approach.  Bottom-up weights buw  produce a hidden working memory representation r  
for an input z .  Top-down weights produce an approximation of the input z~  using the 
hidden representation.  Both sets of weights (from long-term memory) are trained using 
the unsupervised wake-sleep algorithm [Dayan 2000].  As seen from Figure 6 the input to 
the Helmholtz layer represents one of the keywords, with one unit active for each keyword 
of the utterance.  The other input is the BMU co-ordinates (x,y) from the speech signal 
RSOM for each speech time slice for the length of the utterance.  These inputs are feed all 
at once into the HM hidden layer during training.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Training of keyword recogniser using the BMU co-ordinates from the speech signal RSOM 
and the keyword associated with the utterance. 
 
The learning approach for this memory model alternates between wake- and sleep phases 
to train top-down and bottom-up weights.  The wake phase introduces a full input z  
made up of the co-ordinates of the BMU from the speech signal RSOM and the canonical 
represention for the keyword in the utterance.  The linear hidden representation 

x co-ordinates y co-ordinates 

HM hidden Layer 

BMU locations 
from speech 
signal RSOM 

Canonical keyword representation 
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zWr bul =  is obtained.  The transfer function )/( neer
l
j

l
j rrs

j += ββ , where 2=β  and 

64=n  alters the linear activation into a sparse representation sr .  std rWz =~  reproduces 
the input and the top-down weights updated from units j  to units i  using: 
 

)~( ii
std

ij zzrw −⋅=∆ η                               (4) 
 
Where the learning rate 01.0=η .   
 
In the sleep phase, a random code rr  initalises the activation pattern using binary 
activations under a Guassian envelope at a random position on the hidden layer.  The input 
representation rtdr rWz =  produces a linear hidden representation using rbur zWr =~ .  
The transfer function above creates the sparse version sr~  from the linear representation. 
Updating the bottom-up weights in long-term semantic memory uses:  
 

s
j

r
i

bu
ji rzw ⋅−=∆ )(ε                                 (5) 

 
Where the learning rate 01.0=ε . 
 
 
During training the model receives all the inputs, but during testing it ommits the canonical 
keyword input representation.  To test the performance of the model, which combines the 
RSOM and the HM, it recreates the canonical keyword input for each speech slice for the 
utterance.  The speech signal RSOM output using the weights buW  produces the HM 
hidden layer representation (working memory activations) and from this top-down using 
the weights tdW  recreates the keyword word input representation (working memory 
activations).  Performing preliminary experiments with the RSOM-HM model indicates 
that the large number of different parameters involved can make the model unstable if they 
are not at the optimum level, and so there is a need for greater consideration of their 
values and how they interact for speech data.  However, the model does offer an approach 
that makes use of inspiration of the ACORNS memory architecture and an opportunity for 
further developments to perform keyword recognition.  
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5 Interaction between working memory and episodic long-term memory model in 
the ACORNS memory architecture 

 
This section allows the consideration of main models that were developed based on the 
ACORNS memory architecture’s approach to combine episodic long-term memory and 
working memory. 

5.1 Acoustic DP-Ngrams for keyword learning 
 
The acoustic DP-Ngram model relates to learning keywords [Aimetti et al. 2009a] and 
uses techniques devised in WP2. This model takes inspiration from the interaction between 
working memory and episodic long-term memory in the ACORNS memory architecture to 
solve the language acquisition problem.  The model builds internal representations by 
associating information from the acoustic and pseudo-visual modality.  A novel dynamic 
programming (DP) technique segments the acoustic speech signal [Aimetti 2009, Aimetti 
et al. 2009b], based on repeating acoustic structure, and meaning for the keywords 
emerges as a property of the cross-situational statistics of the dual-modality input.  
 
During training, LA incrementally receives utterances containing information from both 
modalities in parallel to build word-referent pairs.  However, during testing LA only 
observes the acoustic modality and must reply with the concept(s) it associates with the 
utterance.  The model learns the canonical feature representations of the concepts in the 
visual modality, which contains no lexical or phonetic information, to aid the segmentation 
process.  Short-term memory, in the ACORNS memory architecture, stores both 
modalities of the utterance to perform recognition on all internal representations to 
discover potential ‘word’ candidates, and long-term memory stores these candidates as 
episodic memory.  By using the hierarchical agglomerative clustering technique (HAC) 
meaning emerges through self-organisation as a property of the cross-situational 
statistics.  
 
The DP-Ngram method discovers repeating sub-portions of two acoustic speech signals 
through an accumulative quality scoring mechanism.  The accumulation of successive local 
matches yields high local quality scores that correspond with long local alignments. By 
backtracking from the highest local quality score this discovers the optimal local 
alignment. At the beginning LA has no internal representations to recognise any of the 
incoming utterances. When this occurs, LA stores the whole utterance as a ‘word’ 
hypothesis along with the associated visual features. Thus, LA begins life with very large 
and inaccurate representations before gradually sharpened with experience.  
 
The increasing list of local alignments being stored in episodic long-term memory is 
denoted by },...,{ 1 mllL = . As L  continuously increases, LA clusters similar acoustic units 
using the HAC clustering method. The HAC method initialises each element of L  as 
individual clusters, denoted by },...,{ 1 kCC , and then merges the two clusters iC  and jC  
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with the shortest distance as defined by )],([min)( ,, jiCCji dCCd
jjii

νννν ∈∈= , to create 

1−k  clusters.  This process is repeated until )( , ji CCd  exceeds threshold T , creating a 
set of clusters each made up of local alignments with the same underlying acoustic unit.  
Figure 7 displays an example of the kind of acoustic clusters that may occur in long-term 
memory. As mentioned earlier, each element in L  is also associated with any co-
occurrence of the visual features that may have occurred. This is displayed in tables on the 
right hand side of Figure 8. Each table represents a cluster, which contains the 
representative local alignments qp ll ,...,  along with their associated visual features, and the 
accumulation of the clusters visual features. 2C  builds an increasing accumulation for the 
visual feature ‘ball’, whereas, 1C  is noisy.  If we assume the acoustic representation for 

1C  is [ball], then with experience LA will gain increasing confidence that it has an internal 
representation of a key word.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Diagram of the acoustic clustering of local alignments into similar word-like units and the 
emergence of meaning being derived from the accumulation of the semantic features within each 
cluster.   
 
Cognitive science describes human development as a dynamic system, by visualising it as a 
continuously evolving epigenetic landscape.  Figure 8 shows the epigenetic landscape for 
all internal representations in long-term memory. The x-axis refers to the cluster space, 
thus, the width of each well represents the amount of acoustic variation from the median 
within each cluster. Each cluster is positioned in chronological order along the x-axis, with 
the newest being appended to the right-hand side. The y-axis refers to the probe moment, 
which shows the emergence and continuous evolution of each cluster after every utterance 
observation (only the first 12 utterances have been drawn to preserve clarity). The z-axis 
refers to the semantic stability (S), which is defined as the semantic cleanliness of the 
cluster iC .   
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After observing the first utterance LA stores it as an internal representation, which can 
then be used for recognition. The most common repetition is ‘the’, as represented by the 
cluster with the median token ‘the’. Although there are a lot of occurrences of this item, it 
does not gain semantic stability. Whereas the two clusters with the median representations 
‘book’ and ‘a shoe’ gradually gain semantic stability, and they represent keywords.  
 
The design of training and test sets uses a selection of utterances recorded within the 
ACORNS project. The database consists of 4000 utterances spoken by two male (M1 and 
M2) and two female (F1 and F2) speakers (1000 utterances per speaker). The training set 
consists of 450 single-speaker utterances from F1, containing both acoustic and pseudo-
visual information.  To perform keyword detection, the model compares the test 
utterances with each internal representation and returns the visual features associated with 
the cluster that achieves the highest quality score. When considering the keyword 
detection accuracy as a function of the number of utterances observed the model discovers 
keyword representations extremely quickly but accuracy never quite reaches 100%.   
 

 
 
Figure 8 Epigenetic landscape of all the internal representations during the first 12 training 
utterances.  Each cluster is displayed as an attractor well where the acoustic variation is plotted as 
the width within the cluster space and semantic stability is plotted as the depth. Two clusters 
representing an underlying keyword have already begun to emerge from the noisy clusters – ‘book’ 
and ‘a shoe’. 

 
The results for the Acoustic DP-Ngrams show that the system displays similar emergent 
behaviour as the dynamic systems perspective of human development [Smith and Thelen 
2003] to discover keywords. Unlike the HMM, the Acoustic DP-Ngram model gains 
knowledge without any pre-specified linguistic rules and builds internal representations 
which are continuously evolving with varying stability.  The results show that LA 
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successfully builds internal representations of keywords and can distinguish non-keyword 
representations by their semantic noisiness and epigenetic landscape. This information 
would allow us to make the system more computationally efficient by reducing the size of 
internal representations by getting rid or forgetting unimportant clusters.  

5.2 Temporal Episodic Memory Model (TEMM) 
 
Another episodic long-term memory model within the ACORNS memory architecture is 
the Temporal Episodic Memory Model (TEMM).  TEMM improves on the lack of 
temporal sequence processing in the episodic model MINERVA2 (WP3.2).  As the base 
operation, TEMM follows the approach found in MINERVA2 as described in WP3.2.  
TEMM employs a prediction mechanism as an additional source of information.  The 
TEMM system acquires information related to how well each trace in the database fits the 
current input data.  Feature prediction is a central part of TEMM.  The fitness of the 
predictions to the input data and how discriminating those predictions are with respect the 
next best class provides an indication of (i) the goodness of the previous decision; (ii) the 
goodness of fit of the current data to future data.  The prediction step fits neatly into the 
TEMM framework; by using the acquired similarity, or activation, of the traces (stored in 
long-term memory of ACORNS memory architecture) to input frames, it is possible to 
produce predictions for the features of the next input frame.   

 
The prediction step serves as a method to generalise from training data.  It also means that 
the model has an in-built immediate assessment of the outcome of the previous step. If the 
predictions fit the next input frame well, it adds credibility to the adequate use of the 
training data for the assessment of the input data that created the similarity/activation 
measures. On the other hand, if the prediction does not fit the input data at time t+1, then 
it may be necessary to question the data’s assessment of classification of input frame t as 
well.  
 
It should be pointed out that feature predictions can and possibly should model context-
dependent predictions (depending on the data structure in the database used). For 
example, in a phone-based recognition task there would be merit in creating different 
feature predictions for different class contexts.  As a consequence, the prediction step 
allows the model to keep track of the likelihood that the next input frame belongs to a 
particular class. This information matches the “intensity” of a prediction (corresponding to 
the summed activations that led to the prediction). I.e. a prediction’s intensity corresponds 
to a prior expectation that the next frame belongs to the same class.  
 
Using the concept of a “trace unit”, a sequence of successive traces from the database, 
introduces temporal information in TEMM.  The database stores traces in sequence.  The 
trace that follows any one trace in the database holds the frame that followed the previous 
frame in the speech signal.  This means that trace units are blocks of traces (i.e. frame 
values and class information). These trace units hold an expanding context which, due to 
the fact that they preserve an accurate account of sequence in the original speech signal, 
contains the fine temporal information. Trace units expand as a function of the confidence 
associated with the classification of the input frames. 
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Figure 9  Schematic diagram of the process of forming trace units. 
 
An important issue is when such trace units are formed. It was argued that the fit of the 
prediction to the predicted input can be interpreted not only as a confidence measure for 
the previous decision, but also as an indication of how well the database with the current 
trace activations represents the new input data. If it seems that the database with the 
current trace activations represent the input data sufficiently well, then it seems reasonable 
to allow continued use of the accumulated information. In this case, information is 
preserved by forming trace units that in effect are updated (trace) activations whose scope 
no longer only hold one single trace in the database, but a step-by-step (over time) 
growing sequence of frames. A second issue is how these temporal units are formed and 
used. With each new input frame a prediction is computed for the features in each class. In 
the event that the prediction matches the predicted input frame well (enough), the scope of 
the trace units is expanded by one frame. 
 
By adding “transition probabilities” as an information source for updating the activations, 
trace units that belong to more likely classes are rewarded. This means that all trace units 
keep an indirect memory of how well the classes associated with its frames fit the assumed 
classes of the input. Class information is thus included into the trace units' activation 
assessment.  Trace units have a scope that is not limited by class labels, they can cover one 
frame but, as they expand it is possible that the trace units can cover words and even 
sentences. How many different classes are covered in each trace unit is dependent on the 
underlying classes of the traces, and varies from trace unit to trace unit. 
 
TEMM performs MINERVA2-type classification when it has no history to work from, i.e. 
either when the first input frame is submitted, or when a trace unit’s prediction has been 
disregarded as not a good fit to the data.  MINERVA2-type classification means that the 
current class is judged on the overall activation intensity of traces belonging to each class. 
When, however, “history” is available, the system has much more information available, 
e.g. activation values for trace units which cover a larger frame context (except for the 
first iteration). Further, the system predicts features for each class (context) available. The 
predictions are computed using the trace unit’s larger context incorporating history. So it 
can be argued that the predictions are a class-dependent summary of all the information 
available to the system at the time a prediction is made. Hence, it makes sense to use such 
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summaries for further decisions. This means that when predictions for current input frames 
are available, classification decisions are based on them. 
 
The database chosen for this investigation was the TI-ALPHA isolated word corpus 
because of the high confusability of the words set and its consequent high sensitivity to 
alternative recognition approaches.  The data used consisted of two speakers, (one male 
(M1) and one female (F1)), uttering two letters of the orthographic alphabet –“S” and 
“J”. The training set consisted of 20 utterances per speaker and the test set consisted of 
16 utterances per speaker. All experiments were conducted using MFCC features and a 
25ms frame was taken every 10ms. Only one feature was used (for both TEMM and 
HMM) in order to minimize the influence of the distance measure used in TEMM. The 
classes corresponded to whole-word labels, and speaker-independent (SI) and speaker-
dependent (SD) experiments were conducted.   
 
TEMM is tied to one distribution estimation per feature, a single-state single Gaussian 
HMM was also computed for direct comparison. All HMM models were trained by 
incremental mixture splitting. The number of components per mixture was optimized for 
best performance. All references to the number of states in an HMM refer to emitting 
states only. In order to investigate the influence of different features on the recognition 
results, and their suitability for the different models, two distinct experiment conditions 
were set up, each using a different MFCC feature to represent the data. Condition 1 used 
C0 and condition 2 used C2 as features. The results are shown in Table 2 and Table 3: 
 

Table 2 Recognition results using the C0 feature.  
 

Model  FER  
SD: TEMM (p=2) 33.15 %  
SD: HMM 1 State (single Gaussian) 40.04 %  
SD: HMM 3 States (single Gaussian) 28.81 %  
SD: HMM 3 States (GMM 2) 22.99 % 
SI: TEMM (p=1) 40.63 %  
SI: HMM 1 State (single Gaussian) 46.38 %  
SI: HMM 3 States (single Gaussian) 40.59 %  
SI: HMM 3 States (GMM 120) 37.20 % 

 
Table 3 Recognition results using the C2 feature. 

 
Model  FER  
SD: TEMM (p=2) 32.25 %  
SD: HMM 1 State (single Gaussian) 32.61 %  
SD: HMM 3 States (single Gaussian)          36.26%  
SD: HMM 3 States (GMM 2) 36.20 % 
SI: TEMM (p=1) 33.34 %  
SI: HMM 1 State (single Gaussian) 72.31 %  
SI: HMM 3 States (single Gaussian) 69.29 %  
SI: HMM 3 States (GMM 120) 61.98 % 

 
Comparing the performance of TEMM with the HMMs, the recognition results are rather 
interesting. When using the C0 feature HMMs performs significantly better than TEMM.  
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This may be due to the fact that C0 models overall energy in the signal. As such, neither 
model has much opportunity to retain fine details of the speech signal. Hence TEMM is 
unable to use such information to its advantage. This interpretation is supported by the 
recognition results using C2. Here, TEMM outperforms the 3-state HMM in the SD 
condition as well as in the SI condition (the difference is statistically significant only in the 
SI condition). 
 
A closer analysis of the results showed that HMM output for all test conditions tended to 
remain in one model for a relatively long time, and hence gave rise to rather smooth 
recognition results that seldom changed model within a test utterance. This led to 
recognised words with long, (in this case) more realistic durations, and often to single-
word recognition of the utterance, thereby allowing the HMM an unfair advantage to use 
more information on which to base its decision. This was the same even for single-
Gaussian one-state HMM models. A further investigation of the model’s parameters 
showed that the HMM’s transition probabilities favoured self-transitions (i.e. transitions 
into the same state instead of the next), and thus the most probable cause for this output 
smoothing. TEMM currently has no such smoothing mechanism, and the recognised class 
often changed from one frame to another.  This is due to the fact that the classification 
decision in the current TEMM architecture is based solely on the similarity of the input 
data to its predicted feature values.  As the results of the TEMM model producing 
promising results on the TI-ALPHA isolated word corpus, it is anticipated that in future 
experiments with the ACORNS database will also produce promising outcomes. 

5.3 Exemplar-based model and activation based matching system 
 
The final episodic based models developed based on the ACORNS memory architecture 
are the exemplar-based model and the activation based matching system.  D4.3, Chapter 5 
contains a description on how these models relate to the ACORNS memory architecture.   
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6 ACORNS semantic long-term memory and episodic long-term memory model 
comparison  

 
This chapter compares the ACORNS memory architecture inspired semantic long-term 
memory and episodic long-term memory models that were examined in this report.  Please 
note to prevent repetition in deliverables, see D4.3 ‘Report on exemplar-based and 
activation based matching’, Chapter 1 ‘Situating this Work’ and Chapter 2 ‘Time 
synchronous exemplar-based matching’ for a comparison between the memory models 
described in this report and the exemplar-based model and the activation based matching 
system. 
 
The hierarchical NMF, RBM and H-RSOM incorporate features of the memory prediction 
framework [Hawkins and Blakeslee 2006] as they use the same network structure in all 
domains (auditory or visual), and perform the same basic operations in all processing 
domains and on all representational levels.  All of the memory models examined in detail 
within this report except the AG model offer the hierarchical structure incorporated in the 
ACORNS memory architecture.  However, this is achieved in very different manners for 
the diverse approaches.  For instances, the H-RSOM achieves a hierarchical structure 
through the associating at a higher level the activations from self-organised representations 
of the speech signal and semantic (visual) features.  The RBM model stacks RBMs on top 
of each other, and the RSOM-HM model has the RSOM network at a lower level feeding 
a speech signal representation into the Helmholtz machine (HM) at a higher level.  The 
episodic long-term memory approach of the Acoustic DP-Ngram at the lower level of the 
hierarchy finds speech segments and at the higher level associates these speech segments 
with visual features.  The hierarchical nature of the TEMM comes from at the lower level 
of the hierarchy the acquiring of information related to determining how well each stored 
trace matches the current input data and at the upper level the prediction mechanism.   
 
The RBM and RSOM-HM model are similar in that they both aim at predicting canonical 
input features from learned weights in a top-down and bottom-up manner.  A feature of 
the H-RSOM model that differentiates it from other ACORNS memory models is its use 
of semantic (visual) features in its representation as opposed to canonical features.  The 
RBM, special attentional focus model, Acoustic DP-Ngrams and RSOM-HM model are 
similar as they predict the canonical input features through learning.  RBM uses a static 
input representation of the speech; however more dynamic temporal speech inputs are 
used in the other memory models devised within the ACORNS memory architecture.  
Although a character of the TEMM episodic long-term memory model is the simple 
incorporate of other input modality, currently the TEMM model only includes a 
representation of speech in its representational process.  The other models typically 
incorporate the two modalities of speech and vision. 
 
When comparing the episodic long-term models and the semantic long-term models there 
is a clear different in the representations found in working and long-term memory.  In the 
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episodic models there is storage of the current utterance in working memory and in long-
term memory for the TEMM model there are utterances and for the acoustic DP-Ngrams 
previous recognised speech fragments and canonical feature representations.  However, 
the semantic long-term memory models have more abstract representations of the inputs 
that combine activations in working memory and weights in long-term memory.  A 
difference between the TEMM model and the other models is that it starts with traces 
already stored in long-term memory; however the elements stored in the long-memory of 
models such as acoustic DP-Ngrams, hierarchical NMF, RBM and H-RSOM are fully 
learned.  The psychological and biological inspiration of the models developed within the 
ACORNS memory architecture is very different.  H-RSOM is inspired by neurocognitive 
evidence on word representation (Pulvermuller 2003), semantic long-term memory, the 
working memory system and the unsupervised hierarchical self-organised learning found in 
the cerebral cortex.  The AG model is inspired by the actor-critic reinforcement model, the 
Acoustic DP-Ngrams uses episodic long-term memory and dynamic systems theory, and 
TEMM is inspired by episodic long-term memory.   
 
A common feature related to the Acoustic DP-Ngrams and hierarchical NMF is their 
active use of the co-occurrence of sections of speech in different utterances to identify 
speech components.  This is not the case for other models such as H-RSOM, RBM and 
the speech non-speech attention mechanism which simply involve the introduction of the 
input one after other and the models finding structure in them.  However, the episodic 
memory model TEMM use of prediction of the next input frame based on previous ones 
differentiates it from the other models such as H-RSOM, hierarchical NMF, special 
attentional focus attention mechanism and speech/non-speech attention mechanism whose 
prediction takes the form of classifying the current input frame.  Unlike the H-RSOM 
model that segments speech into phone-like segments, the Acoustic DP-Ngrams offers 
automatically segments speech into word-like units and derives meaning through cross-
modal association.   
 
An important feature of the TEMM model compared with other ACORNS memory 
architecture models is it offers a starting point to move towards a new form of automatic 
speech recognition based on case-based reasoning [Maier and Moore 2009].  Much of 
case based reasoning research addresses solutions to very specific applications; for speech; 
however, such specific knowledge has been studied in great detail in the field of automatic 
speech recognition, but not in the field of case based reasoning. Additionally, case based 
reasoning, with its core principle of generalising reuse based on similarity, has strong links 
with minimum-distance approaches to classification. By use of a similarity comparison, 
case based reasoning (just as minimum-distance classifiers) sets a ‘centre of attention’. The 
centre of attention is therefore a fundamental, shared property between case based 
reasoning and exemplar-based minimum distance systems. The difference is that case 
based reasoning may retain more information, including procedural knowledge, on which 
to base its decision of centre of attention.  
 
Centre of attention in such systems is defined globally by the chosen similarity (or 
activation) function as well as by the process of normalisation. Vertical centre of attention 
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is defined via the similarity function, and horizontal centre of attention is set via 
‘normalised weighting’. Normalised weighting (different to normalisation) does not mean 
equal importance of features, but instead means the importance of features based on their 
salience for the particular speech task at hand. This means that instead of normalising 
features, an automatic speech recognition system should focus on (i.e. pay attention to) 
features that are important for correct classification. Conventional normalisation will lead 
to suboptimal use of the relevant information.  Figure 10 shows the resulting framework 
suggestion: 
 

 
 
Figure 10 Proposed framework: an input triggers a first analysis of the similarity to the known 
traces. The found activations of the traces activate the relevant information about a) the higher 
knowledge of the world and b) procedural knowledge. Store experience can then help improve 
assessment of the data in the current step and/or future steps. 
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7 ACORNS memory architecture and sensorimotor representation 
 
In order to introduce a sensorimotor module to the existing ACORNS memory 
architecture (Figure 1), the model has to be extended. Figure 11 shows one possible way 
of performing that extension. The learning agent's internal structure was divided into a 
sensory and a motor domain for clarity reasons. Analogous to the existing memory 
structure of the sensory domain, working and long-term memory in the motor domain are 
assumed. Similar to the long-term memory module of the sensory domain, the motor long-
term memory stores articulatory gestures in the form of motor control programmes that 
can be retrieved by the working memory. In the working memory of the motor domain, 
speech production is planned and control parameters are passed from it to the speech 
production unit. 
 
The memories of both domains are interconnected so that items stored in one correspond 
to gestures stored in the other. These interconnections could be implemented as a set of 
neural maps that establish mappings from one domain to the other by a Hebbian learning 
algorithm, a concept that was demonstrated in a computational model by Garagnani et al. 
(2008) after the discovery of similar structures in the human brain [Pulvermüller et al. 
2009 and D'Ausilio et al. 2009].  Not only can activation patterns that emerge on the 
intermediate neural network layers be seen as a higher level of concept abstraction, but the 
across-domain activation of items can be interpreted as mirror neuron activity [Rizzolatti 
and Arbib (1998) and Rizzolatti and Craighero (2004)]. The phenomenon of mirror 
neurons would therefore emerge naturally from structures discovered in the neurological 
substrate. 
 
The communication module of the previous model is replaced by a speech production unit 
that creates an acoustic output. This acoustic signal is directly available to the sensory 
input and feeds back into the speech production unit, forming an acoustic feedback loop. 
The error signal that governs this feedback loop is the difference between the intended 
acoustic signal (as represented in the sensory working memory) and the signal that was 
actually perceived through the sensory input. The speech production unit shown in Figure 
11 is assumed to possess a means to react to this error signal in a meaningful way. This 
requires the learning and storage of another mapping, which was not explicitly shown in 
Figure 11 for clarity reasons. 
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Figure 11 An extension of the existing ACORNS memory architecture to include speech production. 
 
An important aspect of the extended model is the nature of the control signal that drives 
speech production. It is based on the principles of perceptual control theory (PCT, Powers 
1974). PCT claims that behaviour is a reaction to a mismatch between an intention (an 
internal representation of what reality should be like) and reality itself (or a sensory 
representation of reality). In the extended sensorimotor model, two types of intentions 
govern speech production: an acoustic intention, formed in the working memory of the 
sensory domain, and a gestural intention, formed in the working memory of the motor 
domain. Both intentions form feedback loops in conjunction with feedback information 
about reality: an auditory feedback loop (marked green in Figure 11), and a pre-
prioceptive feedback loop that compares real articulatory configurations with the intended 
ones. 
 
The extended sensorimotor model can explain a range of common speech behaviours. For 
example, the model architecture contains an auditory feedback path, a structure that is 
assumed to play an important role in speech production generally and language learning 
specifically [Borden 1979]. This view is supported by speech behaviours such as the 
Lombard reflex [Lombard 1911]. The feedback path results almost automatically from 
adding a sensorimotor extension to the existing ACORNS memory model, because 
important parts are already present: the ability to receive acoustic input and the ability to 
form meaningful acoustic patterns in the working memory that can be used as a reference 
to form the error signal in a feedback loop. In this way, parts of the model serve multiple 
functions, which is a viable assumption in biological systems. 
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Another phenomenon that the model could help to explain is parentese, or infant-directed 
speech (IDS). IDS is usually higher in pitch than adult-directed speech [Kitamura et al. 
2001]. In the sensorimotor model, this would mean that the representations of meaningful 
items in the sensory working memory would be in a form that is more likely to be 
reproducible by an infant's vocal tract, thus reducing the auditory feedback error signal. It 
could be hypothesised that normal adult speech would result in sensory representations 
that cannot be matched close enough by a child's speech production system in order to be 
accepted by the child as a acceptable imitation. Parentese would therefore bootstrap the 
language acquisition process on the production side. 
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8 Summary and final concluding remarks 
 
Table 4 and Figure 12 summarise the findings on the ACORNS memory architecture 
inspired memory models described in this report.  Table 4 gives an indication of how 
abstract the working memory and long-term memory representations are in the models; 
the form the speech, visual and motor inputs take; the type of prediction the models make; 
and whether they incorporate the hierarchical nature of the ACORNS memory 
architecture.  Although the models are developed within this memory architecture and do 
share certain similarities, there are also differences between them.  
 
Figure 12 indicates how the memory models fit into the ACORNS memory architecture 
and incorporate different representations into working memory and long-term memory.  
As can be seen, the semantic long-term memory stores the H-RSOM weights to associate 
speech and semantic (visual) features, the weights to classify between speech and non-
speech, the RSOM-HM weights to perform keyword recognitions, the RBM weights for 
word recognition, for the hierarchical NMF the WH matrix for word recognition and for 
the special attentional focus model the modified concept matrix.  The episodic long-term 
memory for the Acoustic DP-Ngrams model stores segments of utterances and internal 
representations of the utterance/canonical feature relations in the forms of clusters.  
TEMM episodic long-term memory stores traces as examples of speech signals.  Further, 
this memory structure holds the speech templates from training data for the -based model, 
and it holds the phone and word segments from training data and K-nearest neighbour 
clusters for the activation based matching system.  
 
Working memory contains the critic unit and actor unit values for the current auditory 
sample to perform for the AG model for selective attention between speech from non 
speech, and it includes the transitional probabilities for the current utterance within the 
special attentional focus model.  This memory structure also stores the RBM model layer 
activations, for the hierarchical NMF the WH matrix for the test word, and the hidden 
layer and keyword region activations for the RSOM-HM for keyword recognition.  With 
reference to the two episodic memory models, working memory stores for the Acoustic 
DP-Ngrams a representation of the current utterance and canonical features, and it stores 
for TEMM the prob of the current utterance and predictions as to which trace it is closest 
to.  Working memory stores for the exemplar-based model the current input speech frame 
and for the activation based matching the current speech frame and the K-nearest 
neighbour cluster associated with current frame.   
 
As Figure 11 above is given and to prevent Figure 12 becoming unclear, the sensorimotor 
control model is not shown on Figure 12.  In working memory the sensorimotor control 
model stores activation patterns for the current speech input and motor control patterns 
association with that speech.  The sensorimotor control model stores in motor long-term 
memory weights to create the motor control programmes and in semantic long-term 



 
34 

memory weights for the speech representation and the association between these two 
modalities. 
 
WP3 successfully developed a new memory architecture that offers a framework for 
attention mechanism and the interaction between working memory and long-term memory.  
The ACORNS memory architecture is a stand alone framework and so could be used by 
other researchers in diverse fields to provide a supporting memory framework for their 
activities.  The various memory models that were developed using inspiration from the 
ACORNS memory architecture have characters that make them different from each other.  
These differences show the flexibility of the ACORNS memory architecture to ensure that 
the models are not too restricted.  The ACORNS architecture has provided a framework 
and direction to the various novel speech recognition memory based approach, which are 
real alternatives to the current state of the art.  Whilst the different ACORNS models in 
isolation focus on different activities and working memory interaction with semantic or 
episodic long-term memory, within the overall memory architecture they complement each 
other.  Further, they offer a more self-organised and emergent representation than is found 
in the current state of the art techniques in speech recognition such as HMMs. 
 
 



Table 4 Summary of findings on models developed in the ACORNS memory architecture. P (yes) and O (no).  
 

Model Application Representations 
Working 
Memory 

Representations 
Long-Term 
Memory 

Speech input Visual input Motor 
input 

Prediction by 
model 

Hierarchical 
nature  

Special 
attentional focus 
model  
(From techniques 
used in WP2) 

Attention Abstract 
Modified concept 
matrix 

Abstract 
Transitional 
probabilities and 
clusters 

Temporal  
Speech  

Canonical 
features O 

Class current input P 

AG model (WP3) Speech/non-
speech 
classification 

Abstract 
Critic/actor 
activations 

Abstract 
Critic/actor weights 

Temporal  
Speech/non-
speech 

O O 
Class current input O 

RBM (WP3) Spoken word 
recognition 

Abstract 
RBM layer 
activations 

Abstract 
RBM layer weights 
(bottom-up and top-
down) 

Static  
word 
representation 

Canonical 
features O 

Current word 
representation  P 

H-RSOM (WP3) Speech 
representation 

Abstract 
RSOM and SOM 
activations 

Abstract  
RSOM and SOM 
weights 

Temporal 
Speech  

Semantic 
features O 

Current association 
speech/semantic 
features 

P 
Hierarchical 
NMF (From 
techniques used 
in WP4) 

Early 
vocabulary 
acquisition 

Abstract  
WH matrix for 
current utterance 

Abstract 
WH matrix for 
previous utterances 

Temporal  
Speech 

Any visual 
representation O 

Current input O 
RSOM-HM 
(WP3) 

Keyword 
recognition 

Abstract 
RSOM and HM 
layer activations 

Abstract 
RSOM weights 
HM top-down and 
bottom-up weights 

Temporal 
Speech 

Canonical 
features O 

Current canonical 
word feature  P 

Acoustic DP-
Ngrams  (WP2) 

Keyword 
learning 

Less abstract 
Current utterance 
and canonical 
features 

Less abstract 
Discovered speech 
fragments  
Abstract 
Internal 
representations as 
clusters 

Temporal  
Speech 

Canonical 
features O 

Current canonical 
word feature P 

TEMM (WP3) Character 
learning 

Less abstract 
Current utterance 

Less abstract 
Utterances 

Temporal 
speech O O 

Character class P 
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Table 4 (Continued) Summary of findings on models developed in the ACORNS memory architecture. P (yes) and O (no).  
 

Model Application Representations 
Working 
Memory 

Representations 
Long-Term 
Memory 

Speech input Visual input Motor 
input 

Prediction by 
model 

Hierarchical 
nature  

Exemplar-based 
model  

Phone/word 
labeling 

Less abstract 
Speech frame for 
current sentence 

Less abstract 
Speech templates 
from training data 

Temporal  
speech O O Phone and words P 

Activation based 
matching system 

Phone/word 
labeling and 
segmentation 

Less abstract 
Current speech 
frame 
Abstract 
K-nearest 
neighbour cluster 
associated with 
current frame 

Less abstract 
Phone and word 
segments from 
training 
Abstract 
K-nearest neighbour 
clusters 

Temporal  
speech 

Gender of 
speaker O Phone and words P 

Sensorimotor 
control (WP3) 

Sensorimotor 
representation 

Abstract 
Activations on 
motor and 
auditory layers  

Abstract 
Weights for motor 
and auditory 
representation 

Temporal  
speech O P 

Current Motor 
patterns and 
speech  

P 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12  A representation of how the models described in WP3.3 fit into the ACORN memory architecture.   
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