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0. Introduction 

WP2 – Signal Patterning of the ACORNS project consists of two subtasks. The main 
objectives of Task 1 are:  
 

-  Develop methods and theory for Pattern Discovery (PD) to learn  
elementary patterns from signals. 

-  Develop bottom-up strategies to automatically learn and store more  
complex pattern structures. 

-  Study noise tolerant features and processing methods1. 
 

The main objective of Task 2 is: 
 

-  Study the applicability of Computational Mechanics Models (CMM) and  
  corresponding methods to discover, describe, and quantify structure and  
  patterns1. 

 
This report consists of three main sections. Section 1 leads off with some very general, 
introductory notes on two important dimensions of information: quantity (value) and 
quality (order, structure). These topics are discussed in order to illuminate the studied 
methods, their derivations, and how they have been applied to pattern discovery and 
modeling. 
 Section 2 deals with practical experimentation in two different fields of pattern 
discovery activities within ACORNS (Task 1): the search for subword units and a 
permutation transformation based time-domain method to discover the burst section of 
stop consonants. The latter is directed by sections 1’s discussion of quantity vs. quality.  

Finally, section 3 presents a summary of the studies performed in the field of 
computational mechanics (CMM, Task 2).  

                                                 
1 Technical Annex of the ACORNS project 
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1. General notes on information and pattern theory 

In a recent paper, Toward a source coding theory for sets, the authors Varshney and 
Goyal from MIT develop coding theory based on multisets and their permutations 
(Varshney & Goyal, 2006). Multisets only give quantitative information about the 
elements in the sequence without their order. Since order doesn’t affect the number of 
elements (quantities) it can be thought of as the qualitative, structural aspect of the 
information sequence. The authors use the terms value and order when talking about 
these two different aspects of information. 
 Sometimes the order of the elements in a sequence is not very important and the 
coding can be realized purely based on the probabilities of the occurrence of the 
elements. In some cases the situation may be just the opposite when order is significant. 
It is relatively easy to show that when the length of the sequence increases without 
increasing the size of the alphabet or changing their statistics (a stationary process), 
information is transmitted more and more through the ordering of the elements and less 
and less through their statistics, i.e., the size and type of the multiset in question. 
 The latter view dominates speech signals as well. We may quantize the amplitude 
values to a few bits and still recognize the message. However, if we start to permute the 
sequence the message soon becomes lost in noise. The importance of sample order in 
speech signals is demonstrated by Figure 1.1 where the time waveforms of the eight 
Finnish vowels (each sequence contains only 1024 samples, about five pitch periods) are 
first sorted (according to sample value from the smallest to the largest) and then averaged 
(the middle blue curve). The upper and lower curves depict the standard deviation from 
the mean value. One notes that the deviation is relatively small, indicating that the sorted 
signals are almost identical and difficult to classify. The important differences in the 
temporal structures of the vowels have fully disappeared by the sorting operation. 
 

 
Figure 1.1 Mean amplitudes of the eight, sorted Finnish vowels (blue) with standard 

deviations (red and brown). 
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The two aspects of information, the quantity (value) and quality (order, structure) are 
important when trying to develop new coding and recognition methods. Especially the 
importance of the structural component has given motivation to study and apply 
permutation theory to pattern discovery. If the structural component is important, then the 
permutation method should provide an effective tool for pattern analysis and 
classification. This hypothesis was confirmed by the preliminary study described in 
section 2.2. 
 From the philosophical point of view distinguishing information into two aspects 
is not a fundamentally new idea. This way of thinking has a long history with its roots in 
Metaphysics by Aristotle (Aristoteles, 1990). 
 Whatever we do, we need methods and tools for logical thinking, including 
concepts and conceptual analysis, i.e., how to define the basic concepts used in the actual 
field and what the entities are, or items the concepts are referring to. Metaphysics2 in 
philosophy is the forum dealing with these aspects. It has two traditional branches: 
cosmology and ontology, both trying to explain the fundamental nature of being and the 
world. 
 Especially ontology deals with definition and classification of entities, physical or 
mental, the nature of their properties, and the nature of change. It tries to clarify the 
notions by which people understand the world, including existence, objecthood, property, 
space, time, causality, and possibility3. 
 This section consists of some introductory notes and discussions on the 
ontological aspects of information. This provides a nice, unifying view of the topic. The 
discussion extends the ideas presented in our earlier ACORNS WP2 Year 2 report (Laine 
et al., 2008; in the following we refer to this report as: D2.2) and hopefully illuminates 
the background of information and pattern theories, especially those related to the theory 
of permutations. 

1.1 Some ontological aspects of information 
The basic elements in the Aristotelian ontology are matter and form. Aristotle gives 
illuminating examples, some of which are concrete and some more abstract, in nature. Let 
us first consider a statue made of bronze. Bronze metal itself is not very interesting as it 
just provides the necessary material dimension and the substrate for the artistic work. 
More informative and intriguing is the actual shape of the statue, what it represents and 
how talented the artist has been in creating it. 
 Another, more abstract example is when we compare an alphabet with words 
made from the alphabet. In order to be able to write something we need a set of symbols 
called an alphabet. An alphabet is a necessity but not very interesting as such. We may 
study books written in some language by analyzing the frequency of different characters, 
however, we may soon note that the statistics are very similar for different books. After 
these analyses we still cannot say much about the writers or quality of the texts based 

                                                 
2 The term metaphysics was coined by the students of Aristotle. After the death of their famous teacher they 
wanted to publish a collection of his studies mainly covered after his book Physics. So they came up with 
the new title Metaphysics that simply and literally means something coming after the physics. 
 
3 http://en.wikipedia.org/wiki/Metaphysics 
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only on this aspect. Thus an alphabet can be seen as just the matter necessary to write 
books. Studying their frequency does not reveal their true quality, i.e., the true form or 
structure of the text. 
 The matter aspect seems to provide answers to questions like: Made of what? 
How much? How large? It deals mainly with the quantitative aspect whereas the form 
seems to give answers to questions like: What has been made? What has been created? 
What is its complexity? These aspects are more qualitative and holistic in nature. 
 
 

INFORMATION

MATTER
Media

FORM
Structure

Made of
what?

What has been
made?

Bronze Statue
Alphabet Words

How much?
How large?

How simple?
How complicated?

Quantitative
aspect

Qualitative
aspect

 
Figure 1.1: Two ontological aspects of information 

 
We could now borrow this general view and try to apply it to analyze the ontology of the 
concept of information. When replacing the concepts matter and form with the concepts 
media and structure, a new view is created where the media is just the flow of bits 
(quantity) and the structure is how they are organized (quality)4. We need some concrete 
or abstract media to code and transform information. However, it is just a basic necessity 
(a kind of substrate), not directly dealing with the true contents or qualities transmitted 
through the media. For example, from the physical point of view, speech sounds are just 
temporally and locally limited variations in air density and pressure. They are, in this 
sense, just variations in matter (quantity), whereas their temporal structure allows us to 
define different forms (qualities), e.g., is a bird singing, a car passing, or a child laughing. 
 The classical Shannonian view on information is concerned mainly with 
quantitative aspects. The theory gives tools to measure information capacity and to use 
the media in an efficient way. However, the Shannon entropy (information entropy) is not 
                                                 
4 The quantitative and qualitative aspects should not be understood as absolute categories in this discussion. 
Bronze has also qualitative properties, e.g., in relation to other metals, an alphabet may be expressed 
different fonts, etc. The qualities of bronze emerge from the lower level of matter hierarchy (molecules and 
atoms). Thus on every level of a hierarchy it is possible to discuss matter (quantity aspect) and emerged 
quality (or qualities) based on the form or structure of the matter. 
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sensitive to the variation in the structure of the message so far as the statistics (frequency) 
of the elements is not affected. For example, the entropy of the sequence {1,2,3,4,5,6} is 
equal to the entropy of {4,1,5,2,6,3}. In other words, permutations do not affect Shannon 
entropy. 
 

INFORMATION

MATTER
Media

FORM
Structure

Efficient usage of the
media for transmission:

Shannonian theory

Average self-information
Shannon entropy
Source entropy

Theory of patterns?

Kolmogorov complexity

TG grammars

Syntactic methods

Markov chains
 

Figure 1.2: Some theories associated with media and structure of information. 
 

The structural aspect of information approaches an area of research where attempts to 
formulate a universal theory of patterns has been made (see the related discussion in 
D2.2). Kolmogorov complexity deals with structural aspects, too, as seen in Figure 1.2. 
Examples of other methods dealing mainly with structural aspect of information are 
syntactic methods, transformation-generative grammars, Minimum Description Length 
(MDL), and Markov models. Also, the Concept Matrix (CM; Räsänen et al., 2009) 
method developed within ACORNS WP2 can be classified as belonging to this category. 
 This brief ontological analysis allows us to classify information processing 
methods into quantity and quality oriented clusters. Through closer examination of these 
clusters and publications dealing with them it is evident that most of the post-Shannonian 
theoretical and practical work has occurred in the field of information structures and 
patterns. This has been one of the main motivations to continue the search in this 
direction for new tools and methods within ACORNS.  

In D2.2 (Laine et al., 2008) we initiated a general discussion on patterns and 
pattern theory, and brought out the issue that no comprehensive theories of patterns and 
their modeling exist in current pattern recognition research. An interesting reference 
found is a paper arising from statistics by David J. Hand and Richard J. Bolton (2004). In 
the abstract of the paper they state the following: 
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For sound reasons, which are outlined in the paper, the data mining 
community has tended to focus on the algorithmic aspects of pattern 
discovery, and has not developed any general underlying theoretical base. 
However, such a base is important for any technology: it helps to steer the 
direction in which the technology develops, as well as serving to provide a 
basis from which algorithms can be compared, and to indicate which 
problems are the important ones waiting to be solved. This paper attempts to 
provide such a theoretical base, linking the ideas to statistical work in spatial 
epidemiology, scan statistics, outlier detection, and other areas. One of the 
striking characteristics of work on pattern discovery is that the ideas have 
been developed in several theoretical arenas, and also in several application 
domains, with little apparent awareness of the fundamentally common nature 
of the problem. Like model building, pattern discovery is fundamentally an 
inferential activity, and is an area in which statisticians can make very 
significant contributions. 

 
This publication happens to follow very closely the thoughts expressed in D2.2. The fact 
that two different teams with very different backgrounds have come up with similar 
views independently of each other can be seen as a sign for an objective need for a more 
comprehensive pattern theory and a firmer basis for the processing of patterned 
information. 
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2. Activities in pattern modeling and discovery 

This section gives an overview of the research activities undertaken in WP2 during the 
third year of the project. The first sub-section will present findings from attempts to 
develop methodology for automatic acquisition of subword units using Concept Matrices 
(CM) and vector quantized speech. Then an interesting novel approach to signal and 
pattern modeling, namely permutation transformation, will be introduced. The study of 
the method was planned in the Technical Annex (TA) of ACORNS project, however, due 
to relatively high risk associated to the method, its closer study was limited and left to the 
final phase of the project. Finally, methodology for learning of sub-word units using DP-
ngrams is presented in section 2.3. Computational Mechanics (CMM; Shalizi & 
Crutchfield, 2001), yet another pattern discovery method studied in the WP2 of the 
ACORNS project, has its own chapter and is discussed in the section 3.  

2.1 Searching for subword units from VQ data 

2.1.1 Introduction 
The Concept Matrix -approach (CM) developed in WP2 (Räsänen et al., 2009) has been 
found to be effective in learning statistical models of words in a weakly supervised 
manner. However, the word models that CM learns are based on fuzzy and noisy 
observation statistics that do not explicitly state the temporal structure of the words in a 
form where different signal characteristics could be assigned to, e.g., beginning, middle, 
and word ending. Therefore it became of interest whether it would be possible to develop 
a method that would represent learned words by more explicitly defined spectrotemporal 
models and whether it would be possible to discover subword structures with the help of 
these word models. In this report, the subword structures refer to repeatedly occurring 
units such as sub-phones, phones, or syllables that make up the larger word-like units. 

The starting point for building novel word specific models was the detection of 
temporal locations of keyword realizations in the test utterances. By training and using 
CM to recognize keywords from speech in the ACORNS corpus, it is possible to locate 
the temporal segments in each utterance where the keyword models become strongly 
activated. These activation data enable extraction of those parts of the input VQ-
sequences that correspond to known keywords. Once a section of VQ-sequence is 
extracted, it is stored into a so-called word library that consists of lists of VQ-sequences 
corresponding to each keyword. In addition to the VQ-representations of the keywords, 
the spectral properties of the entries in the VQ-codebook are known, enabling 
reconstruction of word spectrograms from the extracted VQ-data. Figure 2.1 shows an 
example of Association Response Table (see Räsänen et al., 2009) where three keywords 
W1, W2 and W3 are detected and identified. Corresponding VQ-sequences underlying 
these words are extracted and stored. 
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Figure 2.1: Extraction of word realizations based on word model activations in CM. Three 
words. W1, W2, and W3, are detected in the utterance and the corresponding temporal segments 
are highlighted with red bars in the Association Response Table (ART). 

2.1.2 Alignment of VQ-data 
The extraction of the keyword related VQ-sequences is not a perfectly accurate process. 
Since activation curves of the CM are used as temporal pointers to the word in the VQ-
sequence, they suffer from several sources of variation. In addition to normal temporal 
variation in pronunciation of words at different positions in utterances, one central 
problem is the fact that the learning system does not know all of the words in the 
utterances due to differentiation to tagged (learnable) keywords and untagged carrier 
sentences in the ACORNS corpora. This causes inaccuracies in the detection of the 
beginning and ending of words since neighboring words are not always modeled in the 
system. Another source of variation that was present in the experiments is the morphemic 
structure of the Finnish language, since all inflections of a word are included in the same 
CM model, and on the other hand, many inflectional suffixes are shared between several 
words. Finally, it is possible that CM simply fails to detect the keyword in its entire 
length, but only extracts parts of varying size from the words. 

The above sources of variation impose a need of alignment of the VQ-sequences 
stored in the word library. Several different alignment methods were studied to solve this 
problem. The use of Dynamic Time Warping (DTW) was studied for alignment of the 
spectrograms obtained from the VQ-sequence library and the corresponding VQ 
codebook. The major challenge was how to align a large number of spectrograms into 
one coherent format. Several different warping procedures were studied, e.g., by warping 
pairs of sequences to the same length at first, and then warping results from each pair to 
results of another pair etc., or by warping all realizations to one “proto-template” that was 
chosen automatically using some specific criterion (e.g., the longest sequence or the 
sequence closest to the mean keyword length). However, the DTW alone was not found 
to be sufficient due to very large differences in spectrogram lengths. 

A different method to align multiple N-dimensional time-series, or in this case, 
spectrograms, was also studied. This method does not adjust the length of the sequences, 
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but rather attempts to find the best possible alignment to the original sequences by 
adjusting their relative positions in time. The optimization criterion of the algorithm is the 
mean cross-correlation of frames between the current spectrogram and all other 
spectrograms, summed over all frames t in the spectrogram under analysis. Changes to 
the alignment of a spectrogram are performed by sliding the spectrogram against all other 
K-1 spectrograms that are fixed in time, and by computing the overall correlation across 
all other spectrograms for each position. This produces a correlation curve like in fig. 2.2. 
Then the spectrogram under analysis is moved towards the point of maximal correlation 
from its previous location by zero-padding it with a suitable number of empty frames. 
This process is then repeated for the next spectrogram, which is then again adjusted 
towards the point of maximal correlation. This is repeated iteratively until there are no 
changes in the overall positioning of the spectrograms or the maximum number of 
iterations is reached. Iteration by iteration, the correlation peak becomes sharper as the 
alignment improves. See Appendix A for algorithm description. 

Figure 2.3 shows an example alignment obtained for the keyword “kissa” 
(English “cat”). It contains 30 realizations of the word, represented as MFCC 
spectrograms reconstructed from the VQ-data. As can be seen, the lengths of the 
spectrograms are very different from each other, and some of the realizations are missing 
large parts of the signal when compared to the longer ones. Even after the alignment, 
large amounts of variation exist, especially further away from the point of maximal 
contrast. This lead to the development of a more sophisticated version of the alignment 
algorithm, where alignment was performed piecewise in a temporally local window and 
by using information from automatic blind segmentation of speech. The detailed 
explanation of this algorithm is outside the scope of this report, but in principle the 
algorithm attempts to align phone-like segments of different realizations of a keyword 
using a local alignment process similar to the one described above. Once the segments 
have been matched across all realizations, each segment can be labeled automatically and 
(temporal) distributions of VQ-labels for each phone-like segment can be computed.  
 

 
Figure 2.2: Non-normalized averaged cross-correlation function obtained by correlating a sliding 
spectrogram (current sample) with the other spectrograms in a fixed position (reference).  
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Figure 2.3: Global alignment obtained for 30 realizations of word “kissa” (cat). Columns 
correspond to signal frames, and rows correspond to elements of the spectrograms. Enormous 
variation in the lengths of extracted keyword realizations is evident. 

2.1.3 Building of spectrotemporal word templates 
Once the alignment of VQ-sequences has been performed, a straightforward way to 
define the spectrotemporal model (STM) of a keyword is to compute a distribution of 
occurrences of VQ-labels as a function of their location in the keyword. A matrix Mk of 
size C x T is created for each keyword k, where T is the number of temporal bins and C is 
the size of the VQ-codebook. This matrix indicates how many times a given VQ label has 
occurred in a given temporal position in a keyword. In order to map word related VQ-
sequences in the word library to a finite number of temporal bins, each occurrence of a 
keyword undergoes a linear temporal normalization, where the first VQ-label of a 
realization is assigned to time bin t(1) and the last label to time t(T). All other labels in 
the realization are assigned to time bins in the range [1,T] by scaling the position linearly 
between 1 and T based on the label’s respective location in the word. 

Now each realization of a keyword is used to update the frequency matrix Mk by 
going through the VQ-sequence and adding one to Mk[c(x),t(x)] for each label c(x) 
assigned to bin t(x). This results in a distribution of VQ-labels as a function of time for 
the given keyword (fig. 2.4). In addition, the lengths of VQ-sequences are computed and 
normal distribution parameters of the keyword lengths are stored in addition to the 
normalized-time spectrotemporal models. The spectrotemporal distributions Mk in each 
temporal bin can be normalized in different ways. One possibility is to simply normalize 
the sum of VQ-labels in each bin to one, yielding a proper probability P(ai,t) for each 
VQ-label ai at different moments of time in a word. Logarithmic compression 
log(P(ai,t)), and, e.g., information theoretically motivated Plog(P) compressions were 
also studied.  
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Figure 2.4: An example STMs of a keyword “hymyilevä” (“smiling”). X-axis denotes normalized 
time bins and Y-axis denotes frequency of occurrence (left panel) or –Plog(P) (right panel) of 
each VQ-label at the given bin. Different VQ-indices are shown in different colors. 
 
According to the Shannonian information theory the amount of information in bits is 
given by a weighted sum of logarithmic probabilities of the symbols (alphabets) used. 
Thus the probability P(ai) of a symbol ai contributes the information measure by a term:      
-P(ai) log(P(ai)).  The n-tuple of these terms forms a local information vector. Thus each 
time bin of a word (in STM representation) is associated with an information vector. 
Based on Euclidean distance these vectors were then used to measure “information 
differences/similarities” between different words. The informal visual comparison of 
different representations for word similarity matrices supports the usage of the described 
information measure (see Figures 2.5 and 2.6). 

In principle, the obtained STMs can be used for word recognition directly from 
novel vector quantized speech input. By resampling the models to their proper length 
using the learned keyword length parameters, it is easy to compute likelihood scores for 
each model starting from each moment of time t in the input sequence. The best word 
recognition results obtained with this approach using Y2 Finnish ACORNS data (50 
keywords) lead to an approximately 70 % keyword recognition rate, which is far worse 
than the original CM recognition rate (~95 % correct). The use of several word templates 
of slightly different lengths did not yield a notable increase in performance, but increased 
the computational complexity notably. The reason why the recognition based on full 
word STMs did not work very well was found to be due to the fact that there was still 
much temporal inaccuracy in the models even after numerous attempts to improve 
alignment of the original VQ-data. This can be also verified by inspecting the STM 
distributions (e.g., fig. 2.4) where there are no clear-cut boundaries in the distributions 
between the syllables of the word. 

2.1.4 Subword detection using the STMs 
Instead of using the STMs for keyword recognition, it was studied whether the models of 
different keywords sharing similar linguistic units would contain localized similarities in 
their spectrotemporal distributions. The aim was to build a mechanism for automatic 
extraction of subword structures that make up the words. The first step in the analysis 
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was to compute Euclidean distances between STM distributions of different keywords. 
Then an algorithm was applied for localization of diagonal regions with small inter-STM 
distances (i.e., parts of the STMs that share similarities with the other STMs) and 
collection of respective parts of STMs to a sub-word STM library. 

Figures 2.5 and 2.6 display two different distance matrices between STMs for 
different words. In figure 2.5, the acoustic and linguistic similarities in the beginnings 
and endings of words /k//o//i//r//a/ and /k//o//t//k//a/ (“koira” and “kotka”) cause the 
mutual distances of STMs to be small. However, even after numerous different alignment 
attempts, the representations of the words are still blurry in the temporal domain and no 
clear diagonal structure can be seen.  The same problem is seen between the words 
/k//i//s://a/ and /i//s//i/ (“kissa” and “isi”) (fig. 2.6), where the /i/ and /s/ in both words 
correlate well, but the region of correlation has spread over a large temporal distance 
instead (each frame on the x and y axes correspond to 10 ms in time). 

 

 
Figure 2.5: A distance matrix between spectrotemporal models (STMs) of keyword “koira” (dog) 
and “kotka” (eagle) using Euclidean distance as a distance metric of the information vectors         
P log(P) of STMs. Both axes are time as 10 ms frame numbers. VQ-alignment was performed 
using DTW. Initial /ko/ and final /a/ similarity is evident for the two words (bright yellow areas). 
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Figure 2.6: A distance matrix between STMs of keyword “kissa” (cat) and “isi” (daddy) using 
the same metric as in Figure 2.5. Both axes are time as 10 ms frame numbers. VQ-alignment was 
performed using DTW. A strong correlation exists between the /is/ regions of both words but is 
temporally blurred. 

 
Despite the insufficiencies in the temporal accuracy of STMs, automatic extraction of 
well-correlating parts was performed and these sub-word STMs were assigned into a sub-
word STM library. Then the subword STMs were used as recognition templates similarly 
to previously tested full word STMs in order to see how they react to continuous speech 
input. When automatic recognition was performed using these subword STMs, it become 
clear that the selectivity of most of the obtained units was not very good. Most STMs 
represented frication noise and silence. Only some specific vowels, e.g., /i/ (fig. 2.7), or 
syllables (/ka/) were represented by a small number of very selective STMs that reacted 
only in a given context. However, a majority of the models were reacting to several 
phone classes at the same time, which is not a good property if automatic detection and 
classification of phone-like units or syllables is desired. 
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Figure 2.7: Response for a STM model of /i/ for utterance “Itkevä vauva antaa kalan”. A 
selective response is obtained for the only /i/ in the utterance. 

 
Figure 2.8: Responses for STM models of /i/, /e/ and /a/ for utterance “Itkevä mies katsoo 
rekkaa”. The orthography is approximately aligned with the underlying signal. The /e/ and /a/ 
models react only to specific allophones in a specific context, but not to all corresponding phones 
in the utterance. Note that in Finnish orthography and pronunciation of words are very similar. 
 
Naturally, the number of learned subword units was also very limited due to the small 
amount of linguistic overlap in different keywords. This made the attempts to reconstruct 
entire word models using the subword units impossible. Also, the temporal inaccuracy 
was exceedingly high for successful learning of CV structures to take place outside the 
points of maximal contrast5, since average length of plosives and their related context 
cues were of the same scale as the variation in the temporal alignment of the VQ-data, 
not to mention the fact that the plosives might not have been coded very accurately in VQ 
                                                 
5 The alignment of the VQ-data was most successful near the most contrasting spectral changes in the 
middle of words, e.g., between the /an/ and /ka/ in word “ankka” (eng. duck). 
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in the first place. Only some of the most prominent CV syllables were quite successfully 
discovered. As an example, figure 2.9 shows 25 automatically extracted signals that react 
most to a sub-word STM that resembles syllable /k//a/. 
 

 
 
Figure 2.9: Signal waveforms extracted automatically from continuous speech using 
automatically discovered unit that has most perceptual resemblance with phonetic /k//a/. Some 
waveforms are very similar, starting from closure and ending to voiced [a]. However, this is not 
always the case. 

2.1.5 Segmental histogram approach 
Also studied was the idea to recode segmental units into new phone-like classes. The 
blind segmentation algorithm developed in WP2 during the first year of the project 
provided information regarding hypothetical segment boundaries between phone-like 
units. Since it was now possible to represent each word with a segmental structure by 
collecting the statistics of segments across all realizations of the word with the help of the 
alignment process mentioned earlier, it was also possible to compute a distribution of 
VQ-labels inside each segment. Each segment was further divided into onset and offset 
sections by splitting it at the middle, and distributions of VQ-labels were computed for 
both sections for each segment. For the 50 keywords in the ACORNS Y2 material, 185 
segments were considered reliable (coherence of segment boundaries across realizations) 
during the alignment process and thereby modeled in this manner. Mean lengths of the 
segments were also stored. 
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Figure 2.10: An example of automatic segmentation of the word “ankka”. Red vertical lines 

indicate detected segment boundaries. 
 
Activations of the obtained segmental units were studied with speech VQ-data by sliding 
a window over the VQ-sequence and computing the Euclidean distance between 
normalized VQ-label distributions in the window and each segment model. The window 
size can be fixed, or it can be varied depending on the mean segment length 
corresponding to each segmental model. By replacing the VQ-index at the beginning of 
each window with a non-terminal symbol pointing to the best matching segmental model, 
it is possible to recode original VQ-sequences with a segmental VQ code that hopefully 
generalizes across different pronunciations of the segment. It is also possible to perform 
clustering for the segmental units in order to reduce the size of the segmental codebook.  

After recoding the signals, the CM algorithm can be taught again and recognition 
can be performed on previously unseen utterances. When a 60 ms fixed size window was 
used for recoding the signals with 185 segmental models, a keyword recognition rate of 
81.80 % was obtained for the four main speakers of the Y2 Finnish ACORNS corpus. 
The adjustment of the window size did not enhance this notably. The use of k-means 
clustering to reduce the number of segments from 185 to a smaller number (e.g., 30, 50 or 
130 segments; VQ-histograms as features) did always have an adverse effect on 
recognition. The baseline recognition with the given test set was 92 % correct word 
recognitions using the original MFCC features extracted every 10 ms and vector 
quantized with a k-means codebook. 

2.1.6 Discussion 
PRIMIR theory of infant language acquisition proposes that learning a number of words 
precedes learning of phonetic sub-word structures of a language (Werker & Curtin, 
2005). This theory is in line with the findings of the ACORNS project, where possibilities 
to learn meaningful linguistic units have been attempted from several perspectives. 
Purely bottom-up learning of linguistically meaningful phonetic units based on statistical 
properties of the signals, as suggested by Native Language Magnet Theory expanded 
(NLM-e; Kuhl et al., 2008), turns out to be extremely difficult if not impossible without 
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some contextual constraints on the acoustic level due to significant overlap and 
variability in phonetic units. It has also been shown that with the help of constraints from 
the lexical layer, it is possible to learn a Bayesian classifier that classifies phones into 
proper phonemic categories (Feldman et al., in press). In absence of lexical constraints, 
the learning process leads to improper feature distributions for the categories. Although 
Feldman and her colleagues did not use real speech in their experiments, but only 
synthetic vowel formant frequency information from the study of Hillenbrand et al. 
(1995), their experiment shows that even preliminary knowledge of the possible 
structures at the lexical level helps to structure lower level information in a new manner.  

In our attempts to find new representations for speech, the small-scale events at 
the acoustic level were constrained by assigning them to lexical items. By comparing 
different realizations of the same linguistic units, we hoped to find sub-word structures 
that would both describe the known words in a more precise manner, and also generalize 
more efficiently towards new words across different pronunciation variations.  

The reason why we did not succeed in this task very well is not explicitly clear, 
but it certainly has to do with the complexity of real speech. First of all, the segmentation 
and classification of words from continuous speech is error prone, and from the point of 
view of signal processing, it requires much hard work to build an unsupervised system 
that can say that two given signals are different realizations of the same linguistic event. 
Even if the classification, alignment, and warping of the word forms were perfect, the 
manner in which the signals are represented has a large impact on the way how their 
assumed sub-word structures are dealt with. In the WP2 studies we limited ourselves to a 
discrete space of approximately 150 different acoustic classes, defined by vector 
quantization of spectral features (namely MFCCs) extracted from signal frames every 10 
milliseconds. Although this representation has been shown to be efficient for pattern 
discovery from speech using the CM and Non-negative Matrix Factorization (NMF) 
frameworks (Van hamme, 2008), it might not be optimal for the modeling of highly 
detailed sub-word structures. Exact alignment of VQ-sequence fragments turned out to be 
especially difficult, whereas the dynamic time warping of continuous spectral domain 
speech spectrograms has been successful in many different applications. In retrospect, it 
might have been wiser to abandon the original VQ-domain and study the different 
realizations of the keywords using some other spectrotemporal feature representations, 
possibly with the support from automatic segmentation of speech. 

If we take another perspective to the question why the studied sub-word structures 
do not enhance keyword recognition from the ACORNS speech, it might be so that 
methods like CM and NMF are already modeling the data very efficiently given the 
weakly supervised learning framework. Attempts to move away from holistic statistical 
representations towards explicitly defined spectrotemporal word models might throw 
away the strengths of these pattern discovery methods. What might be actually lost is the 
capability to account for great variability and noise in data by modeling dependencies at 
long temporal distances, which can be considered as modeling of several parallel, 
piecewise, and possibly intersecting spectrotemporal trajectories for each keyword. The 
challenges in modeling of VQ data and the pros of the given pattern discovery methods 
were already noted in ACORNS deliverable D2.2 (Laine et al., 2008) (p. 45). This also 
speaks on behalf for the creation of more intelligent signal representations after 
preliminary lexical learning instead of sticking to the original frame based VQ. 
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It is also important to note that from a self-learning agent’s or infant’s point of 
view, the discovery of underlying sub-word structure is not a self-evident fact that the 
learner should perform. There is no real reason for the learner to search for new ways to 
structure the speech input, as long as the current representations of speech and language 
are sufficiently functional. This is especially true with small vocabularies like the ones 
studied in ACORNS, where the number of meaningful words is small. It is much more 
straightforward and efficient to code each word as a whole instead of using sub-word 
units that might be more numerous than the number of known words themselves. Only if 
the vocabulary becomes sufficiently large, it becomes ecological to find and represent 
words by their smaller systematically recurring constituents. This is very similar to the 
situation in ASR, where each word is trained separately for a small vocabulary 
recognizer, whereas large vocabulary recognizers have to resort to bi- or triphone 
modeling. In material like the ACORNS Y2 corpus, the sub-word structures that occur in 
several keywords in a similar context are very rare, making modeling and testing of 
context-sensitive sub-word units impractical. The number of words that the artificial 
learner hears in these experimental settings is much less than the amount of speech 
human infants are exposed to during first years of their lives. So in the end, we return to 
the problem of sufficient training material for the bootstrapping of a system. 

2.2 Temporal analysis of speech based on the permutation 
transformation – a study of stop consonants 

2.2.1 Introduction 
A central goal of WP2 research was to study different discrete representations of speech 
in order to provide rich representations for higher-level processes. The general concept 
selected to denote all these different representations was discrete model elements (DME). 
The project started by studying conventional spectrotemporal elements based on the (fast) 
Fourier transform (FFT) and MFCCs (Laine et al., 2008). The primary domain of these 
elements is frequency, however, when they are computed in a small sliding window the 
detailed temporal structure of the signal can be revealed.  
 However, the number of methods applicable directly in the time-domain is much 
more limited. Basically, we compute features like: energy envelope, autocorrelation and 
linear prediction (LP) coefficients (as is known, LP can also be interpreted as a method to 
create spectral models for signals, even though its primary design occurs purely in the 
time-domain).  
 Typically the time domain is considered as a “problematic domain” for signal 
modeling, because it is quite sensitive to many disturbances like variation in phase (e.g., 
in the transmission channel), additive noise, nonlinear distortion, and echoes. However, 
when working with permutations with small time windows spanning only a few samples, 
we have not noted any such problems. Rather, many of the obtained results are 
promising. 
 Coming back to the frequency domain methods, many of them, e.g., the FFT, 
wavelets, etc., can also be interpreted as descriptions of special temporal structures 
existing within the signal. For example, each Fourier component gives an estimate of the 
amount of sinusoidal structure of a certain frequency present in the temporal waveform. 
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 Recent literature in mathematics, theoretical physics, and signal theory shows a 
gradually increasing number of attempts to describe the temporal structures of signals 
directly in the time domain by looking at signal segments composed of only a few 
samples. These form the basic elements and by coding or quantizing these segments, 
discrete representations can be formed from them (Bandt, 2005). One promising method 
is based on permutation theory6 and the permutation transformation.  
 The importance of information conveyed by temporal ordering can be easily 
demonstrated by sorting longer segments of speech by amplitudes. After this sorting there 
is very little difference left between segments from different speech regions. Once sorted, 
they all just reflect the same general distributions of signal amplitudes while all 
individual details are lost. 
 In the following section we shortly describe the background of the method and an 
attempt to apply a permutation transformation to produce new kinds of time-domain 
DMEs for speech signals, and further, to produce simple statistical models for speech 
segments based on these elements. A preliminary test of the method was performed by 
constructing a classifier for stop consonants. The method is primarily based on the 
permutation analysis of the waveforms of the burst segments of stop consonants. The 
results are comparable to those obtained by more conventional frequency-domain 
methods existing in literature. 

2.2.2 Permutation transformation 
Permutation theory can be applied in many ways in signal processing (Keller et al., 
2007). Our approach is to concentrate on the ordering of the individual samples present 
in a small analysis window of only 2-7 samples. Ordering is based on ranking of sample 
amplitude values. For example, considering a window (list) of three samples {a,b,c} we 
can transform it to the list {1,2,3} if a≤b≤c and to the list {3,2,1} when ordering is 
reversed. In this way every possible ordering of the samples in a list of n elements leads 
to an individual permutation of the list {1,2,3, …, n} among n! different permutations. 

{4, 1, 2, 3, 5} -> Index

Time
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Figure 2.11: Permutation {4,1,2,3,5} obtained from two slightly different waveforms. 

 
Figure 2.11 depicts an example of two similar waveforms with their common 
permutation transformation: {4, 1, 2, 3, 5} which can be represented by one of the 120 
possible indices. Note, that as long as the amplitude ordering of the samples do not 
change, the transformation’s output remains unchanged. Thus each permutation produced 
                                                 
6 Cauchy (1789-1857) initiated the study of permutation groups indicating that ideas 
related to ordering already have a long history. 
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by the transformation represents an equivalent class of signal segments. Another 
important aspect of the permutation transformation is that it is scale-free. The 
permutation transformation is not affected by scaling of the signal (multiplication by a 
positive constant or adding a constant). The samples may even be mapped by any 
monotonic nonlinear function (e.g. tanh) without any effect in the permutation obtained. 
Also, a small amount of additive noise or other variation (e.g., fluctuations in the channel 
properties) does not affect the permutation code as long as the ordering of the samples is 
not affected. 
 The permutation transformation can be seen as a method to map the temporal 
structure of small signal segments in a scale free manner into a set of indices each 
pointing to one choice among the n! different permutations (Groth, 2005). Also, we can 
consider the transformation as a method to quantize a small segment of a signal as a 
single integer where each integer represents a permutation index, a code to represent one 
of the n! possible permutations. In this manner quantization doesn’t occur on a sample-
by-sample basis but rather on a small list (set) of samples simultaneously. 
 Sometimes it is practical and efficient not to select adjacent signal samples to 
form a permutation index. Instead, we may select every kth sample. In this case we say 
that the applied time-delay is k (Keller et al., 2007). Note that even though this process in 
linear signal processing is called sub-sampling and typically requires filtering to avoid 
aliasing, here we are dealing with temporal structures of signals coded by permutations 
using a non-linear operation which does not necessarily require filtering. 

2.2.3 Metric for permutations 
In some cases we may need a tool to measure the similarity (and dissimilarity) between 
two permutations. One possible metric is based on Kendall’s tau (Kendall, 1938). 
 

€ 

τ =1− 2dK (a,b)
dKMax

, −1≤ τ ≤1  (2.2.1) 

 
where dK is Kendall’s distance or metric, 0≤dK≤dKmax and dKmax = n(n-1)/2 is the 
maximum distance among the elements (e.g., d({1,2,3},{3,2,1}) = 3). Kendall’s distance 
is defined as the minimum number of local, elementary permutations needed to 
reorganize a permutation b to form an equal list with permutation a. The elementary 
permutation means an operation where the neighboring elements are interchanged, e.g., 
{1,2,3}-> {2,1,3} has dK = 1. Thus Kendall’s metric is not geometric in the nature, but 
algorithmic. 
 In the following simulation this metric is applied to smooth the statistical image 
obtained by the permutation transformation. We integrate the number of events inside a 
certain Kendall distance to form a smoothed (averaged) statistical image of occurrences 
of certain permutation pairs in the sequence of permutations created from the signal. 
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2.2.4 A study of stop consonant classification 
In this work we have applied the permutation transformation method to stop consonant 
classification. This topic was chosen since stop consonant classification has been 
considered as a difficult task using traditional methods.  
 The permutation transformation method starts by collecting information from the 
signal’s internal structure using very short time windows. We have used a permutation 
order of 5, and thus there exist 120 different permutations where each permutation 
window maps onto one of the 120 indices. Furthermore, we have tested time delay values 
of 1 and 2 (distances between selected samples) that correspond to window lengths of 
0.63 ms and 1.3 ms, respectively. Before applying the permutation transformation, the 
signals were filtered with a low-pass or pre-emphasis filter. Used low-pass filters were all 
order 10 FIR filters.  

2.2.5 Transition frequency matrix 
Time domain signals were transformed into permutation code sequences using the 
permutation transformation with a sample step size of one. The permutation code 
sequence therefore has nearly an equal length to the original signal. The permutation code 
sequence is further transformed into a transition frequency matrix that describes the 
statistics of permutation transitions (permutation pairs) existing within the signal. The 
transition frequency matrix is created using different time lags, which describe the time 
delay between two permutations (window hop size). Transition frequency matrices are 
then used as simple statistical models in the classification tests. Since a permutation order 
of five was used, the transition frequency matrices have a size of 120x120 elements.  

 
Figure 2.12: Composing a permutation transition frequency matrix from a permutation code 
sequence. Each element (Sx) in permutation code sequence refers to one permutation transform of 
the signal. 
 
The transition frequency matrices become very sparse since most of the possible 
permutation transitions are not present in the matrices. This can cause problems during 
classification. To overcome this we decrease the matrix sparseness using a spatial filter. 
The spatial filter is not applied directly to the transition frequency matrices but through 
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Kendal distances (see Equation 2.2.1). Each matrix element is composed of two different 
permutations and every permutation has four closest neighbors (dK=1), thus each element 
pair (corresponding to one point in the frequency matrix) is affected by eight other 
elements that are at a dK=1 distance from the original elements of the pair. New values 
for the matrix elements are obtained by weighting the sum of nine values (neighboring 
elements have half of the weight related to the original value). In classification 
experiments we found optimal results when the smoothing was repeated three times. 
Recall that the closest neighbor of a permutation corresponds to interchanging two 
adjacent samples in a permutation window. Thus smoothing has the effect of attenuating 
the variance in the signal amplitudes. 

2.2.6 Classification tests 
Classification was tested for stop consonants in the context of vowels [AA] and [EH] 
(Arpabet) separately. Training and testing samples were taken from the TIMIT corpus, 
and only male speaker samples were used in classification tests. One model was created 
for each consonant as an average from all consonant training set. Models were created 
from the consonant release parts only.  
 In testing, the phase transition frequency matrix was first created with a 4 ms time 
window and incrementally updated using a 1 ms time shift. The test model was compared 
to the consonant models using the Euclidean distance measure. The sample being tested 
was assigned to the model that had the smallest distance. 
 

 
Figure 2.13: Recognition of the test sample. In this case the sample is assigned to the phone 

model [k]. 
 
Classification was also tested using the spectral model of consonant bursts in order to 
obtain a result that could be compared to the performance level of traditional methods. 
Again, one model for each consonant was created using an average of spectral models for 
all consonants in the training set. Classification was performed in a similar way as in the 
permutation-based method; the spectral model of the test sample was updated 
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incrementally and the sample was assigned to the class with the smallest distance 
measure. 

Recognition accuracy for correct consonant in the context of vowel [AA] using 
different filtering conditions, different time lags, and time delays are presented in table 
2.1. 
 

Table 2.1: Recognition accuracies for consonants the context of the [AA]-vowel. Optimum 
results for each different configuration are shown in bold and underlined. 

k=1 HP No  
Filter 

LP  
7.2 kHz 

LP 
5.6 kHz 

LP 
4 kHz 

LP 
2.4 kHz 

Lag 1 45 48 48 54 57 57 

Lag 3 58 61 65 66 70 68 

Lag 5 55 70 71 71 70 72 

Lag 7 56 71 75 75 73 68 

Lag 9 56 65 72 72 70 68 

Lag 11 57 63 60 63 65 62 

k=2 HP No 
Filter 

LP 
7.2 kHz 

LP 
5.6 kHz 

LP 
4 kHz 

LP 
2.4 kHz 

Lag 1 64 70 69 69 70 68 

Lag 3 63 70 73 71 77 72 

...       

Lag 13 69 80 82 82 74 72 

Lag 15 69 84 84 82 76 72 

Lag 17 72 80 81 78 76 67 

FFT 
(n=1024) 

79 80 80 77 74 75 

 
 
Recognition results for correct consonant detection in context of vowel [EH] are in table 
2.2. 
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Table 2.2: Recognition accuracies for consonants the context of [EH]-vowel. Optimum results 
for each different configuration are shown in bold and underlined. 

k=1 HP No 
Filter 

LP 
7.2 kHz 

LP 
5.6 kHz 

LP 
4 kHz 

LP 
2.4 kHz 

LP 
0.8 kHz 

Lag 1 55 66 65 71 76 71 62 

Lag 3 54 69 70 74 81 80 71 

Lag 5 57 75 79 79 82 83 78 

Lag 7 60 78 80 83 84 85 79 

Lag 9 57 70 72 75 75 76 75 

k=2 HP 
 

No 
Filter 

LP 
7.2 kHz 

LP 
5.6 kHz 

LP 
4 kHz 

LP 
2.4 kHz 

Lag 1 59 79 80 82 84 83 

Lag 3 63 83 83 83 87 83 

Lag 5 65 86 84 85 87 83 

Lag 7 71 87 86 86 85 83 

Lag 9 70 88 86 86 87 84 

Lag 11 72 86 83 83 85 83 

FFT(n=1024) 81 81 82 83 77 70 

 

2.2.7 Discussion and conclusions 
Recognition results show that the permutation transformation method efficiently codes 
relevant information at low frequencies. Recognition accuracy does not vary much if the 
signals are low-pass filtered while pre-emphasis reduces classification accuracy 
significantly.  

Recognition results were better with a time–delay value of two rather than one 
while increasing the time-lag from 1 also had the effect of increasing recognition 
accuracy up to a certain point. These results suggest that the current permutation time 
window might be too short in length to collect all required and relevant information 
needed for consonant classification. However, increasing the window size would increase 
the number of possible permutations and the methods presented here would become 
computationally infeasible.  
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Recognition results using the permutation method can be compared with results 
obtained using spectral models. In this study they were compared to the classification 
rates found in literature (see, e.g., Niyogi & Sondhi, 2002; Ali et al., 2001). However, 
information from the following vowel is typically utilized in consonant-vowel 
recognition. Niyogi and Sondhi (2002) tested several different algorithms for detecting 
and recognizing stop consonants from continuous speech. Segmentation and consonant 
classification was divided into two separate problems and classification rates for 
consonant recognition ranged from 70 % to 90 %. Ali et al. (2001) used several different 
acoustics-phonetic features for phoneme representation and rule based classifiers for 
recognition and gained an 86 % overall recognition rate for stop consonant recognition.  

In this study models for consonants were created from the consonant release 
(burst) part only and information from the upcoming transition to the vowel locus was not 
used. Recognition results were still found to be quite impressive since it is believed that 
the following vowel has a strong influence on overall stop consonant recognition. Having 
separate models for vowels would probably increase recognition accuracy. Also, it is 
possible to extend the method to biphones (a set of two adjacent phones) by modeling 
burst-vowel combinations. In any case permutations have shown to be a promising 
method to analyze and classify speech events directly in the time domain. The results also 
speak for the importance of the temporal fine structure and temporal order of the acoustic 
waveform. 

2.3 Discovering fundamental acoustic units using DP-ngrams 

2.3.1 Introduction 
This report documents the work being carried out to automatically discover the 
fundamental units in speech. This work is inspired by Wolff (1982) who states that 
certain aspects of language acquisition occur as a result of ‘Cognitive efficiency’ and 
uses simple compression algorithms to illustrate this (Miller, 1956: notion of chunking). 
For an infant to learn language, he must successfully discover and store acoustic units 
that allow him to understand speech from his environment and in order for him to do this 
efficiently the infant must be able to dynamically optimize this set. 
An efficient system tries to find the smallest number of units to explain the input by 
generalizing past experience. We hypothesize that phonemic contrasting units emerge as 
a property of an efficient system endowed with the ability to discriminate acoustic 
sounds, but there may also be smaller and larger units depending on the models 
environment. The Acoustic DP-ngram algorithm (Aimetti, 2009) is used to discover 
repeating patterns within the speech signal, while an active forgetting mechanism is used 
to filter out noisy templates from useful ones. 

2.3.2 Pattern discovery 
Pattern discovery is carried out using the Acoustic DP-ngram algorithm, this process has 
been covered in a previous deliverable (Laine et al., 2008) and is briefly outlined here for 
clarity. The input utterance is processed with all internal episodic templates (X = {x1, . . . , 
xm}) stored in LTM. Figure 2.14 displays the accumulative quality score matrix (Qx1 ) for 
template x1 against the input utterance, the darker areas show similar acoustic stretches 
between the two sequences and longer stretches will accrue a higher final quality score 
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(q). By backtracking from the highest quality score (qmax) we can retrieve the longest 
local alignment, and repeating this process will give us a list of local alignments in order 
of highest quality (i.e. length). Once all the local alignments have been retrieved, up to a 
specified quality threshold, they are clustered into acoustically similar units through 
hierarchical agglomerative clustering. This clustering process is used as it does not 
require initializing the number of clusters a priori. Therefore, the system will be 
discovering and classifying large-scale patterns, such as sentences or words, and also 
small-scale patterns, such as syllables or phones. Each cluster is represented by the 
cluster centroid, which is the alignment with the shortest distance from all the others 
within the same cluster. We name the cluster centroids internal episodic templates (X). 
 

 
Figure 2.14: Quality matrix obtained from comparing the input speech signal and an internal 
representation from memory. The darker areas show higher quality scores and the red lines 
display discovered local alignments. 

2.3.3 Recognition 
Recognition is carried out by finding the optimal path through the input utterance using 
X. The quality matrix, calculated in the discovery stage, of each internal episodic 
template (QX) is used in order to keep the recognition and discovery process unified and 
reduce additional parameters. The optimal path through QX is calculated using dynamic 
programming, however, instead of finding the minimum cost path we search for the 
maximum accumulative quality score. In order to accumulate the quality score across 
templates we allow the score at the end of a template to be carried over to the beginning 
of the next. 
 Figure 2.15 displays the optimal path (the red continuous line) through the input 
utterance ‘on the floor next to the bottle’. For clarity of this description, the example 
shown has been carried out on the orthographic representation of the speech. The x-axis 
displays the input utterance and the y-axis displays the set X. Template boundaries have 
been marked out using a dotted line and it can be seen that template jumps can only occur 
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at a boundary. The bottom frame of the y-axis is an additional ‘unknown state’ which is 
used when a portion of the input cannot be explained. Sequences of ‘unknown states’ are 
then stored in LTM for future use, thus allowing the system handle the ‘out- of-
vocabulary’ problem by exploiting it. 

 
Figure 2.15: Optimal path through the input using the quality score matrix from all internal 
episodic templates. 
 
Miller’s notion of chunking states that frequently occurring groups are preferred to less 
frequent ones, and big ones are preferred to little ones (Miller, 1956). However, closer 
inspection of figure 2.15 shows that the system does not have a preference for longer 
templates as the portion ‘the bottle’ of the input utterance could have been explained with 
a single template (x7). This problem can be solved by adding a cost for jumping out of a 
template. Figure 2.16 shows the optimal path through the input utterance with an 
additional template jump cost of -1. From the figure we can see that the system has now 
discovered the optimal path according to Miller (1956). 
 Figure 2.17 displays the optimal path after the template jump cost has been 
increased to -2. The system prefers to be in an ‘unknown state’ than use short templates, 
this shows that there is a balance between efficiency and the ability to differentiate 
meaning. 
 Figure 2.18 displays the optimal path through the input utterance using the set X on 
the acoustic signal. This path has been plotted after observing the same utterances as the 
orthographic examples and we can see that the system has successfully recognized the 
portion of speech containing ‘the bottle’ whilst allowing for temporal distortion. 
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Figure 2.16: Optimal path through input utterance using internal templates with additional 
template boundary jump cost. 

2.3.4 Active forgetting 
Now that the system has a preference for longer internal templates we need to implement 
Miller’s other criteria, that frequently occurring groups are preferred to less frequent 
ones. By implementing an active forgetting mechanism of not useful clusters we can 
prune our internal representations. According to Miller (1956), we can use frequency of 
occurrence as our ’usefulness’ measure. This means that the templates that are commonly 
being used in the recognition stage of the learning process are reinforced or not forgotten. 
After some experience the system will possess a set of optimal templates that allow it to 
explain the input. The size of this set will be dependant on two variables: 
  
 1. The amount temporal distortion we allow during the discovery process  
 
 2. The cost of jumping between templates during the recognition process 
 
Wolff (1982) suggests how we can measure the effectiveness of this set: 
 
 “The effectiveness of a grammar for compressing data (its ‘compression capacity’ or 
CC) is defined as (V-v)/V, where v is the volume, in bits, of a body of data after encoding 
by the grammar and V is the volume of the data in uncompressed form.” 
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Figure 2.17: Optimal path through input utterance using internal templates with additional 
template boundary jump cost. 

2.3.5 Discussion 
This work proposes a general statistical learning mechanism for automatically 
discovering the fundamental units of speech. The system is not constrained to a pre-
specified lexical units and is able to handle ‘out-of-vocabulary’ input, which are both 
huge problems for current state-of-the-art automatic speech recognition technology. 
 The DP-ngram process allows the system to build a suitable lexicon for its native 
language (as well as others), taking into account speech variation. The fundamental units 
arise an emergent property of the system interacting with its environment and striving for 
efficiency without compromising its ability to differentiate meaning. With experience, the 
systems internal representations are also allowed to dynamically evolve with the addition 
of the active forgetting mechanism. 
 Transcribing the input as a sequence of templates allows the system to store all or 
parts of it in an abstract form. In this abstract form it would be possible to build 
probabilistic models of these sequences, for example through ngrams, in order to use 
higher-level knowledge to predict future templates or force additional confidence 
weights. 
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Figure 2.18: Optimal path through input utterance using internal templates with additional 
template boundary jump cost on the acoustic signal. 
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3. Computational Mechanics  

Task 2 of ACORNS WP2 on Signal Patterning is concerned with investigating pattern 
discovery applications of a method known as computational mechanics. The approach 
comprises two parts: a theoretical representation of stochastic processes through so-called 
causal states, and a practical algorithm to infer the causal states of a process from 
empirical data. 

3.1 Causal States 
Computational mechanics (sometimes abbreviated CMM to avoid confusion with 
concept matrices CM) is a research area centering on the use of automata theory to 
describe patterns and the complex, stochastic processes that generate them. Central to 
these descriptions is the concept of causal states (Shalizi & Crutchfield, 2001; Shalizi, 
2001). The causal states are equivalence classes defined over the possible histories X-∞

t 
(sequences of observations from negative infinity until the current time t) of a given 
stationary, discrete-time stochastic process. Two histories belong in the same causal state 
if and only if they give the exact same beliefs about the future, i.e., if they imply the same 
probability distribution over all futures Xt+1

∞ (sequences of observations from t+1 and on 
to infinity). The causal states are thus a partitioning of the set of possible histories. 

One can show that the causal state representation ε(X-∞
t) is a minimal sufficient 

statistic for the observation sequence (Shalizi & Crutchfield, 2001); it retains precisely all 
information from past observations relevant for predicting the future, and nothing more. 
Thus ε satisfies I(ε(X-∞

t); Xt+1
∞)=I(X-∞

t; Xt+1
∞). Moreover, appending a symbol to a history 

string gives a new history string that also belongs in some causal state. This way it is 
possible to define transitions between the states. 

Interestingly, the states and their transitions together constitute a Markov 
process—even if the original process is not Markovian. Unlike HMMs (but similar to 
Markov chains), the current state can, in this description, be uniquely identified from the 
available sequence of observations. The entropy H(ε(X-∞

t)) can be used as a measure of 
the complexity of the X-process. 

As an example, we will consider the even process of Weiss (Weiss, 1973) in 
Figure 3.1. This is a process over a two-symbol alphabet {0,1} which is actually a simple 
concatenation of strings chosen equiprobably from the set {0,11}. There are two causal 
states, A and B, which can be identified (almost surely) by whether an even or odd 
number of ones have been observed since the last zero; the states therefore contain the 
strings A={*0(11)n} and B={*0(11)n1}, where n goes over all nonnegative integers. We 
notice that the causal state representation is very compact, even though this is a so-called 
strictly sofic process, meaning that it cannot be represented as a Markov chain of finite 
size. 
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Figure 3.1: The even process due to Weiss (1973), which cannot be represented by a finite size 
Markov chain, yet has a compact causal state representation. 

3.2 The CSSR Algorithm 
Causal states are a theoretical construct that assumes full knowledge of the underlying 
process. Fortunately, in practice an approximation of the causal states can be learned 
from one or more empirical data sequences using the so-called causal state splitting 
reconstruction algorithm (CSSR) by Shalizi, Shalizi, and Crutchfield (Shalizi & Shalizi, 
2004; Shalizi et al., 2002). Under some conditions, this procedure converges on the true 
set of causal states, given enough data. However, the algorithm only operates on 
sequences of discrete symbols from a finite alphabet. 

Unlike the theory, practical algorithms can only access histories of finite length. 
CSSR, in particular, only considers the Lmax most recent symbols at any given point in the 
data, known as a suffix of the history string, where Lmax is a user-set memory length 
parameter. Despite this limit on suffix length, CSSR can actually learn certain processes 
with a non-fixed, potentially infinite memory, such as the even process of Weiss (Weiss, 
1973). However, asymptotic convergence requires that the number of causal states is 
finite and that Lmax is not set too low. 

In brief, the CSSR algorithm consists of three main steps: parsing the data, 
homogenization, and determinization. These are outlined below (see also Shalizi & 
Shalizi, 2004; Shalizi et al., 2002). 

 
1. To parse the data the algorithm simply counts the number of occurrences of all N-

grams in the data with a length shorter than or equal to Lmax+1. These can be 
arranged into a tree, so CSSR belongs to the class of so-called context tree or 
suffix tree methods. This class also includes variable length Markov models like 
those discussed in Ron et al. (1996), and lossless compression algorithms such as 
Kennel & Mees (2002). 

2. During homogenization CSSR iteratively looks at longer and longer suffixes, up 
until length Lmax, and collects these together into states based on what distribution 
they give for the next symbol Xt+1. The assignment is based on a statistical test, 
for example two-sample chi-squared, comparing the distributions. The test is 
carried out at a level α, a second user parameter. 
There is a bias for placing suffixes in the same state as their parent suffix (the 
suffix obtained by removing the oldest symbol from a given suffix), to prevent 
unnecessary splits. The result of homogenization is known as precausal states, 
since they can predict optimally one step into the future. 

3. Determinization, finally, splits the precausal states to create a set of states that 
also has deterministic transitions: if suffixes in a state end up in more than one 
state after appending some positive-probability follower symbol, this is a non-
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deterministic transition and the state has to be split, one piece for each possible 
follower state. This may cause other, previously deterministic states to become 
non-deterministic, but the procedure must eventually terminate. 
Determinization is necessary since causal states represent our beliefs about the 
future, and these change in a deterministic way with each new symbol we 
observe. Therefore transitions between causal states must be deterministic as well, 
given the next symbol. The set of states obtained after this step is able to predict 
the entire future optimally, assuming the precausal states were correctly 
partitioned. 
 

Before and after determinization, CSSR also identifies any transient states, which are 
states that typically only are visited a finite number of times even if the output automaton 
is run for an infinitely long time. These cannot be true causal states and are therefore 
removed. The procedure chosen to identify state transitions and thus transient states (the 
“closure” mentioned in the ReadMe from Shalizi (2008) has an impact on the learnability 
of the even process. 

The output of CSSR is a so-called deterministic finite automaton, or DFA, which 
is a discrete state Markov representation. Unlike HMMs, where transitions and 
observations are conditionally independent given the current state, the next state in a 
DFA is a deterministic function of the current state and the next observation. Once 
enough data is available to identify the current causal state, the state of the process is 
known exactly from then on. Also, in contrast to HMM training with the EM-algorithm, 
the number of causal states and their transition structure are recovered automatically, 
with few assumptions and without the need to specify a parametric model. CSSR thus 
performs unsupervised pattern discovery, not merely pattern recognition. 

3.3 Limitations of CSSR 
The WP2 ACORNS work has uncovered a number of practical limitations with the causal 
state concept and the CSSR procedure that reduce their usefulness in speech recognition 
and language acquisition. To begin with, CSSR is a batch learning algorithm that is 
difficult to adapt to the incremental learning scenario typical of language acquisition. 
While the parse tree is easy to update on-line, the number and nature of the statistical 
tests performed for each suffix during homogenization depend crucially on the outcome 
of previous tests. A small change in the parse tree statistics can change the outcome of a 
statistical test, bringing a chain of consequences that are difficult to assess without 
rerunning the algorithm. The determinization step is similarly dependent on previous 
decisions in a non-obvious manner. 

Another problem is the computational requirements: since each node in the parse 
tree may have a full set of children down to the depth Lmax+1, the worst-case 
requirements for data and computational power are exponential in Lmax. On the other 
hand, since the data is read sequentially once, computational complexity is linear in the 
data sequence length. 

As the rate of increase for the computational requirements depends on the 
cardinality of the symbol alphabet, it appears CSSR-based algorithms for speech would 
likely be most successful on a phone or phoneme level, where the dictionary is small and 
historical correlations not too strong (so that Lmax can be kept low).However, in the first 
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year ACORNS recordings the number of words was similarly small and the sentence 
structure very regular, so it made sense to try CSSR on the word level for this particular 
case. 

Figure 3.2 shows the successful results of applying CSSR to a transcript of these 
recordings, wherein each word (distinguished by spelling) was assigned a separate 
symbol, plus one additional symbol used to denote inter-utterance silence. This produced 
a data sequence of 4,295 symbols drawn from a 23-symbol alphabet. 

 

 
Figure 3.2: Reconstructed word-level automaton with Y1 Swedish data (Lmax=4, α=0.002). The 
existence of two separate end states indicates a likely problem with the original CSSR 
implementation obtained at Shalizi (2008), necessitating a reimplementation of the algorithm for 
ACORNS. 
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As seen in the figure, CSSR learned a near-perfect automaton representation of a 
stationary stochastic process to generate the sentences in the observed data. Each state 
typically represented a specific word or position within one of the carrier sentences. 
Getting the desired conclusion required setting the algorithm parameters just right, but 
this problem diminished in importance if additional training data was randomly generated 
from the same bag of sentences. 

Unfortunately, the same good results did not persist when CSSR was applied to a 
more realistic dataset, highlighting another significant weakness of causal states: poor 
robustness against noise. This was tested by applying CSSR to one million symbols from 
a simple model of speech as a slightly noisy sequence of randomly occurring words. 
Every word comprises a sequence of ‘phones’ (symbols) taken from a pre-generated 
random word dictionary of ten short symbol strings, each 4–8 symbols long. Eight 
different phones were used. The data was corrupted by low-probability (P=0.05) symbol 
substitution noise. 

In stark contrast to the result on noise-free data, the algorithm here failed to 
converge on a limited set of causal states. Instead, the number of reconstructed states now 
grew steeply as larger and larger values for the memory length parameter Lmax were 
considered, with no end in sight. The computing power requirements also increased 
prohibitively quickly. The same behavior persisted for similar language models with 
reduced word lengths, shorter word lists, and smaller alphabet sizes, as long as noise was 
present. Similar divergence with increasing Lmax has also been observed by a group 
studying the applicability of CSSR for natural language processing tasks such as Named 
Entity Recognition, on a data corpus derived from Spanish text (Padró & Padró, 2005). 
 

 
Figure 3.3: Unchecked growth in the number of reconstructed states as a function of Lmax for a 
noisy test dataset with one million symbols from a size eight alphabet. The number of precausal 
states (before determinization) are dashed. 
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3.4 Causal States and Noise 
The essence of the divergence problems of CSSR appears to be that the algorithm insists 
on capturing all the information from the past that is relevant for future behavior. 
Typically, the further back the algorithm looks at a dataset, small additional pieces of 
information comes to light that very slightly influence future behavior. All samples are 
thus informative, and memory length is infinite. Furthermore, the noisy speech model has 
infinitely many possible probability distributions for the future, all of which CSSR has to 
distinguish and represent by states of their own, even if their differences are so small that 
a human would label them as noise; the algorithm's definition of “pattern” versus “noise” 
is not the same as our own. In the end, this leads to an explosive increase in the number 
of output states as the memory length Lmax grows. 

Theoretical work within WP2 has established that this “infinite possibilities 
problem” occurs even with simple parametric models such as HMMs. We have 
developed a novel algebraic criterion that can be used to prove that many HMMs cannot 
be represented by a finite number of causal states. An example is the simple flip 
automaton in Figure 3.4 disturbed by random substitutions. The resulting noisy process 
can be described by a four-state HMM which provably cannot be learned by CSSR 
because its causal state representation is infinitely big. This highlights a subtle but 
important point that “structure” is not a singular concept and can be defined in many 
ways. In particular, the sense of structure dictated by causal states is often infinitely 
complex and difficult to use. 

The large representations returned by CSSR are not only difficult to store in 
memory; there is also a clear risk of overfitting as the information in the sample data is 
divided between all the output states (while many of the causal states are typically quite 
similar, the base form of CSSR is not designed to take this into account). Results by 
Padró & Padró (2005) show that, whereas the number of states increased rapidly in Lmax, 
the best system performance was actually attained with a very small number of states at 
Lmax=3, the shortest memory length used. Evidently, a smaller representation that does 
not distinguish all causal states can achieve better performance for realistic sample sizes. 
 

3.5 Robust Causal State Discovery 
The problem with random substitutions, insertions, and deletions applied to an otherwise 
CSSR-learnable process, such as the one in Figure 3.4, can be traced to the next-step 
distributions that define the precausal states. Noise disturbs these distributions, causing 
suffixes previously in the same precausal state to separate. However, if the disturbances 
are not too great, these distributions will still be clustered closely together in the space of 
possible next-symbol distributions.. 

We have developed a modified version of the homogenization stage in CSSR, 
known as robust homogenization, where the resolution of the statistical test does not 
become infinitely sharp even as arbitrarily much data becomes available, but instead can 
be adjusted with a user-set parameter nmax. This enables suffixes with similar next-step 
distributions—typically those that belonged in the same precausal state before being 
disturbed by noise—to be brought back together. 
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Figure 3.4: The flip automaton. A simple CSSR-learnable process that cannot be learned if 
disturbed by random symbol substitutions, even though the noisy process has a compact HMM 
representation. 
 
Robust homogenization in combination with determinization as in regular CSSR forms 
the robust causal state discovery (RCS) algorithm. If the noise is not too large and the 
parameters are set correctly, this algorithm is provably able to recover the finite suffix 
partitioning corresponding to the causal states of the undisturbed, underlying process, 
albeit with slightly altered next-symbol probabilities. This is in contrast to the somewhat 
similar method in Schmiedekamp et al. (2006), which does not perform any 
determinization, and therefore often produces output with non-deterministic transitions 
that cannot be the causal states of any process. 

We have prepared these results on learnability and robust causal state discovery 
into a paper, and are working on disseminating the information. We have additionally 
written a C++ implementation of the method, the source code of which will be made 
publicly available alongside the paper. This code is capable of performing both CSSR 
and RCS, and is also significantly faster than the CSSR implementation provided at 
Shalizi (2008) by the inventors of the original algorithm. 

3.6 Continued Work 
The RCS method is not a panacea, however, and is only certain to be useful in situations 
where a simple, CSSR-learnable process (i.e., one that satisfies the three criteria on page 
4 of Shalizi & Shalizi, 2004) is disturbed by a moderate amount of random substitutions, 
insertions, and deletions. In the case of more realistic data or other noise conditions, 
divergent growth and overfitted models can still emerge. 

Particularly troublesome in practice is the determinization stage, where the 
precausal states of natural systems typically have to be split many times before a fully 
deterministic configuration is reached, as seen in Figure 3.3. This complication is not 
easily bypassed by introducing resolution or stopping determinization early, since any 
non-determinism in the output takes away the interpretation that the current history 
(suffix) uniquely determines the current state, a fundamental assumption necessary for 
CSSR to learn the properties of the output states as collections of suffixes in the first 
place. 

It seems that other ideas for finding approximate causal states are required. For 
this, we have turned our attention towards the concept of lossy compression. Clearly, by 
retaining all information that is relevant for prediction, CSSR has to learn an impossibly 
big representation that also includes properties of the input that we consider to be noise. It 
can be argued that learning and generalization, as opposed to memorization, must be a 
lossy process, where the goal is to identify information in the data that can be discarded, 
so that only the salient parts are kept. This will give a more compact (compressed) 
representation, that presumably also can be more useful, seeing how the results in Padró 
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& Padró (2005) show that a smaller non-sufficient statistic can achieve better 
performance than bigger models for realistic sample sizes. 

The information bottleneck (IB) framework due to Tishby, Pereira, and Bialek 
(1999) is an approach for lossy prediction that appears to be an ideal candidate for 
obtaining an approximate extension of causal states. Similar to causal states it is 
grounded in information-theoretic considerations, specifically the information from a 
variable X that is predictive about another variable Y. However, it does not necessarily 
maximize this information, but instead seeks a statistic T(X) that minimizes the functional 
L(T)=I(X; T(X))-βI(T(X); Y) where the parameter β controls a trade-off between the 
predictive relevance of T and the “size” of T; the algorithm is willing to add 1 bit of 
additional complexity (I(X; T(X))) to T in exchange for β-1 or more bits of predictive 
information (I(T(X); Y)). 

The minimal sufficient statistic, capable of optimal prediction, is obtained in the 
limit β→∞ (Shalizi & Crutchfield, 2002; Shamir et al., 2008), but finite parameter values 
may yield a smaller representation where only the most informative bits pass through the 
bottleneck. The other extreme, where β≤1, returns the trivial 0-bit predictor. Like the 
causal state ε, T can be considered a partitioning of the observation space of X. However, 
the partitioning here is “soft,” i.e., potentially stochastic. 

Apart from relations to causal states, information bottleneck also has interesting 
connections to source coding. Specifically, the optimal statistics for different β trace out a 
smooth, convex curve in the (I(X;T), I(T;Y)) plane, known as the information curve IX(IY), 
similar to the well-known rate-distortion function in lossy source coding. Furthermore, 
the Blahut-Arimoto algorithm, used to calculate a point on the rate-distortion curve in 
source coding, can also be adapted to iteratively find a (locally) optimal bottleneck 
statistic T. The resulting procedure is known as the bottleneck equations. 

The IB framework is quite general and has seen many applications and 
specializations. However, only recently has it been considered to apply IB in the case of 
sequence data (for a Gaussian process), where X is the history and Y is the future 
(Creutzig et al., 2009). Interestingly, it appears that the case of discrete, stationary symbol 
sequences, which is the domain of causal states, has not yet been addressed. 

We are currently working on combining the information bottleneck concept with 
the Markovian aspect of causal states, and believe this would be an excellent fit: Even if 
the information from the past relevant for predicting the future, I(X-∞

t; Xt+1
∞), is infinite, 

the information passing through such a bottleneck may be finite and learnable. This looks 
like a promising approach to finally achieve practically useful approximate causal states. 
For our first step we are presently investigating IB applied to simple parametric models 
such as Markov chains. 



39 

 
References: 

Aimetti G.: Modeling early language acquisition skills: Towards a general statistical 
learning mechanism. Proceedings of the Student Research Workshop at EACL 
2009, pp. 1-9, Association for Computational Linguistics, 2009 

 
Ali A. M. A., van der Spiegel J., and Mueller P.: Acoustic-Phonetic Features for the 

Automatic Classification of Stop Consonants. IEEE transactions on speech and 
audio processing, Vol. 9, No. 8, pp. 833-841, 2001 

 
Aristoteles: VI, Metafysiikka. Gaudeamus, Helsinki 1990, pp. 324, ISBN 951-662-492-8 

(in Finnish). See also: Aristotle, Metaphysics, 
http://classics.mit.edu/Aristotle/metaphysics.html  

 
Bandt C.: Ordinal time series analysis. Ecological modelling, Vol. 182, pp. 229-238, 
2005 
 
Creutzig F., Globerson A., and Tishby N.: Past-Future Information Bottleneck in 

Dynamical Systems, Physical Review E, Vol. 79, No. 4, 2009 
 
Feldman N. H., Griffiths, T. L., and Morgan, J. L.: Learning phonetic categories by 

learning a lexicon. Proceedings of the 31st Annual Conference of the Cognitive 
Science Society, in press 

 
Groth A.: Visualization of coupling in time series by order recurrence plots. Physical 

Review E, Vol. 72, No. 4, 2005 
 
Hand D. J. and Bolton R. J.: Pattern discovery and detection: A unified statistical 

methodology. Journal of Applied Statistics, Vol. 31, No. 8, pp. 885–924, 2004 
 
Hillenbrand J., Getty L. A., Clark M. J., and Wheeler K.: Acoustic characteristics of 

American English vowels. Journal of Acoustical Society of America, Vol. 97, No. 
5, pp. 3099-3111, 1995  

 
Keller K., Sinn M., and Emonds J. Time series from the ordinal viewpoint. Stochastics 

and Dynamics,  Vol. 2, pp. 247-272, 2007 
 
Kendall M.: A new measure of rank correlation. Biometrika, Vol. 30, No. 1, pp. 81–93, 

1938 
 
Kennel M. an. Mees A.: Context-tree modeling of observed symbolic dynamics. Physical 

Review E, Vol. 66, 2002 
 
Kuhl P. K., Conboy B. T., Padden D., Rivera-Gaxiola M., and Nelson T.: Phonetic 

learning as a pathway to language: new data and native language magnet theory 



40 

expanded (NLM-e). Philosophical Transactions B of the Royal Society, Vol. 363, 
pp. 979-1000, 2008  

 
Laine U.K., Räsänen O., Altosaar T., Driesen J., Aimetti G., and Henter G.: Methods for 

enhanced pattern discovery in speech processing. ACORNS project deliverable, 
http://lands.let.ru.nl/acorns/documents/Deliverables_Y2/Del%202.2.pdf, 2008  

 
Miller G. A.: The magical number seven, plus or minus two: Some limits on our capacity 

for processing information. The Psychological Review, Vol. 63, pp. 81–97, 1956 
 
Niyogi P. and Sondhi M.: Detecting stop consonants in continuous speech. The Journal 

of the Acoustical Society of America, Vol. 74, pp. 706-714, 2002 
 
Padró M. and Padró L.: A Named Entity Recognition System Based on a Finite Automata 

Acquisition Algorithm. Procesamiento del Lenguaje Natural, Vol. 35, pp. 319–
326, 2005 

 
Ron D., Singer Y., and Tishby N.: The Power of Amnesia: Learning Probabilistic 

Automata with Variable Memory Length. Machine Learning, Vol. 25, No. 2–3, 
pp. 117–149, 1996 

 
Räsänen O., Laine U. K., and Altosaar T.: A noise robust method for pattern discovery in 

quantized time series: the concept matrix approach. Proc. Interspeech '09, 
Brighton, England, 2009 

 
Schmiedekamp M., Subbu A., and Phoha S.: The Clustered Causal State Algorithm: 

Efficient Pattern Discovery for Lossy Data-Compression Applications. 
Computing in Science and Engineering, Vol. 8, No. 5, pp. 59–67, 2006 

 
Shalizi C.: Causal Architecture, Complexity and Self-Organization in Time Series and 

Cellular Automata. Ph.D. thesis, University of Wisconsin, Madison,  (As of 2009-
10-24 available online at http://www.cscs.umich.edu/~crshalizi/thesis/), 2001 

 
Shalizi C.: CSSR: An Algorithm for Building Markov Models from Time Series. Web 

page, accessed 2009-10-24 at http://www.cscs.umich.edu/~crshalizi/CSSR/. Last 
update in May 2008. 

 
Shalizi C. R. and Crutchfield J. P.: Computational Mechanics: Pattern and Prediction, 

Structure and Simplicity. Journal of Statistical Physics, Vol. 104, pp. 819-881, 
2001 

 
Shalizi C. R. and Crutchfield J. P.: Information Bottlenecks, Causal States, and Statistical 

Relevance Bases: How to Represent Relevant Information in Memoryless 
Transduction. Advances in Complex Systems, Vol. 5, pp. 91–95, 2002 

 
Shalizi C. R., Shalizi K., and Crutchfield J. P.: An Algorithm for Pattern Discovery in 

Time Series. Santa Fe Institute Working Paper 02-10-060 (As of 2009-10-24 



41 

available online at http://arxiv.org/abs/cs.LG/0210025) 
 
Shalizi C. R. and Shalizi K.: Blind Construction of Optimal Nonlinear Recursive 

Predictors for Discrete Sequences. In: M. Chickering and J. Halpern (eds.), 
Uncertainty in Artificial Intelligence: Proceedings of the Twentieth Conference, 
pp. 504–511, Arlington, Virginia, AUAI Press, 2004 

 
Shamir O., Sabato S., and Tishby N.: Learning and Generalization with the Information 

Bottleneck. In: ALT '08: Proceedings of the 19th international conference on 
Algorithmic Learning Theory, pp. 92–107, Budapest, Hungary, Springer Verlag, 
2008 

 
Tishby N., Pereira F., and Bialek W.: The Information Bottleneck Method. In: B. Hajek 

and R. Sreenivas (eds.), Proceedings of the 37th Annual Allerton Conference on 
Communication, Control and Computing, pp. 368–377. September 1999 

 
Van hamme H.: HAC-models: a Novel Approach to Continuous Speech Recognition. 

Proc. Interspeech’08, Brisbane, Australia, 2008 
 
Varshney L. R. and Goyal V. K., Toward a Source Coding Theory for Sets, in 

Proceedings of the Data Compression Conference (DCC 2006), Snowbird, Utah, 
28-30 March 2006. 

 
Weiss B.: Subshifts of Finite Type and Sofic Systems. Monatshefte für Mathematik, Vol. 

77, pp. 462–474, 1973 
 
Werker J. F. and Curtin S.: PRIMIR: A Developmental Framework of Infant Speech 

Processing. Language Learning and Development, Vol. 1, pp. 197-234, 2005  
 
Wolff J. G.: Language acquisition, data compression and generalization. Language and 

Communication, Vol. 2, pp. 57–89, 1982 
 
 
 
 



42 

Appendix A 

Algorithm for alignment of multiple multidimensional time-series data 
 
Input:  

– N time-series Sn of dimension D and length ln 
– Maximum number of iterations 

Output 
– N aligned time-series An of dimension D and length lA 

   – The amount of zero padding tn added to each Sn to achieve the global alignment. 
 
1) Take the longest time-series Sx as a reference. 
2) Take Sy (y≠x) of length ly and pad Sx with ly zeroes at both sides. 
3) Slide Sy over Sx frame by frame and compute dot-product of each frame in each 

window location to obtain distance vector dy,x. 
4) Find maximum of dy,x and compute required shift s accordingly. 
5) If s > 0, zero pad Sy with s zeroes. If s < 0, zero pad Sx with s zeroes. 
6) Add aligned Sy to the reference list with Sx and repeat steps 2-6 with a new 

Sy+1, now computing distance to all aligned S in the reference list. 
7) Once all time-series are aligned in the first pass, iterate steps 2-5 until 

convergence using all of the time-series from previous iteration as a 
reference. 

 
 

 
Figure A.1: A schematic for the first iteration in the alignment process. Spectrogram Sy slides 
over the reference Sx and their overall cross-correlation is computed at each point. Then the Sy is 
zero padded so that it will correspond to the point of maximum correlation in time. Finally, 
aligned Sy is added to the reference list with the previous reference Sx. Now alignment can be 
performed for new input Sy+1 by computing correlation to both references in Sx. 


