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Abstract

This report describes the progress within the ACORNS project towards developing and improving
features based on knowledge of the human auditory system, and designing phone-class specific fea-
tures for a self-learning language acquisition algorithm. Our work led to an off-line optimization
algorithm that helps to design features based on the ability of the features to describe the components
of speech that are most clearly perceived. Experimental results confirm effectiveness of this generic
strategy. Also a self-learning algorithm is presented that uses a bottom-up approach to automatically
discover, acquire and recognize words of a language.
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Chapter 1

Overview

This report is the description component of deliverable D1.3 of the ACORNS project. As listed in the
Annex, the deliverable was aimed to consist of “Final modules for features derived with sensitivity
analysis method criterion, with quantitative evaluation”. With the objective of designing efficient
and computationally inexpensive features without explicit feedback from the learning algorithms or
speech recognizers, this report describes mainly two parts: (a) Deriving sophisticated auditory model
based algorithms for designing improved features through off-line optimization based approach, and
(b) Un-supervised learning of time-frequency patches as a noise-robust representation of speech. Part
(a) of the deliverable is associated with Task 1 (“distortion-based approach”) and Part (b) is associated
with Task 2 (“phone-class specific features”).

Task 1 deals with developing efficient and computationally inexpensive features that can be subse-
quently used by ACORNS algorithms for agent learning. Consistent with the ACRONS philosophy,
the features are developed without feedback on word classification. The hypothesis is that auditory
model based design leads to better features that are sufficiently generic to be used by any pattern
recognition/learning method. As ACORNS developed new recognition methods, it provides a natural
platform to test the usefulness of new features. Task 1 consists of two sub-tasks. The first sub-task
deals with developing an algorithm to select an efficient subset of features from a larger set of existing
features. The feature selection is performed based on the ability of the subset to describe the audible
components of the signal. The success of the first sub-task forms the basis of further investigation
to design improved feature sets in the second sub-task. The second sub-task deals with designing
an efficient and computationally inexpensive feature set using advanced auditory models (both static
spectral and dynamic spectro-temporal auditory models). Based on the existence of a set of adjustable
parameters in the feature definition, this work has led to a general framework for optimizing the ad-
justable parameters such that the feature set emulates the behaviour of the human auditory system.
To design an improved feature set, we address both the issues of static and dynamic auditory per-
ception. The static perception is related to spectral masking as observed in a particular speech frame
and the dynamic auditory perception is related to the behaviour of human auditory response across
speech frames in the sense of spectro-temporal masking. The work in the second sub-task has led to
the design of new features that were shown to provide better speech recognition performance at any
environmental condition and subsequently used by ACORNS learning algorithms.

On the other hand, Task 2 deals with a self-learning algorithm that uses a bottom-up approach
to automatically discover, acquire and recognize the words of a language by evaluating phone-class
specific features. In Task 2, a special type of phone-class specific spectro-temporal feature is used
such that long-term temporal behaviour of speech can be handled. The use of spectro-temporal infor-
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mation in Task 2 naturally provides a testing platform where the features developed from Task 1 can
be used for further investigation.

In this report, the usefullness of auditory model based features is shown through the standard
HMM based automatic speech recognition (ASR) experimental setup for phone and word recognition
tasks. The performance of new features for ACORNS learning algorithms is reported in deliverable
D5.3.

This report part of the deliverable consists of four chapters, each describing one of the fore-
mentioned topics. Chapter 3 is based on a paper published in Interspeech’09. Chapter 2 and chapter
4 are based on the papers that are currently under review. The work in chapter 5 is based on a paper
published in Speech Communication.

Chapter 2, chapter 3 and 4 are concerned with Task 1. Conceptually, in Task 1, we should develop
a feature that is most sensitive to the human auditory system in the sense of perceptual distortion.
However, there exists no theory which conclusively describes that non-perceivable features of speech
signal do not contain any useful information for speech recognition in the central auditory system.
Also, in reality, a technical pattern recognizer/learning algorithm works differently than our central
auditory system/brain does, and it is questionable whether the technical recognizer can use the audi-
tory motivated features efficiently. Even though some usefulness of auditory motivated features were
earlier shown through isolated sound/word recognition tasks (which can be considered as primitive
experiments today), no concerted effort has been carried out to conclusively show their usefulness for
speech recognition and learning tasks as the human being does. With these caveats in place, Task 1
deals with developing systematic approach to design auditory motivated features which are shown to
provide improved performance for contemporary ASR tasks and ACORNS learning algorithms.

Chapter 2 describes our algorithm to find a good subset of features for recognition from a larger
set, using only knowledge of the human auditory system as a measure. The underlying assumption
of our work is that the human auditory system is effective at extracting relevant information from the
speech signal. We use a dynamic spectro-temporal auditory model to perform a sensitivity analysis
on speech, based on a distortion measure. The method eliminates the dependency of the feature set
to the speech recognition system used, and results in a generic set of good features. We evaluated the
selected feature subsets on a real speech recognizer. The results confirm that knowledge of the human
auditory system forms a good basis for selecting a subset of features from a larger set for the purpose
of speech recognition.

While the feature selection method of Chapter 2 can be used within ACORNS to limit the number
of features, this is not a major concern for the project. Rather, the method should be seen as a first
step towards a method that uses auditory-knowledge to improve existing features and define new
features. Buoyed by the success of our approach, Chapter 3 and chapter 4 deal with the issue of
designing better features than existing features. In Chapter 3, we use a static spectral auditory model
to perform a sensitivity analysis on speech, based on a distortion measure. For a specific feature design
example, we generalize the evaluation procedure of existing MFCC features through incorporating
some adjustable parameters and then optimize the parameters using the perturbation based algorithm.
We evaluated the new features on a real speech recognizer (such as HTK) and observed considerable
improvement over existing MFCC features. The results confirm that knowledge of the human auditory
system forms a good basis for designing and optimizing a set of features that is efficient for speech
recognition. The new features reflect the innate perception of a baby (or human in general), and are
not based on the feedback from some automatic speech recognition system.

For further improvement, chapter 4 explores the use of a dynamic auditory model to design a
dynamic feature set. The use of a dynamic spectro-temporal auditory model leads to the incorporation
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of human auditory behaviour across speech frames. This dynamic feature set is found to assist the
features developed in Chapter 3 and we show that a significant improvement in automatic speech
recognition (ASR) performance is obtained for any environmental condition, clean as well as noisy.

For Task 2, chapter 5 presents a self-learning algorithm using a bottom-up approach to automati-
cally discover, acquire and recognize the words of a language. The magnitude spectrum of a special
form of conventional short time Fourier transform (STFT) is used as the input to the algorithm. First,
an un-supervised technique using non-negative matrix factorization (NMF) discovers phone-sized
time-frequency patches into which speech can be decomposed. These patches can be considered to
be speech features. The input matrix for the NMF is constructed for static and dynamic speech fea-
tures using a spectral representation of both short and long acoustic events. By describing speech in
terms of the discovered time-frequency patches, patch activations are obtained which express to what
extent each patch is present across time. We then show that speaker-independent patterns appear to
recur in these patch activations and how they can be discovered by applying a second NMF-based
algorithm on the co-occurrence counts of activation events. By providing information about the word
identity to the learning algorithm, the retrieved patterns can be associated with meaningful objects
of the language. In case of a small vocabulary task, the system is able to learn patterns correspond-
ing to words and subsequently detects the presence of these words in speech utterances. Without
the prior requirement of expert knowledge about the speech as is the case in conventional automatic
speech recognition, we illustrate that the learning algorithm achieves a promising accuracy and noise
robustness.

The NMF work in chapter 5 uses a carefully selected time-frequency representation as input.
Patches are identified and in a second stage patch activations are obtained that express to what extent
each patch is present across time. The NMF-based approach does not consider the use of auditory
motivated spectro-temporal features. The work in chapter 4 provides a framework to design improved
spectro-temporal features and hence, it may be worthy to investigate in future the issue of using
auditory motivated spectro-temporal features for an NMF-based word learning algorithm.

We can draw some general conclusions from this deliverable. We first consider the auditory pe-
riphery based feature selection/definition work. Our results show that the knowledge implicit in the
human auditory periphery can be used to define or improve features for speech recognition without
any knowledge or the meaning of the signal. In practice this means that a sophisticated auditory
model can be used to find a feature set that improves speech recognition performance over stan-
dard methods for a large range of environmental conditions. The success of our perceptual-distance
preserving measure in optimizing features suggests that the auditory system provides as output a
signal representation that is ‘efficient’ for speech recognition. In a more general sense, our work
reinforces the common scientific perception that improved features can be designed through the use
of auditory knowledge and the resulting features are sufficiently generic to be used by any pattern
recognizer/learning algorithm. Secondly, we consider the feature-discovery work. We conclude that,
given a carefully chosen time-frequency input representation, it is possible to discover automatically
i) elementary time-frequency structures (high-level features, or patches) and ii) words that each con-
sist of a contiguous set of the elementary time frequency structures. While the result was shown for
a small vocabulary, it is consistent with the notion that humans do not need to be and indeed are
not pre-programmed with a set of elementary time-frequency structures for the purpose of speech
recognition.

The software for the two components forms part of the software that is available to the partners of
the ACORNS project. Some of the software will be made publicly available.
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Chapter 2

Selecting static and dynamic features
using auditory model

C. Koniaris, S. Chatterjee and W.B. Kleijn (KTH)

2.1 Introduction
In speech recognition, the goal of acoustic-feature selection is to reduce input dimensionality while
retaining most of the information relevant for accurate classification. Although a large feature car-
dinality results in principle in a better recognition accuracy, in practice it is not possible to train or
use such an automatic speech recognition (ASR) system. This phenomenon is called the curse of
dimensionality [1].

The selection of appropriate features is not a trivial task. Generally a large pool of possible features
is used as a starting point. For a good selection algorithm, the performance of the ASR system
increases when the cardinality of the feature set is reduced from that initial pool, e.g., [2]. This
increase in performance results from improved generalization as the number of system parameters
is reduced. Many approaches to feature selection have been developed, e.g., [2, 3, 4]. Generally
these methods require annotated speech data and feedback on classification performance from an
ASR system. This means they are optimized for a particular ASR system. The methods require ASR
systems to be trained for the full set first. They do not use knowledge implicit in the human auditory
system, which has become available with the development of sophisticated models of the auditory
periphery, e.g., [5, 6].

In our previous work [7], we presented a new acoustic-feature-selection method that was based on
human perception only, called auditory model-based feature selection (AMFS) for speech recogni-
tion. Inspired by the observation that the best recognition performance can be achieved by a normal-
hearing individual, we use knowledge of the human auditory periphery to select robust feature subsets.
The selection of acoustic features is performed by finding the subset that maximizes the similarity of
the Euclidian geometry of the feature set and the human auditory representation of the signal. In
[7], we considered only static features - for our speech recognition application we applied it to mel-
frequency cepstrum coefficients (MFCCs) [8]. Accordingly, a static psycho-acoustic masking model
[5] was considered. The results showed a significant performance increase compared to the linear
discriminant analysis (LDA) [2] method and compared to an average of randomly selected feature
subsets in various noisy conditions. The performance increase was sustained when first and second-
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order derivatives of the selected subsets were included as input for the ASR system.
In this paper, we further develop the method to enable the selection of a subset of features from

a set of both static and dynamic features. To make this possible, we consider a more sophisticated
auditory model [6] that we refer to as the Dau model. This model accounts for the spectro-temporal
processing of sound signals by the human auditory periphery. Let the complete feature set characterize
certain (locally) audible components of the speech signal. Then, for a given subset cardinality, the
auditory model is used to select the feature subset that best captures the most audible of these signal
components.

To validate our approach, we used the MFCCs and their first and second time derivatives. Our
results verify that the human auditory model forms an effective basis for selecting robust acoustic
features from this set of static and dynamic features.

This paper is organized as follows. Sec. 2.2 discusses a similarity measure for the perceptual and
feature domains. Sec. 2.3 presents the auditory model used and describes the selection algorithm.
Sec. 2.4 shows experimental results and Sec. 2.5, provides conclusions.

2.2 Maximizing the perceptual relevance of features
The high recognition accuracy of the normal-hearing listeners indicates that the auditory periphery
system is efficient in sound-class discrimination. Implicitly, this suggests that the necessary informa-
tion for sound classification reaches the ‘auditory cortex’ of the brain where the cognitive processing
is performed. As ASR systems require a perceptually relevant set of acoustic features to achieve a
high recognition rate, it is natural to find a set that is similar to that used by humans.

Our research is aimed at finding robust feature subsets based on quantitative models of the auditory
periphery. The best-case scenario would be that the selected features include all the information re-
layed by the human auditory periphery. This would lead to the ideal situation in which the perceptual
and the selected acoustic-feature domains are isometric. In practice this is not completely possible.
In this section we define a measure that has proven to be effective in maximizing similarity between
the perceptual domain and the acoustic-feature domain.

2.2.1 A measure of dissimilarity
It is our objective to obtain a feature set for which the geometry of the data (characterized by the
distances between sounds) is similar to that of the perceptual domain (the output of the auditory
periphery). This is particularly the case for “short” distances, as they determine the performance of
classifiers. Let us define an L2 norm based distance measure (also known as distortion measure) in the
perceptual domain as a mapping of two signals: Υ : RN×RN → R+, where R+ are the non-negative
reals. Let us also consider the perceptual-domain signals y(xj) and y(x̂j,m), where y : RN → RK

is a mapping to the (K-dimensional) perceptual domain. Then

Υ(xj , x̂j,m) = ‖y(xj)− y(x̂j,m)‖2, (2.1)

where xj ∈ RN denotes the N -dimensional speech signal vector characterizing a segment with time
index j ∈ Z and x̂j,m is a perturbation of xj with perturbation index m.

Similarly, a distance measure for the feature domain can be defined as Γi : RN × RN → R+ for
the feature set i. Let ci : RN → RL be the mapping from a signal segment xj to a set of L features
ci(xj) with set index i. An L2 norm based measure is then

Γi(xj , x̂j,m) = ‖ci(xj)− ci(x̂j,m)‖2. (2.2)
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Our geometry objective is equivalent to find the particular set of features i that minimizes a mea-
sure of dissimilarity of the perceptual-domain distances and the feature-domain distances. We find
the set i that minimizes

G(i) =
∑

j∈J ,m∈Mj

[Υ(xj , x̂j,m)− λΓi(xj , x̂j,m)]2 , (2.3)

where λ =
∑
j∈J ,m∈Mj

Υ(xj ,x̂j,m)Γi(xj ,x̂j,m)∑
j∈J,m∈Mj

Γi(xj ,x̂j,m)2
is an optimal scaling of the acoustic feature criterion,

and j ∈ J , m ∈ Mj represent a finite frame sequence and a finite set of acoustic perturbations,
respectively.

2.2.2 Perturbation analysis
To reduce computational effort, we use the powerful tools of perturbation analysis and the sensitivity
matrix [9, 10, 11, 12]. We compute eq. (2.3) by approximating the perceptual distortion measure
Υ(xj , x̂j,m) by a simpler quadratic measure. Note that perturbation analysis is natural as we consider
only small distances in eq. (2.3).

Let consider Υ(xj , x̂j,m) to be known. We assume that Υ(xj ,xj) = 0 and that this forms a
minimum. We furthermore assume that Υ(xj , x̂j,m) is analytic in x̂j,m. Then, for sufficiently small
perturbations x̂j,m − xj , we can make the approximation

Υ(xj , x̂j,m) ≈ [x̂j,m − xj ]TDΥ(xj)[x̂j,m − xj ], (2.4)

where DΥ,κµ(xj) = ∂2Υ(xj ,x̂j,m)
∂x̂κ∂x̂µ

∣∣∣∣
x̂j,m=xj

is the sensitivity matrix.

2.3 Application to speech recognition
This section illustrates the application of the method to a specific auditory model and specific type of
acoustic features and presents the implementation of the feature selection algorithm.

2.3.1 Dau auditory model
The Dau [6, 13] auditory model is a psycho-acoustic masking model that accounts for spectro-
temporal processing of sound signals. Thus, the speech signal x is a time-domain vector. It consists of
several stages which simulate the human auditory periphery. A channel l of the Dau model includes
the hair-cell model consisting of a gamma-tone filter, a half-way rectifier, and a low-pass filter. Next,
an adaptation nonlinear stage incorporates the forward masking prediction of the ear [12]. Finally, a
low-pass filter performs a temporal smoothing and the output is the so-called internal representation
a(l)(xj). The original paper [6] did not study the distortion prediction properties of the model, an
investigation that was later performed in [12]. In the same paper, a distortion measure on the internal
representation was introduced as

Υ(xj , x̂j,m) =
∑
l

‖a(l)(x′j)− a(l)(x̂′j,m)‖2, (2.5)

where x′j , x̂
′
j,m are of higher dimension than the xj , x̂j,m vectors, respectively due to the ring-out

effect described in [12]. The derivation of the sensitivity matrix in this case is non-trivial and tedious.
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The final sensitivity matrix can be computed as the sum of per-channel sensitivity matrices D(l)
Υ (xj)

DΥ(xj) =
∑
l

D(l)
Υ (xj), (2.6)

where

D(l)
Υ (xj) = 2

[∏
k

J(l)
k

]H
J(l)
k , (2.7)

and J(l)
k is the Jacobian for processing stage k in channel l.

2.3.2 AMFS algorithm for a spectro-temporal model
We can now discuss the implementation of a AMFS algorithm that accounts for both spectral and
temporal masking. To handle the dynamic aspect of the auditory measure we use a superframe J that
consists of three overlapped subframes j − 1, j, j + 1 as shown in the Fig. 2.1. The length of the
superframe was set at 40 ms with an overlap of 10 ms. The length of each subframe was 20 ms with
an overlap of 10 ms for the AURORA 2 database of 8 kHz. The superframe is used to compute the
Dau sensitivity matrix and the subframes are used to compute the static MFCCs and their first- and
second-order derivatives..

j−1 j j+1
 

 

J

Figure 2.1: The J’th superframe consists of three overlapped subframes j − 1, j, j + 1.

The feature selection operation was divided into two stages. In the first stage all necessary quanti-
ties were computed, and in the second stage the feature set was selected.

In the first stage the Dau sensitivity matrix DΥ(xJ) was computed for the J’th superframe, xJ .
A set of 100 vectors x̂J,m was computed by adding 100 dB SNR noise to xJ . Next, the 12 mel
cepstrum static coefficients were calculated for the central j’th subframe. Their first-order (∆) and
second-order (∆∆) derivatives were computed using the j − 1’th and the j + 1’th subframes. The
full feature vector cJ for the superframe J was built as

cJ = [cj ∆cj ∆∆cj ]
T . (2.8)

Finally, we computed the 100 distorted features vectors ĉJ,m’s corresponding to the 100 distorted
speech vectors that were previously calculated. The first step of the algorithm ended by performing a
cepstral mean and variance normalization (CMVN) in the feature vectors.
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The second stage began by reading again the speech data. For each superframe, we considered
the quantities that were computed (and saved) in the previous stage. We used them to compute the
distortion measure in the perceptual domain according to eq. (2.4). Similarly, we computed the
distortion in the feature domain for all the possible feature subsets i according to eq. (2.2). Finally, to
find the particular set of features i we computed the measure of dissimilarity as described in eq. (2.3).

2.3.3 Greedy feature selection
Due to the high cardinality of the full feature vector, the search through all combinations of possibly
optimal subsets is practically impossible. For example when a subset of 32-out-of-36 features is
requested, 58 905 different combinations have to be considered. To cope with this problem we used a
greedy algorithm. The second stage of the algorithm was run iteratively, reducing the dimensionality
by one dimension at each iteration. A feature that was not included in the selected subset was not
considered in the next round. We did not consider forward-backward algorithms. Therefore, to select
32 coefficients, we first start from selecting 35 coefficients out of 36 coefficients. Then, in the next
step, 34 coefficients are chosen from those previously selected 35 coefficients and the algorithmic
process continues until 32 coefficients are selected out of previously selected 33 coefficients.

2.4 Experiments
To test and compare the performance of the new feature-selection system, we performed speech recog-
nition experiments using the test set A of the AURORA2 [14] database, sampled at 8 kHz. We used
an MFCC representation. The full set of MFCCs was extracted by using a Hamming window of 20
ms with an overlap of 10 ms. The DFT dimensionality was 256 and we considered 23 mel filters.
A set of 12 conventional MFCCs was extracted plus the energy coefficient and their corresponding
first and second order time derivatives (resulting in a 39 feature vector). The selection of a subset
from the full feature vector was performed with three different feature-selection methods. The first
method is the new auditory-model based feature selection (indicated by amfs in the tables) described
in section 2.3. The other two methods are the well-known linear-discriminant analysis (lda) [2] and
heteroscedastic linear discriminant analysis (hlda) [3] methods.

For the discriminant analysis methods we used the HTK [15] toolkit to build label files for each
word-state (‘word’ refers to the digit to be recognized while ‘state’ refers to the state of the hidden
Markov model (HMM)). Hence, we used information from the classified data for both lda and hlda
methods.

To build the recognizer we also used the HTK [15] toolkit. The digits were modeled as whole word
HMMs with 16 states (HTK’s notation is 18 states including the beginning and end states) and three
Gaussian mixture components per state (we used diagonal covariance matrices). An initial model
with global data means and covariances, identical for each digit, was used and 16 iterations were used
to build the final model.

2.4.1 Results
Table 2.1 shows the recognition accuracy for training on clean data for various feature subsets starting
from 33-out-of-36 and ending at 12-out-of-36 extended with the energy coefficient indicated as “+E”
and its dynamics “+∆E” and “+∆∆E” for the velocity and acceleration coefficients, respectively. As
reference the corresponding 39-dimensional feature set is provided. The training was performed on
the clean training set of 8 440 sentences and the testing on the 20 020 data of test set A, consisting of
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4 004 data from each of the ‘clean’, ‘20’, ‘15’, ‘10’ and ‘5’ dB SNR groups of data. The performance
of the amfs remains relatively stable as the number of coefficients is reduced. The amfs features gen-
erally perform better than both the lda and hlda feature, particularly under noisy testing conditions.

Table 2.1: AURORA2 clean training results.
Data Test Set A

feature set clean 20 dB 15 dB 10 dB 5 dB

36+E+∆E+∆∆E (full 39-dim) 99.1 96.5 93.0 84.4 66.2

33+E+∆E+∆∆E amfs 99.1 96.6 92.9 83.5 64.7

lda 98.3 89.6 71.6 40.9 19.1

hlda 98.6 94.8 90.2 80.5 62.3

30+E+∆E+∆∆E amfs 99.0 96.5 92.6 82.9 63.3

lda 98.3 89.9 72.6 42.3 19.7

hlda 98.7 94.9 89.8 78.6 58.8

27+E+∆E+∆∆E amfs 99.1 96.4 92.5 82.9 63.1

lda 98.4 90.1 73.7 43.3 21.2

hlda 98.8 94.9 89.2 77.1 55.7

24+E+∆E+∆∆E amfs 99.2 96.3 92.1 82.2 62.3

lda 98.3 89.9 74.2 45.4 22.8

hlda 98.7 94.7 88.6 75.8 53.8

21+E+∆E+∆∆E amfs 99.1 96.2 91.9 81.8 62.5

lda 98.3 87.3 71.0 42.8 21.9

hlda 98.8 94.2 88.2 75.0 52.6

18+E+∆E+∆∆E amfs 98.5 93.8 88.1 75.2 55.3

lda 98.3 84.7 68.6 41.5 22.7

hlda 98.7 94.0 87.4 73.3 49.9

15+E+∆E+∆∆E amfs 98.3 91.9 84.8 70.8 49.3

lda 98.4 86.7 70.8 46.2 24.5

hlda 98.6 93.7 86.3 71.1 45.1

12+E+∆E+∆∆E amfs 96.8 87.3 78.0 61.8 41.0

lda 98.2 77.6 57.2 34.2 15.1

hlda 98.6 94.0 86.6 71.3 45.8

Table 2.2 shows the recognition accuracy for noisy only data. The training was performed on the
multi-conditioned noisy training set consisting of 6 752 files and the testing on 20 020 noisy data of
test set A. Note that the results for the noisy test conditions shown in tables 2.1 and 2.2 are averaged
over subway, babble, car, and exhibition additive noise for several SNR values. The performance of
the amfs subsets are in general better than the lda and hlda.

2.4.2 Discussion
An interesting aspect of the results is the observation of how many features are necessary to achieve
at least 99 % of the original recognition performance of the 39 dimensional feature vector. Studying
table 2.1, we see that for the clean-clean case amfs needs 18 features, for clean-20 dB case 24 features,
for clean-15 dB 27, for clean-10 dB 36 and for the case of clean-5 dB it cannot reach this goal. For the
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Table 2.2: AURORA2 multi-conditioning noisy training results.
Data Test Set A

feature set 20 dB 15 dB 10 dB 5 dB 0 dB

36+E+∆E+∆∆E (full 39-dim) 97.7 96.9 94.8 87.6 71.4

33+E+∆E+∆∆E amfs 97.6 96.7 94.5 86.9 68.9

lda 94.7 93.1 88.5 77.7 53.0

hlda 95.4 94.0 90.3 80.4 59.5

30+E+∆E+∆∆E amfs 97.6 96.6 94.4 86.9 68.3

lda 94.6 93.1 88.4 77.3 52.8

hlda 95.3 93.9 90.0 80.1 59.3

27+E+∆E+∆∆E amfs 97.4 96.4 94.0 85.8 66.9

lda 94.3 92.7 87.7 76.9 52.2

hlda 95.0 93.5 89.9 79.6 59.0

24+E+∆E+∆∆E amfs 97.1 96.0 93.2 84.2 64.2

lda 94.4 92.8 87.8 76.5 52.0

hlda 94.8 93.4 89.4 79.3 58.4

21+E+∆E+∆∆E amfs 97.1 95.9 93.2 84.0 64.7

lda 94.2 92.7 87.5 75.7 51.3

hlda 94.9 93.3 89.3 79.4 59.3

18+E+∆E+∆∆E amfs 96.5 95.0 90.5 78.9 56.4

lda 94.1 92.3 87.3 75.4 50.7

hlda 94.5 92.9 88.8 78.6 58.2

15+E+∆E+∆∆E amfs 96.5 94.8 90.3 78.6 55.6

lda 94.1 92.4 87.0 75.4 50.1

hlda 94.5 92.7 89.1 78.7 58.5

12+E+∆E+∆∆E amfs 96.5 94.6 89.6 77.3 53.6

lda 93.6 92.1 86.3 73.9 48.9

hlda 94.2 92.8 88.9 78.8 58.5

noisy training experiments, table 2.2 shows that the goal of 99 % can be reached with 24 features for
the cases noisy-20 dB and noisy-15 dB and 30 for noisy-10 dB. In the case of noisy-5 dB amfs needs
33 features while for the case of noisy-0 dB, it has a lower accuracy. On the other hand, both lda
and hlda cannot reach the 99 % goal in all cases but for the clean-clean case, where 15 dimensional
feature vector suffices (although overall hlda is significant better than lda). The obvious inference is
that the recognition process can become faster when amfs is used without dropping more than 1 %
of the maximum performance since the speed of a HMM ASR system depends on the feature vector
size.

2.5 Conclusions
In this paper, we presented an advanced method to select robust features subsets for speech recogni-
tion based on a spectro-temporal advanced auditory model. Under the assumption of small distortion
errors we used perturbation analysis and the sensitivity matrix to build the feature selection algorithm.
We included the first and second order time derivatives of the features and showed how we succeeded
to associate them to the perception information obtained from the sensitivity matrix. The experimen-

Deliverable 1.3
c©2009 ACORNS Consortium

15/57



FP6-2002-IST-C ACORNS Spec. targeted research project

tal results verified that the human auditory periphery is a powerful tool in selecting relevant features
for robust speech recognition.

Bibliography

[1] R. E. Bellman, Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957,
Republished Dover 2003, ISBN: 0-486-42809-5.

[2] R. Haeb-Umbach and H. Ney, “Linear discriminant analysis for improved large vocabulary con-
tinuous speech recognition,” IEEE Int. Conf. on Acoust., Speech, Sig. Proc., vol. 1, pp. 13–16,
1992.

[3] N. Kumar and A. G. Andreou, “Heteroscedastic discriminant analysis and reduced rank HMMs
for improved speech recognition,” Speech Commun., vol. 26, no. 4, pp. 283–297, 1998.

[4] F. Valente and C. Wellekens, “Maximum entropy discrimination (MED) feature subset selection
for speech recognition,” IEEE Works. on ASRU, pp. 327–332, Dec. 2003.

[5] S. van de Par, A. Kohlrausch, G. Charestan, and R. Heusdens, “A new psychoacoustical masking
model for audio coding applications,” in IEEE Int. Conf. on Acoust., Speech, Sig. Proc., vol. 2,
2002, pp. 1805–1808.

[6] T. Dau, D. Püschel, and A. Kohlrausch, “A quantitative model of the effective signal processing
in the auditory system. I. model structure,” Acoustical Society of America, vol. 99, no. 6, pp.
3615–3622, Jun. 1996.

[7] C. Koniaris, M. Kuropatwinksi, and W. B. Kleijn, “Auditory-model based robust feature selec-
tion for speech recognition,” Under Review at the Journal of the Acoustical Society of America
(JASA) Express Letters, 2009.

[8] S. B. Davis and P. Mermelstein, “Comparison of parametric representations for monosyllabic
word recognition in continuously spoken sentences,” IEEE Trans. Acoust., Speech, Sig. Proc.,
vol. 28, no. 4, pp. 357–366, Aug. 1980.

[9] W. R. Gardner and B. D. Rao, “Theoretical analysis of the high-rate vector quantization of LPC
parameters,” IEEE Trans. Speech, Audio Proc., vol. 3, no. 5, pp. 367–381, Sep. 1995.

[10] T. Linder, R. Zamir, and K. Zeger, “High-resolution source coding for non-difference distortion
measures: multidimensional companding,” IEEE Trans. Inform. Theory, vol. 45, no. 2, pp. 548–
561, Mar. 1999.

[11] J. Li, N. Chaddha, and R. M. Gray, “Asymptotic performance of vector quantizers with a per-
ceptual distortion measure,” IEEE Trans. Inform. Theory, vol. 45, no. 4, pp. 1082–1091, May
1999.

[12] J. H. Plasberg and W. B. Kleijn, “The sensitivity matrix: Using advanced auditory models in
speech and audio processing,” IEEE Trans. Speech, Audio Proc., vol. 15, no. 1, pp. 310–319,
Jan. 2007.

Deliverable 1.3
c©2009 ACORNS Consortium

16/57



FP6-2002-IST-C ACORNS Spec. targeted research project

[13] T. Dau, D. Püschel, and A. Kohlrausch, “A quantitative model of the effective signal process-
ing in the auditory system. II. simulations and measurements,” Acoustical Society of America,
vol. 99, no. 6, pp. 3623–3631, Jun. 1996.

[14] H. G. Hirsch and D. Pearce, “The AURORA experimental framework for the performance eval-
uation of speech recognition systems under noise conditions,” ISCA ITRW ASR2000, Paris,
France.

[15] S. Y. et al, The HTK Book (for HTK Version 3.2). Cambridge University, Engineering Depart-
ment, Dec. 2002.

Deliverable 1.3
c©2009 ACORNS Consortium

17/57



FP6-2002-IST-C ACORNS Spec. targeted research project

Chapter 3

Auditory Model Based Optimization of
MFCC Features

S. Chatterjee, C. Koniaris and W.B. Kleijn (KTH)

3.1 Introduction

An automatic speech recognition (ASR) system comprises two main tasks: feature extraction and
pattern recognition. The feature extraction stage is designed to transform the incoming speech signal
into a representation that serves as the input to a later pattern recognition stage. Feature extraction
is a dimensionality reduction problem where the output representation should preserve the important
aspects of the input speech signal relevant for speech recognition in any environmental condition,
clean as well as noisy.

Different feature sets have been proposed in the literature, but the solutions remain ad hoc. We pro-
pose to define the features based on a perceptually relevant objective criterion. The human peripheral
auditory system enhances the input speech signal for further processing by the central auditory system
of the brain. Pre-processing of the input speech signal by the human auditory periphery forms a useful
basis for designing an efficient feature set. Commonly used features use knowledge of the auditory
system in an ad hoc manner. For example, several feature extraction methods perform auditory fre-
quency filtering on a perceptually motivated frequency scale than a linear scale. Another example is
the use of a logarithmic function to approximate the non-linear dynamic compression in the auditory
system, which allows us to cover the large dynamic range between hearing threshold and uncomfort-
able loudness level. Using these two auditory motivated signal processing techniques, MFCCs were
designed a few decades ago [1]. They are still universally used due to their computational simplicity
as well as good performance. Importantly, the MFCCs do not use up-to-date quantitative knowledge
of the auditory system.

Several attempts have been made to use quantitative auditory models in a practical ASR system
processing chain [2]-[7]. In these techniques, the input speech signal is first processed through a
readily available auditory model and then the output signal of the auditory model is formatted to
use as an input to the pattern recognition stage of the ASR system. The direct use of an auditory
model was shown to provide better speech recognition performance, but at the expense of higher
computational complexity. In recent years, the research in quantitative modeling of the complex
peripheral auditory system has reached a high level of sophistication [8]-[13], and it is appealing to
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use a sophisticated auditory model for designing efficient features. The feature set should not incur
the higher computational complexity associated with a full auditory model.

In this paper, instead of the direct on-line use, we investigate the use of an auditory model to
design improved MFCCs through off-line optimization. The optimized MFCCs are referred to as
modified MFCCs (MMFCCs). The off-line approach helps to retain the computational simplicity of
MMFCCs. Also, it avoids the difficulty of formatting the output of the auditory model for recognition.
Comparing to traditional MFCCs, the MMFCCs have a similar structure as well as computational
simplicity.

In our approach, the feature set is optimized in such a way that it emulates the behavior of the
human auditory system. The implementation of our method relies on perturbation theory and does not
consider any feedback from the ASR system. We conjecture that human-like classification of speech
sounds is facilitated by similarity between the local geometries of two domains, the feature domain
and the perceptual domain. For improved classification, the preservation of the data geometry near
the class boundaries is most critical. This means that ‘small’ Euclidean distances must be similar
in the two different domains, except for an overall scaling. The focus on small distances allows a
complex perceptual distance to be reduced to a quadratic distance measure using a sensitivity matrix
based analysis. The sensitivity matrix based analysis was first developed in the context of source
coding [14]. In [15], the sensitivity matrix was used to simplify an auditory distance measure for
audio coding. Here, we extend the sensitivity matrix paradigm to optimize a feature set. Using HTK,
the optimized MMFCCs are shown to provide better recognition performance than traditional MFCCs
for both clean and noisy acoustic conditions.

3.2 Maximizing Similarity between Spaces

Improvement in sound classification requires a feature representation that provides a good separation
of sound classes in the feature space. Noting the high human recognition performance, it can be ex-
pected that the output of a sophisticated auditory model provides good separation of sound classes.
Therefore, we optimize a feature set to better describe the inter-sound distances of a state-of-the-art
auditory model. We conjecture that if the Euclidean distance between two acoustic features approx-
imates the corresponding perceptual distortion for two different speech sounds, then the use of that
acoustic feature generally leads to better classification in an ASR system. Ideally, this implies an
isometry between the perceptual and feature domains. The mapping from the perceptual to feature
domain would then be distance preserving.

3.2.1 Distance Preserving Measure

In practice, it is not be possible to design a feature set that leads to an accurate distance-preserving
mapping from perceptual domain to feature domain. However, it is not required to preserve all the
distances. For good classification, the preservation of the data geometry near the class boundaries is
most critical. More generally, the preservation of small distances (reflecting the local geometry) near
the classification boundary is important, whereas the preservation of large distances (reflecting the
global geometry) is not required. In principle, to achieve better sound classification, we then simply
desire to have the same small distances for the auditory domain and for the feature domain.

A feature set is a function of an input speech signal segment (or frame) and some adjustable design
parameters. For example, to design MMFCCs, these design parameters can be the frequency warping
parameter to change the shape of a filter bank (such as heights, widths, center frequency of filters),
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a parameter to change the shape of a compressing function (like logarithmic function), etc. The
objective is to obtain a feature set with optimum parameters for which any small perturbation of the
input speech signal segment leads to a Euclidean distance in the feature domain that best approximates
the perceptual distortion indicated by the auditory model. Naturally this criterion has to hold for all
speech segments. To measure the similarity of the auditory model distortion and the feature domain
distance, a suitable objective measure needs to be designed that will provide a means of ensemble
averaging over all speech segments and all perturbations. By optimizing the parameters, a higher
similarity, through evaluating the objective measure, leads to a better feature set.

We now define an objective measure that relates between the perceptual and feature domains. Let
us denote the signal vector for the j’th speech frame as xj ∈ RN , where j ∈ J ⊂ Z, and the
perceptual domain representation of xj as y : RN → RK . We also denote the design parameters
of a feature set by a vector p ∈ RS . Then, we can denote the Q-dimensional feature derived from
xj using p as c : RN × RS → RQ. The perceptual domain distortion is defined through a mapping
as Υ : RK × RK → R+, where R+ is the set of non-negative reals. For the j’th speech frame,
let us denote the l’th perturbed signal as x̂j,l. Often the perceptual distortion measure is based on
the L2 norm of the difference between the perceptual domain signal y(xj) and its distorted version
y(x̂j,l). In that case, Υ(xj , x̂j,l) = ‖y(xj)− y(x̂j,l)‖2. Using the L2 norm, we can define a distance
measure for the feature c(xj ,p) as Γ(xj , x̂j,l,p) = ‖c(xj ,p) − c(x̂j,l,p)‖2. Now, considering the
finite sequence of speech frames j ∈ J and a finite set of acoustic perturbations l ∈ Lj , the objective
is to minimize a measure of dissimilarity between perceptual domain distortion and feature domain
distortion with respect to the parameter set p. To satisfy this objective, a suitable norm based measure
can be defined as

O =
∑
j∈J

∑
l∈Lj

[Υ(xj , x̂j,l)− λ Γ(xj , x̂j,l,p)]2 , (3.1)

where

λ =

∑
j∈J
∑

l∈Lj Υ(xj , x̂j,l) Γ(xj , x̂j,l,p)∑
j∈J
∑

l∈Lj (Γ(xj , x̂j,l,p))2 . (3.2)

Here λ is the necessary scaling to eliminate the effect of a scale mismatch between perceptual domain
and feature domain. So, the objective is to minimize the norm based distance O with respect to the
parameter vector p.

3.2.2 Perturbation Analysis

While it is possible to minimize the objective measure of eq. (3.1) even for complex distortion mea-
sures, this can be computationally expensive. Since we are interested in small distances, we can
approximate the perceptual and feature domain distortion measure using simpler quadratic mea-
sures, leading to a significant reduction in computational complexity and an increase in mathematical
tractability. This approach is based on the sensitivity matrix framework [14], [15].

Let us omit the subscripts for notational brevity where no ambiguity exists. We assume that
Υ(x, x̂) is analytic and Υ(x,x) = 0. Then, for a sufficiently small perturbation x̂ − x, we can
write

Υ(x, x̂) ≈ 1
2

[x̂− x]TDΥ(x) [x̂− x], (3.3)
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where DΥ(x) is the sensitivity matrix whose elements are DΥ,ij(x) = ∂2Υ(x,x̂)
∂x̂i ∂x̂j

∣∣∣
x̂=x

. In certain
cases, such as the spectral auditory model of section 3.2.3, Υ(x, x̂) and DΥ(x) are known.

Next, we consider a simplification of the distortion in the feature domain i.e., Γ(x, x̂,p). If the
mapping c(x,p) is analytic in x, then we can use the Taylor series expansion to make a local approx-
imation around x as

c(x̂,p) ≈ c(x,p) + A(p) [x̂− x], (3.4)

where A(p) is aQ×N -dimensional matrix as A(p) = ∂c(x,p)
∂x̂

∣∣∣
x̂=x

. We can then write the distortion
in the feature domain as

Γ(x, x̂,p) = ‖c(x,p)− c(x̂,p)‖2
= [x̂− x]TA(p)T A(p) [x̂− x].

(3.5)

3.2.3 A Spectral Auditory Model

In this paper, we optimize the MMFCCs to minimize the norm based measure of eq. (3.1). The MM-
FCCs are designed using the power spectrum of the input speech signal. Therefore, for optimization,
we use the spectral auditory model developed by van de Par, et al. [13] which is referred to as the
van de Par auditory model (VAM). The VAM is a psycho-acoustic masking model that accounts for
simultaneous processing of sound signals with different frequencies. To use the VAM, we consider
the input signal x as the power spectrum of a speech frame. The VAM consists of several frequency
channels, in each of which the ratio of distortion power to masker power is calculated. Then, the ratios
of all the frequency channels are combined together to account for the spectral integration property
of the human auditory system. Let H be a diagonal N -dimensional matrix whose diagonal is formed
by the frequency response of the outer and middle ear filter. In the same fashion, a diagonal matrix
Gi is defined, so that the frequency response of the i’th channel Gamma-tone auditory filter forms its
diagonal. For the VAM, the diagonal sensitivity matrix is

DΥ(x) ≈ 2
CsLe
N

∑
i

[GiH]T [GiH]
1
N [GiHx]T [GiHx] + Ca

, (3.6)

whereCs andCa are constants calibrated based on measurement data, and Le is a constant to account
for the influence of temporal integration time in the human auditory system on frame duration.

It is important to mention that each speech frame is independently analyzed in the VAM. There-
fore, the use of VAM is appropriate for optimizing a static feature. Note that due to the inability to
model the auditory response across speech frames, the use of the VAM is inappropriate for optimizing
the temporal dynamic features, such as velocity and acceleration. However, it is possible to compute
the dynamic features from any static feature using standard regression method.

3.3 Modified MFCCs

We first generalize the definition of the MFCCs to render a set of features with adjustable parameters
p. We refer to this new set of features as modified MFCCs (MMFCCs). Let the N -dimensional
vector x = [x0 x1, · · · , xn, · · · , xN−1]T be the power spectrum of a Hamming windowed speech
frame. Then the steps of evaluating the MMFCCs are as follows:

Deliverable 1.3
c©2009 ACORNS Consortium

21/57



FP6-2002-IST-C ACORNS Spec. targeted research project

1. Calculation of the energy in each channel:

zm = xT wm(α)

=
N−1∑
n=0

xn × wm,n(α) , 0 ≤ m ≤M − 1,
(3.7)

where wm(α) is the N -dimensional vector denoting the triangular filter of the m’th channel
and satisfies

∑N−1
n=0 wm,n(α) = 1. M is the total number of channels with a typical value of

M = 26. The shape of a triangular filter depends on the extent of frequency warping. The
warped frequency scale [16] is given as

fwarp = 2595× log10 (1 + (f/α)) , (3.8)

where α is the warping factor and f is the frequency in Hz. An increase in α leads to a
decrease in the extent of warping. For the MMFCCs, α is a parameter to optimize to achieve
better recognition performance. In the case of MFCCs, the triangular filters are designed using
the mel frequency scale where α = 700 [16].

2. Compression of the dynamic range of the energy in each channel:

sm = log10

[
R∑
r=1

br (zm)r
]
, 0 ≤ m ≤M − 1, (3.9)

where
∑R

r=1 br = 1 and br ≥ 0. For the MMFCCs, we optimize the polynomial coefficients
{br}Rr=1. In the case of MFCCs, R = 1 and b1 = 1 [1]. We note that eq. (4.3) implies that our
results are scale dependent and require proper normalization.

3. De-correlation using the DCT to evaluate Q-dimensional MMFCC feature vector:

cq =
M−1∑
m=0

sm × cos
[
q (m+ 0.5)

π

M

]
, 1≤q≤Q. (3.10)

A typical value of feature vector dimension is Q = 12.

3.3.1 Optimization of the MMFCCs

The parameters that we optimize to obtain the MMFCCs are p =
[
α, {br}Rr=1

]
. To optimize the

parameters, we need to minimize the objective measure O of eq. (3.1). This objective measure is
a function of the sensitivity matrix based perceptual domain distortion of eq. (3.3) and the feature
domain distortion of eq. (3.5). To evaluate the perceptual domain distortion, we need a closed form
sensitivity matrix DΥ(x) which is given by the VAM as shown in eq. (3.6). We also need a closed
form A(p) for evaluating the feature domain distortion. For an MMFCC feature, the elements of the
matrix A(p) are

Aqn =
∂cq
∂xn

=
∂cq
∂sm

∂sm
∂zm

∂zm
∂sn

=
∑M−1

m=0 cos
[
q (m+ 0.5) π

M

]
×

∑R
r=1 r br (zm)r−1

ln 10 ×
∑R

r=1 br (zm)r
wm,n(α).

(3.11)
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Table 3.1: Phone recognition accuracy (in %) of static 12-dimensional MFCC and MMFCC features
using TIMIT

Feature Number of Gaussian mixtures/state
1 2 4 6 8 10 12 14

MFCC 43.19 47.00 48.63 49.57 50.38 51.04 51.60 51.96
MMFCC 45.13 48.63 50.16 51.28 52.10 52.63 52.92 53.30

It is interesting to jointly optimize all the parameters through a closed-form/iterative solution,
such as using gradient descent search technique. This requires a closed form gradient expression dO

dp ,
which is not easy to evaluate due to the intricate relationship existing between the measure of O and
the parameter vector p =

[
α, {br}Rr=1

]
. Therefore, we use a simple increment-based linear search

technique and optimize the parameters one by one. We first optimize {br}Rr=1 and then α. For both
the cases of wide-band (sampling frequency 16 kHz) and narrow-band (sampling frequency 8 kHz)
speech, we use a 32 ms Hamming windowed speech frame with 10 ms frame shift. To evaluate the
MMFCCs, we use M = 26 and Q = 12. The power spectrum of each frame is computed using a
standard DFT based periodogram technique and the power spectrum is perturbed with i.i.d Gaussian
noise at different SNRs ranging from 120 to 130 dB. Using an increment-based linear search, we
evaluate the minimum value of the measure of eq. (3.1) and find that a polynomial order of R = 2 is
sufficient; the values of the polynomial coefficients are b1 = 0.1 and b2 = 0.9. Next we search for the
optimum α. For wide-band speech and narrow-band speech, we find the optimum values are α = 900
and α = 1100, respectively. We note that standard MFCCs use b1 = 1 and α = 700 irrespective
of the sampling frequency of input speech, choice of the window length and shift, and the feature
dimension (Q) and number of channels (M ) [1], [16].

3.4 Recognition Results

Table 3.2: Robust word recognition accuracy (in %) of 39-dimensional MFCC and MMFCC features
using Aurora 2

Feature Test Set a Test Set b Test Set c
set 1 set 2 set 3 set 4 set 1 set 2 set 3 set 4 set 1 set 2

Subway Babble Car Exhibition Restaurant Street Airport Train-Station Subway Street
SNR = 20 dB

MFCC 95.46 96.67 96.12 94.88 96.87 96.28 96.78 96.33 93.28 94.41
MMFCC 96.49 97.49 97.08 96.42 97.73 97.04 97.58 97.04 94.96 95.62

SNR = 10 dB
MFCC 85.05 86.49 83.39 81.70 87.69 83.89 87.50 84.45 74.88 76.00

MMFCC 87.07 88.51 87.00 85.25 87.81 86.06 87.77 87.84 79.49 78.36

Using the HTK toolkit, we performed phone and word recognition experiments to compare be-
tween MFCC and MMFCC features. The static 12-dimensional MFCC feature set was extracted
using the same setup as that used to extract the 12-dimensional MMFCC feature set. Using the stan-
dard approach, 39-dimensional feature vectors were evaluated. To the static features, we appended
the log energy of a speech frame and the velocity and acceleration of the features.
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Table 3.3: Robust phone recognition accuracy (in %) of 39-dimensional MFCC and MMFCC features
at 10 dB SNR

Feature Performance in Accuracy
Clean White Pink Babble Volvo

MFCC 68.11 37.03 40.51 46.25 59.71
MMFCC 68.34 43.65 46.67 48.94 61.91

We first compared the performance of 12-dimensional static features through a clean speech
phoneme recognition experiment. In this case, we used the TIMIT database where the speech is
sampled at 16 kHz. HTK training and testing were performed using the training set and the test set
of TIMIT respectively. The TIMIT transcriptions are based on 61 phones. Following convention, the
61 phones were folded onto 39 phones as described in [17]. To train the HMMs, we used three states
per phoneme and the performance is shown in Table 3.1 for a varying number of Gaussian mixtures
per state. We used Gaussian mixtures with diagonal covariance matrices. From Table 3.1, it can be
noted that MMFCCs outperform MFCCs for any number of mixtures. In case of the 39-dimensional
feature vectors, the performance improvement of using MMFCCs over MFCCs was always positive,
but small for clean speech phone recognition.

Next we considered the 39-dimensional feature vectors for robust word and phone recognition
experiments where clean speech training and noisy speech testing were performed. For the robust
recognition, we used cepstrum mean and variance normalization (CMVN) on the feature sets [18].
For the robust word recognition experiment, we used the Aurora 2 database where the speech is
sampled at 8 kHz and the sub-datasets of test set are corrupted by different noise types at varying
SNRs. The standard configuration of the HTK setup was used where HMMs were trained using 16
states per word and three Gaussian mixtures per state (diagonal covariance matrices). The robust
word recognition performance for 39-dimensional MFCCs and MMFCCs are shown in Table 3.2 at
the testing conditions of 20 dB and 10 dB SNRs. We note that MMFCCs perform better than MFCCs
for all the sub-datasets corrupted with different noises. In the case of clean speech word recognition,
the improvement of 39-dimensional MMFCCs over MFCCs was small like in the case of clean speech
phone recognition.

Finally, we consider a robust phone recognition experiment where the clean test speech database
of TIMIT was corrupted with additive noise. We used the following noise types from the NoiseX-
92 database: white, pink, babble and car (volvo) noise. The test speech database was corrupted by
adding each noise at 10 dB SNR. The HMMs consisted of three states per phoneme and 20 Gaussian
mixtures per state. The robust phone recognition performance for MFCCs and MMFCCs are shown
in Table 3.3 and we note that MMFCCs perform better than MFCCs for all noise types.

3.5 Conclusions

Our development of MMFCCs shows that the use of a sophisticated auditory model can lead to a
simple feature set that provides improved speech recognition performance for any environmental
condition. The success of our perceptual-distance preserving measure in optimizing features sug-
gests that the auditory system provides as output a signal representation that is ‘efficient’ for speech
recognition. As we developed the static MMFCCs using a static spectral auditory model, further in-
vestigation should consider the optimization of dynamic features using a spectro-temporal auditory
model, such as that presented in [11].
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Chapter 4

Auditory Model Based Modified MFCC
Features

S. Chatterjee and W.B. Kleijn (KTH)

4.1 Introduction

Assuming spectral content stationarity over a short segment of speech signal, the MFCCs can be re-
garded as static features which are computed frame-by-frame independently. To use spectro-temporal
properties of speech signal in an ASR system, it is a standard practice to use the temporal dynamic
features (such as velocity and acceleration), which are computed from the static MFCCs using a stan-
dard regression model. Even though these temporal features help to improve ASR performance, they
are ad hoc in nature and do not use the knowledge of spectro-temporal auditory properties. Noting
the fact that MFCCs are unable to use the up-to-date knowledge of auditory response across speech
frames, we develop a computationally simple feature that uses both spectral and temporal auditory
properties.

In our earlier work [11], we developed a perturbation based optimization framework to design a
set of optimum static features using a static spectral auditory model, such as the van de Par auditory
model (VAM) [10]. The set of optimum features was developed based on the generalization of existing
MFCCs and referred to as modified MFCCs (MMFCCs) in [11]. The MMFCCs were shown to use an
optimal warping of the frequency scale to design a set of triangular filters and an optimal logarithmic
polynomial function to compress the triangular filter bank energies (FBEs). An important point to
note that the MMFCCs are static features like MFCCs, and the velocity and acceleration features are
computed using a standard regression model like is commonly done with MFCCs.

In this paper, we propose to use the adaptive compression loops (ACLs) of the spectro-temporal au-
ditory model, namely the Dau auditory model (DAM) [8], to incorporate the auditory response across
speech frames. We develop a new set of static and adaptive compression based generalized MFCCs
(GMFCCs) to achieve further improvement in ASR performance, but without incurring higher com-
putational complexity. In our method, the FBEs are processed through the use of two compression
stages: static and adaptive. The static compression stage is memoryless across speech frames and
the adaptive compression stage introduces memory across speech frames. Using HMM based toolkit
(HTK), the new feature set is shown to perform better than the standard MFCCs and the recently
proposed MMFCCs.
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The remainder of this article is organized as follows. Section 4.2 provides a brief description of
the spectro-temporal auditory model, DAM. The proposed feature set is discussed in section 4.3. Sec-
tion 4.4 reports the improvement in ASR performance using HTK and the conclusions are presented
in section 4.5.

4.2 A Spectro-temporal Auditory Model

The Dau auditory model (DAM) is a spectro-temporal auditory model that quantifies and transforms
an incoming sound waveform into its ‘internal’ representation [8]. This model describes human per-
formance in the typical psycho-acoustical spectral and temporal masking experiments, e.g., predicting
the thresholds in backward, simultaneous, and forward-masking experiments.

A block diagram of DAM is shown in Fig. 4.1 [8], [5]. The input speech signal is decomposed into
the critical band signals using a gamma-tone filter bank. Then the output signal of each gamma-tone
filter is half-wave rectified and first-order low pass filtered (with a cut-off frequency of 1 kHz) for
envelope extraction. Therefore, at this processing stage, each frequency channel contains information
about the amplitude variation of the input signal within the channel. This envelope is then compressed
using an adaptive circuit consisting of five consecutive nonlinear adaptive compression loops (ACLs).
Each of these loops consists of a divider and a first order IIR low pass filter (LPF). The time constants
of LPFs of five loops are: τ1 = 5 ms, τ2 = 50 ms, τ3 = 129 ms, τ4 = 253 ms, and τ5 = 500 ms (the
corresponding cut-off frequencies are 32 Hz, 3.2 Hz, 1.23 Hz, 0.62 Hz, and 0.32 Hz, respectively).
For each adaptive loop, the input signal is divided by the output signal of the low pass filter. Sudden
transitions in a critical band envelope that are very fast compared to the time constants of the ACLs
are amplified linearly at the output due to slow changes in the outputs of low pass filters, whereas the
slowly changing portions of the envelope are compressed. Due to this transformation characteristic,
changes in the input signal like onsets and offsets are emphasized, whereas the steady state portions
are compressed. The ACLs introduce inherent memory in the model and help to take into account the
dynamic temporal structure of auditory response. The last processing step is a first order LPF with
cut-off frequency 8 Hz to optimize predictions of psycho-acoustical masking experiments. This LPF
acts as a modulation filter and attenuates fast envelope fluctuations of the signal in each frequency
channel.

In [5], the output of DAM was formatted and directly used as a feature in an ASR system. Recently,
the use of ACLs of DAM was investigated for deriving modulation based features in [12] where the
input speech signal was decomposed into critical bands and then the temporal envelopes of sub-band
signals were compressed using both static (logarithmic) and adaptive (ACLs) compressions. The
feature set of [12] is computationally intensive to evaluate and also, the feature vector is of high
dimension (the dimension is 476 using 17 critical bands and 28 modulation components per sub-
band). To design a computationally simple feature set with a moderate dimensionality, we investigate
the use of dynamic ACLs followed by LPF for compressing the FBEs of MMFCCs along-with the
static compression.

4.3 Static and Adaptive Compression Based Generalized MFCCs

Conventional speech processing techniques use short term speech analysis method where the input
speech signal is framed into short segments (typically 20-40 ms) with a reasonable frame shift (typi-
cally 10 ms). Most of the speech features, like MFCCs, are derived using the power spectra computed
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Figure 4.1: A spectro-temporal auditory model: DAM

from the short speech segments. The frame-by-frame based short term analysis along-with the power
spectrum computation can be regarded as a time-frequency analysis based method where each power
spectrum represents a sample vector of the underlying dynamic process in the production of speech at
a given time frame. On the other hand, the sophisticated auditory model, such as DAM, uses alternate
framework of frequency-time analysis where the time domain envelope of the output of a gamma-tone
filter (frequency channel) is processed. Therefore, it is interesting to see how the ACLs of DAM can
be used for the case of time-frequency analysis based feature design.

4.3.1 Feature Extraction

Using the short term speech analysis technique, we develop a new set of features where both static and
adaptive compressions are used. The new feature is referred to as generalized MFCCs (GMFCCs).
Let the N -dimensional vector xj = [xj,0 xj,1, · · · , xj,n, · · · , xj,N−1]T be the power spectrum of the
Hamming windowed j’th speech frame. The GMFCCs consist of two parts: a feature sub-vector
derived using a static compression and a feature sub-vector derived using an adaptive compression.
The following subsections describe these two parts to construct the full feature vector.

Static Part

For the j’th speech frame, the static part of GMFCCs is nothing but the MMFCCs developed in [11].
The steps of evaluating the static MMFCCs are as follows:

1. Computation of filter bank energies (FBEs): Calculation of the energy in each filter as

zj,m = xTj wm(α)

=
N−1∑
n=0

xj,n × wm,n(α) , 0 ≤ m ≤M − 1,
(4.1)

where wm(α) is the N -dimensional vector denoting the m’th triangular filter that satisfies∑N−1
n=0 wm,n(α) = 1. M is the total number of filters with a typical value of M = 26. The

shape of a triangular filter depends on the extent of frequency warping. The warped frequency
scale [13] is given as

fwarp = 2595× log10 (1 + (f/α)) , (4.2)
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where α is the warping factor and f is the frequency in Hz. An increase in α leads to a decrease
in the extent of warping. For the MMFCCs, α was a parameter to optimize to achieve better
recognition performance. Using a perturbation based optimization method and a spectral audi-
tory model (VAM), we had found in [11] that α = 1100 and 900, respectively for narrowband
and wideband speech cases with a frame length of 32 ms. In the case of MFCCs, α = 700 [13]
irrespective of input speech sampling frequency and frame length.

2. Static compression: Compression of the dynamic range of the energy in each channel as

sj,m = log10

[
R∑
r=1

br (zj,m)r
]
, 0 ≤ m ≤M − 1, (4.3)

where
∑R

r=1 br = 1 and br ≥ 0. For the MMFCCs [11], we optimized the polynomial
coefficients {br}Rr=1 and found thatR = 2 is sufficient with polynomial coefficients as b1 = 0.1
and b2 = 0.9. In the case of MFCCs, R = 1 and b1 = 1 [1]. We note that eq. (4.3) implies that
our results are scale dependent and require proper normalization.

3. De-correlation using the DCT to evaluate Q-dimensional static MMFCCs part:

cj,q =
M−1∑
m=0

sj,m × cos
[
q (m+ 0.5)

π

M

]
, 1≤q≤Q. (4.4)

A typical value of static feature vector dimension is Q = 12.

Therefore the static MMFCCs of j’th speech frame is cj = [cj,1 cj,2, · · · , cj,Q]T which is used as the
static part of GMFCCs.

Adaptive Part

We use ACLs to adaptively compress the FBEs across the speech frames. The FBEs are already
computed in the evaluation of static part. For the m’th triangular filter, the FBE signal zj,m can be
viewed as a time domain signal where the index j denotes the time variable. In case of a typical frame
shift of 10 ms, the zj,m signal is of the rate of 100 Hz. The time domain zj,m signal, 0≤m≤M − 1,
is passed through the ACLs to incorporate the auditory response across speech frames into the new
features. For the j’th frame, the steps to compute the adaptive part of GMFCCs are as follows:

1. Adaptive compression: For m’th triangular filter, compression of zj,m signal as

uj,m = acl(zκj,m), 0 ≤ m ≤M − 1, (4.5)

where acl(.) is the model function of ACLs as used in DAM and κ is introduced to make the
argument representation close to the envelope of the output of the corresponding gamma-tone
filter of DAM, albeit at a much lower rate of 100 Hz.

2. Modulation filtering: For the m’th triangular filter, the signal uj,m is passed through a first
order IIR low pass filter as used in DAM.

3. De-correlation using the DCT to evaluate Q-dimensional adaptive part of the feature vector:

vj,q =
M−1∑
m=0

uj,m × cos
[
q (m+ 0.5)

π

M

]
, 1≤q≤Q. (4.6)
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Table 4.1: Phone recognition accuracy (in %) using TIMIT
Feature Clean Noise Types; SNR=10 dB

White Pink Babble Volvo
MFCC 68.11 37.03 40.51 46.25 59.71

MMFCC 68.34 43.65 46.67 48.94 61.91
GMFCC 69.10 44.51 47.53 49.06 63.48

Like the static part, the DCT is applied across the triangular filters (frequency channels) and we
choose the dimension of adaptive part as Q = 12.

Therefore, the sub-vector vj = [vj,1 vj,2, · · · , vj,Q]T is used as the adaptive part of GMFCCs.
Through a series of ASR experiments, we choose κ = 0.5 and the modulation LPF filter cut-off
frequency as fc = 4 Hz. Also, for the ACLs, we keep all the time constants of the LPFs same as pre-
scribed in DAM, except the first LPF; for the first LPF, we choose τ1 = 20 ms (cut-off frequency of
7.95 Hz)1. Note that the acl(.) function has long time constants. It means that the current processing
depends on its long memory. We typically address the issue by starting analysis as far as possible in
the silence region preceeding the speech signal.

Full Feature Vector

Following the standard approach, we append the logarithmic energy of speech frame to the static
features, and then compute the velocity and acceleration of the features. Then, we append the adaptive
features to make the full feature vector of GMFCCs. For the typical static feature dimension of Q =
12 and adaptive feature dimensionQ = 12, the total dimension of GMFCCs is (3× (12 + 1)) + 12 =
51.

4.3.2 Examples of compression

The effects of static logarithmic polynomial compression and adaptive ACLs’ compression on FBEs
are illustrated in Fig. 4.2. A portion of 1 sec speech signal of 16 kHz sampling frequency is shown
in Fig. 4.2 (a). Using 32 ms frame length and 10 ms frame shift, the trajectory of FBEs for sixth
triangular filter over the frame indices is shown in Fig. 4.2 (b). Fig. 4.2 (c) shows the results of static
compression (memoryless) and adaptive compression (with memory) on FBEs in a normalized scale.
It is seen that the use of ACLs emphasizes the onsets and offsets of FBEs.

4.4 Recognition Results

Using HTK, we performed phone and word recognition experiments to compare the new GMFCCs
with the recently proposed MMFCC and standard MFCC features. For both experiments, we use a
32 ms Hamming windowed speech frame with 10 ms frame shift. To evaluate the features, the power
spectrum of each frame is computed using a standard DFT based periodogram technique.

1We note that the adaptive part of GMFCCs is a function of input FBEs and some adjustable design parameters. For ex-
ample, the design parameters can be κ, fc, and {τi}5

i=1. Like our earlier work on the optimization of adjustable parameters
of the static part [11], we are currently working on developing a framework where the adjustable parameters of the adaptive
part are optimized without any feedback from an ASR system.
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Figure 4.2: (a) A portion of 1 sec speech signal with 16 kHz sampling frequency. (b) The trajectory
of FBEs for sixth triangular filter. (c) Outputs of static and adaptive compressions in a
normalized scale.

For the cases of MFCCs and MMFCCs, 39-dimensional feature vectors were evaluated using the
standard approach. To the 12-dimensional static features, we appended the log energy of a speech
frame and the velocity and acceleration of the features to construct the 39-dimensional MFCC and
MMFCC features. The details of constructing 51-dimensional GMFCCs are already explained in
section 4.3.1 which is nothing but appending the 12-dimensional adaptive feature part derived from
ACLs with the 39-dimensional MMFCCs. For robust recognition, we used cepstrum mean and vari-
ance normalization (CMVN) on the 39-dimensional MFCCs and MMFCCs feature sets [15]. On the
other hand, the 39-dimensional MMFCCs part of GMFCCs was normalized using CMVN, but the
12-dimensional adaptive part is kept unnormalized. It was experimentally found that the normaliza-
tion of 12-dimensional adaptive part could not improve the recognition performances, even resulted
in a deterioration in some cases2.

We first considered phone recognition experiment using the TIMIT database where the speech is
sampled at 16 kHz. The TIMIT transcriptions are based on 61 phones. Following convention, the 61
phones were folded onto 39 phones as described in [14]. HTK training and testing were performed
using the training set and the test set of TIMIT respectively. To train the HMMs, we used three
states per phone and 20 Gaussian mixtures per state (with diagonal covariance matrices). For robust
phone recognition experiment, the clean test speech database of TIMIT was corrupted with additive

2It is a standard practice to normalize the feature vectors (like MFCCs) and their temporal dynamic parts (velocity and
acceleration) [15]. Most of the features are static in nature which are computed independently across the speech frames and
the dynamic parts are computed using a regression method which acts as a FIR filter with limited memory across the speech
frames. In this context, it is worth to investigate in future the issue of normalizing the adaptive part which is evaluated by
using the ACLs. Note that the ACLs has a considerable duration of memory across the speech frames.
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Table 4.2: Word (TIDIGITS) recognition accuracy (in %) using Aurora 2
Feature Test Set a Test Set b Test Set c Average

set 1 set 2 set 3 set 4 set 1 set 2 set 3 set 4 set 1 set 2 Performance
Subway Babble Car Exhibition Restaurant Street Airport Train-Station Subway Street

Clean Speech
MFCC 99.05 98.91 98.99 99.11 99.05 98.91 98.99 99.11 98.99 98.70 98.98

MMFCC 99.26 98.97 99.05 99.29 99.26 98.97 99.05 99.29 99.26 98.97 99.13
GMFCC 99.42 99.15 99.28 99.38 99.42 99.15 99.28 99.38 99.29 99.15 99.29

SNR = 20 dB
MFCC 95.46 96.67 96.12 94.88 96.87 96.28 96.78 96.33 93.28 94.41 95.70

MMFCC 96.59 97.49 97.08 96.42 97.73 97.04 97.58 97.04 94.96 95.62 96.75
GMFCC 97.67 98.34 97.55 97.47 98.16 98.00 98.27 98.03 96.32 96.89 97.67

SNR = 10 dB
MFCC 85.05 86.49 83.39 81.70 87.69 83.89 87.50 84.45 74.88 76.00 83.10

MMFCC 87.07 88.51 87.00 85.25 87.81 86.06 87.77 87.84 79.49 78.36 85.51
GMFCC 89.44 90.18 89.47 88.71 90.36 89.24 89.83 90.00 83.24 82.98 88.34

noise. We used the following noise types from the NoiseX-92 database: white, pink, babble and car
(volvo) noise. The test speech database was corrupted by adding each noise at 10 dB SNR. The phone
recognition performance for the features are shown in Table 4.1 and we note that GMFCCs perform
better than other features for clean as well as all noise types.

Next we performed word recognition experiment. In this case, we used the Aurora 2 database
where the speech is sampled at 8 kHz and the sub-datasets of test set are corrupted by different
noise types at varying SNRs. The standard configuration of the HTK setup was used where HMMs
were trained using 16 states per word and three Gaussian mixtures per state. The word recognition
performance for the features are shown in Table 4.2 at the testing conditions of clean and varying SNR
conditions. We note that GMFCCs perform better than MFCCs and MMFCCs for all the sub-datasets
in clean condition as well as noisy condition.

4.5 Conclusions

Our development of GMFCCs shows that the judicious use of sophisticated auditory models can lead
to a simple feature set that provides improved speech recognition performance for any environmental
condition. The use of ACLs is shown to provide complimentary information across the speech frames,
assisting ASR task. Further investigation should consider the incorporation of ACLs (with optimized
parameters) into several other time-frequency analysis based existing and new features.
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Chapter 5

Unsupervised learning of time-frequency
patches as a noise-robust representation
of speech

M.V. Segbroeck and H. Van hamme (KUL)

5.1 Introduction

It is remarkable how babies exposed to a language acquire it naturally without deliberate efforts of
teaching or learning. Before they can even speak, infants gather immense amounts of information
while listening to human voices in their surroundings. During this stage, their brains are being tuned
to a specific language. With only a surprisingly small amount of supervision, they succeed in learning
new words from a spoken language. Most words are not being explained to them, but are learned from
their significance in the world they live in. Although these streams of language data are large and
appear to be unsegmented, infants show the ability to distinguish the different units of the language
and to acquire how these units are linked in meaningful patterns, such as words.

Evidence exists [1] that the basic ability to acquire language is innate to the child, e.g. the basics
of human speech is built into babies’ brains. However, no specific structural property of language has
yet been proven to be innate and any infant seems equally capable of acquiring any language. Future
research still has to reveal what in human language is inborn into the infant’s brain and how they
succeed in learning the language through experience and exposure to a specific speech community.
Moreover, during their lifespan, humans are exposed to variations of what is being uttered. These
variations can be acoustical (such as different speaking styles, accents or speech distortions caused
by e.g. background noises) as well as on the level of interpretation in the context used. Nevertheless,
humans have the ability to continuously learn and adapt to these new situations.

Although current systems for automatic speech recognition (ASR) show to be successful in some
aspects, their performance can only be guaranteed if these systems are task-specifically programmed
and adjusted to the (predicted) acoustic challenges in which they will operate. This way, ASR systems
are unable to adapt to situations different from the one seen during training and are mostly unreliable
in real life situations.

Our work is motivated by the idea that engineering approaches have fallen short in the design of
ASR-systems and that inspiration has to come from human language learning and speech perception,
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an idea that was also postulated in other research work [2, 3]. This paper does not claim to explain
human language learning, neither does it have the intention to learn grammar, world knowledge or
pragmatics. However, we will show that a small vocabulary can be learned from scratch using a
bottom-up approach from a spectral analysis of speech signals. To this end, we intend to build a
system that automatically discovers the structure in the data, learns the patterns, links them with the
words of a vocabulary and finally recognizes them in unseen (noisy) speech data. Our work is related
to previously reported approaches of unsupervised language learning [4, 5, 6, 7, 8]. However, in
these approaches the units are phones, phonemes or sub-word items, while in this work we search
for recurring acoustic patterns in the time-frequency plane. Moreover, instead of acquiring the words
of the language by concatenating these units, we assume that words can be represented by a sparse
combination of these patterns and can be learned by discovering similarities in the activations of these
patterns.

A first step in language acquisition is to build representations of speech that are to a great extent
speaker independent and robust to noise. The first part of the paper explains how recurring acoustic
patterns are discovered in speech data without supervision, a problem that was also addressed in
a variety of other research work, see e.g. [9, 10, 11, 12]. The learning algorithm involved makes
use of non-negative matrix factorization (NMF) introduced by [13]. Thanks to the non-negativity
constraints, NMF decomposes a matrix in additive (not subtractive) components, resulting in a parts-
based representation of the data. NMF can therefore be seen as a learning algorithm that, when
applied to an appropriate feature space, finds the parts or objects that the training data are built of.

We will apply NMF to magnitude spectrograms in order to discover typical patterns in the time-
frequency plane (the parts) that can be combined additively to form spectrograms of speech. We
will consider spectral analyses over longer time windows than the centisecond scale usually consid-
ered in automatic speech recognition. Instead, the spectral patterns that are found have a duration
in the order of hundreds of milliseconds. Other researchers have also observed that speech features
spanning a longer time interval such as TRAPs [14] and its variants show improved robustness to
noise [15]. Other examples of long-span features are MRASTA filtering [16] or modulation spec-
tra [17, 18]. Some work also explicitly looks at time-frequency representations [12, 19, 20]. An
important difference with the current work is that our time-frequency representation results from a
parts-based representation that is learned without supervision. Other authors have used NMF for this
purpose. Our approach is most closely related to that of [21], who additionally imposes temporal
continuity. Convolutional NMF by [11] or the variant by [22] can also be used to find speech pat-
terns in the time-frequency plane. The discovered speech units seem to be best described as phones,
while our units are best described as “acoustic events”, such as bursts or formant trajectories. The
current work differs in other respects. Firstly, the patterns are discovered from a combination of
two complementary feature representations that either reveal timing or frequency structure and which
are derived from a time-frequency reassignment spectrogram. Subsequently, these spectral features
are segmented into two-dimensional overlapping time-slices which are stacked into column vectors.
Recurring time-frequency dependent patterns and bases are then found by applying NMF on these
vectors. By enforcing sparsity constraints in NMF, both timing and frequency information are mod-
eled by the obtained bases. Secondly, we use conventional NMF instead of convolutive NMF (cNMF).
Although the convolutive variant is appealing from a theoretical point of view, we have found from
analyses of parts based on cNMF that it is less resistant to noise. Also, the computational require-
ments are significantly higher for cNMF. Thirdly, we also add a pattern recognition step to show
speech recognition based on the discovered time-frequency patterns and demonstrate the robustness
to noise thus obtained.
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Figure 5.1: Structural representation of the proposed learning system.

The bases are acoustic patterns and they will also be referred to as time-frequency patches of
speech. From a neuroscience point of view, we could relate the process of discovering and acquiring
these patches with the learning and/or evolutionary process by which humans have developed an
auditory system that is exceedingly sensitive to speech sounds, though we do not claim that what
we present here is a validated model of the neurophysiological mechanism. By describing speech in
terms of these patches, we show how meaningful objects of the language such as words are linked
to patch activation patterns. These patterns appear to be unrelated to speaker-specific properties and
remain clearly visible when noise is added to the speech signals. Similarly to our auditory system, the
proposed model seems to be skilled in easily distinguishing speech from other environmental sounds,
without the use of noise models or noise reduction techniques.

In the second part of this paper, our aim is to let a computer system acquire the vocabulary of a
language by detecting, segmenting and learning the recurring activation patterns from the continuous
stream of speech. To this end, the above mentioned speech model will be exploited in a language
learning system. Similar to human speech recognition, the proposed system is able to acquire a lan-
guage on clean training speech using weak supervision without knowing the words until after the
acquisition process is completed. Key to the success of the system is the ability to discover recurring
patterns in the activations of the time-frequency patches in speech across time. Therefore, the speech
data is transformed into a high-dimensional vector representation, called “histograms of acoustic co-
occurrence” (HAC) which are computed by accumulating the co-occurrence counts of acoustic events
[23]. For this work, these events are quantized patch activation vectors. Subsequently, a learning al-
gorithm with weak supervision and which is again based on non-negative matrix factorization (NMF)
is proposed to discover recurring patterns through the use of HAC-features and link them with the
lexical items of a language. Hence, in contrast to hidden Markov model (HMM) based speech recog-
nition systems, no expert knowledge from audiology or phonology is incorporated in our system,
neither do we need any a-priori information about what the words are and how they are composed.
After the learning process, the system shows a remarkably good performance in detecting the words
of the language in both clean and noisy speech data. Hence, the learning system could form the basis
of an alternative framework for robust speech recognition.

Figure 5.1 shows the structure of the proposed system. In the learning stage, the NMF in the
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first layer is performed on the time-frequency representation to acquire time-frequency patches in
clean training speech. From these learned patches, the patch activations along the time axis are
then computed. In the second layer of the system, the patch activation vectors are quantized and
transformed to the HAC representation. On these HAC-features, another NMF is performed to learn
the HAC of the vocabulary words. During testing, the first NMF computes the patch activations
from the learned time-frequency patches and the second NMF computes the word activations from
the learned HAC-models to detect the words in the utterance. To assess the efficacy of the language
learning, a third layer was added to the system to detect the words from the word activations on
unseen speech data.

The outline of this chapter is as follows: section 5.2 explains how the time-frequency patches of
the first layer are learned from speech and how their activations along the time axis are computed.
In section 5.3, the concept of HAC-models is restated from which the HAC of the words are learned
in the second layer. Section 5.4 describes how this learning system can be applied to detect words
in speech utterances. A small vocabulary word discovery experiment was conducted on the Aurora2
digit database and experimental results are given in section 5.5. Finally, conclusions can be found in
section 5.6.

5.2 Layer 1: Time-frequency patch discovery

The production of human speech can be regarded as a process of combining a small number of spec-
tral patterns into many more different sequences. In this section, our goal is to find a set of patterns by
analyzing continuous speech recordings. Moreover, we would like that (i) these patterns accurately
represent a wide variety of acoustic speech events with well localized energy regions to model e.g.
formant tracks or energy bursts due to plosives, and in a later stage (ii) that they can be robustly
detected in unseen noisy speech. To this end, we transform the speech data into a time-frequency
reassignment spectrogram [24] which is subsequently smoothed in time and frequency domain. The
reassignment method (briefly restated in section 5.2.1) produces sharpened time and frequency esti-
mates for each spectral component from partial derivatives of the short-time phase spectrum. Instead
of locating the spectral density value at the geometrical center of the analysis window, as in traditional
short-time spectral analysis (e.g. STFT), the components are reassigned to the center of gravity of
the energy distribution. In a next step, we perform a non-negative matrix factorization (NMF) on a
data matrix containing consecutive spectral slices of this speech representation. By imposing non-
negativity constraints, NMF generates parts that are additive, unlike factorization techniques such as
PCA or SVD. Furthermore, NMF was chosen among other unsupervised learning method such as
hierarchical clustering, self-organizing maps or neural networks, since (i) it is a recent and promis-
ing technique that has shown it merits in other research questions; (ii) it provides a more stable,
intuitive and meaningful decomposition of non-negative data. By combining two complementary
time-frequency reassignment representations that either reveal timing or frequency structure, the dis-
covered speech patterns are acoustic patches of correlated energy that are well localized in both time
and frequency. The involved smoothing process allows to make these patches speaker-independent.
Besides the fact that the reassignment method produces highly detailed patterns, another motivation
to use RTFR is the impact it has on the higher level of word learning (section 5.3). This will be
illustrated in the experiments of section 5.5 by comparing the approach of RTFR with the approach
where the patches are derived from the short time Fourier transform (STFT) of the speech.
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5.2.1 Time-frequency reassignment

Time-frequency reassignment [24, 25, 26] allows perfect localization of (well-separated) impulses,
cosines and chirps, which constitute a reasonable model for speech. The corresponding reassigned
time-frequency representation (RTFR) has an increased sharpness of localization of the signal com-
ponents without sacrificing the frequency resolution.

In this paper, the reassignment principle is applied to the short time Fourier transform (STFT)
although it can be applied to different time-frequency representations each characterized by a different
analysis kernel. The STFT is often used as the basis for a time-frequency representation of speech
signals and is written as

STFT{x(t)} =
∫ +∞

−∞
x(u)h∗(t− u)e−jωudu (5.1)

where x(t) is the analyzed signal and h(t) is the analysis kernel function. The spectrogram is then
defined as the magnitude of the STFT and can also be expressed as a two-dimensional smoothing of
the Wigner-Ville distribution [24]

|STFT{x(t)}|2 =
1

2π

∫ ∫ +∞

−∞
Wx(u, ν)Wh(t− u, ω − ν)dudν (5.2)

with

Wx(t, f) =
∫ +∞

−∞
x(t+

1
τ

)x∗(t− 1
τ

)e−jωτdτ. (5.3)

From expression (5.2) it can be seen that the spectral density value of each time-frequency component
is the weighted sum of all the Wigner-Ville distribution values at the points (t − u, ω − ν) and thus
located at the geometrical center (t, ω) of the spectral analysis kernel function. The principle of the
reassignment method is then to reallocated the energy from the geometric center of the kernel function
to the center of gravity of the energy distribution. Therefore, the RTFR takes into account the phase of
the STFT, which is omitted in the classical spectrogram, but contains important temporal information
and this results in an improved localization of the energy in the time-frequency plane.

The reassignment points can be computed from the partial derivatives of the phase of the STFT
using the principle of stationary phase [27]. According to this principle, the maximal contribution to
the values of (5.2) occurs at the points where the phase is changing most slowly with respect to time
and frequency. If φ(t, ω) denotes the short-time phase spectrum, then these points are computed as
[25] (

t̂, ω̂
)

=
(
t− 1

2π
∂

∂ω
φ(t, ω), ω +

1
2π

∂

∂t
φ(t, ω)

)
(5.4)

which represents the group delay and instantaneous frequency of the windowed signal. It has been
shown in [24], that a more efficient implementation is possible using two additional STFTs rather
than using the derivatives of the phase. Let H(t, ω), D(t, ω) and T (t, ω) denote the STFT of the
signal obtained with the window of choice h(t), the derivative of h(t) and the time weighted th(t)
respectively and let <(X) and =(X) be the real and imaginary part of X , then the energy at (t, ω) is
reassigned to the center of gravity [24]:

(
t̂, ω̂
)

=
(
t−<

[
T (t, ω)
H(t, ω)

]
, ω + =

[
D(t, ω)
H(t, ω)

])
(5.5)
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Figure 5.2: STFT representation (top), RTFR (middle) and enhanced RTFR (bottom) for the word
“two” with focus on timing (left) and frequency (right) structure. In the bottom left panel,
vertical lines correspond to plosive burst and vocal fold bursts, while the enhanced RTFR
at the bottom right reveals the horizontal structure in the word, e.g. pitch and formant
contours.

where the time and frequency offsets are now computed from the ratios of the three STFTs.

To improve the visibility of acoustic events with short duration, we further enhance the localization
of the energy along the time axis. Therefore, we first search for zero-crossing points in the time offsets
of (5.5) and only those of them that are connected in the vertical direction (i.e. along the frequency
axis) are retained. Finally, the corresponding energy of the RTFR is assigned to the retained points.
When applied to speech with a sufficiently short analysis window, the enhanced RTFR clearly shows
the vertical (i.e. well-localized in time) lines that are related to the burst of plosives and affricatives
and energy releases by the vocal folds. By repeating the same procedure using the frequency offsets of
(5.5), the tracks of time-varying spectral features such as pitch and formants can be clearly localized
in frequency. We have found that formant structure is more apparent if we use shorter windows in the
RTFR.

The different steps of the enhanced reassignment procedure are shown figure 5.2 for the word
“two”. Firstly, a time-frequency representation is computed using a 128-point STFT. Subsequently,
a RTFR is produced by reallocating the spectral energy to the gravity centers according to (5.5).
The above mentioned enhancement steps are then applied to the RTFR to reveal either the timing or
the frequency structure. Experiments have shown that an optimal choice for the window length is
respectively 11 ms and 7 ms for male speakers and 6 ms and 4 ms for female speakers. The analysis
window is shifted by 1 ms. To prevent ambiguity in later formulations, we will use the word subframe
to denote a frame of the enhanced RTFR.
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5.2.2 Constructing the input matrix

In this section, we explain how the input matrix is created to which we will apply NMF for finding
acoustic time-frequency patterns in speech signals. These patterns are discovered on clean training
data. After pre-emphasizing the speech signals, we compute the enhanced RTFRs by the approach
described in 5.2.1. Both representations are used to exploit the spectral information that is more
apparent in either the vertical or the horizontal direction.

Two additional steps are also performed; a smoothing in time and frequency followed by a cube
root compression. If these steps are not be applied, speaker-dependent “bases” will be learned to
model the different pitch characteristics of training speakers. For reasons that become clear in the
next section, however, we want to prevent overfitting to the training set, e.g. we want the resulting
time-frequency patches not to be speaker dependent. Time smoothing is performed by reframing the
enhanced RTFR by a sliding triangular window with a length of 30 subframes and a frameshift of
10 subframes. After conversion of the frequency axis from the Hertz scale to the Mel scale followed
by a frequency smoothing using N = 128 triangular overlapping windows with a window size of 3
frequency bins using a weight of 1 for the center bin and 0.5 for the adjacent bins, we obtain the final
N -dimensional feature vectors. Subsequently, spectral changes are emphasized by adding first and
second order derivatives resulting in a static (S), a velocity (V ) and an acceleration (A) stream. For
these feature representations we use the word frames and these are shown in figure 5.3(a) for the same
uttered “two” as was used in figure 5.2. Note that the vertical lines corresponding to pitch bursts are
dissolved by the smoothing process, but the overall energy bursts and releases are retained. In figure
5.3(b) we also show the feature vectors derived by applying the STFT using the same time window
parameters as in the enhanced and smoothed RTFR. Note that, despite the smoothing process, formant
contours still remain clear in figure 5.3(a) and are not confused with pitch harmonics as is the case in
conventional Fourier transform. In section 5.5, we will compare the final accuracy results obtained
by the STFT features with those of the enhanced and smoothed RTFR features.

The feature representations corresponding to the timing and frequency structure contain comple-
mentary information and therefore both will be used in the discovery of the speech patches. Let us
now define the spectral vector at a certain frame t for a feature stream ρ (ρ = S, V or A) as vρ,t
and hρ,t, corresponding to the feature representation that reveals respectively the timing (vertical)
and frequency (horizontal) structure. Since NMF requires the data to be comprised of non-negative
values only, we split these vectors into a positive (v+ and h+) and a negative (v− and h−) stream by
zeroing out those values that are respectively < 0 and > 0 and taking absolute value of the negative
stream. Finally, we stack all these vectors in one real and non-negative column vector of dimension
4N :

cρ,t =


v+
ρ,t

|v−ρ,t|

h+
ρ,t

|h−ρ,t|

 (5.6)

For static features, v−ρ,t and h−ρ,t are all-zero vectors and their rows can be removed from (5.6). Note
that the above mentioned procedure to handle input data with mixed sign in NMF, can also be seen as
an alternative for the semi-NMF as was proposed by [28].

At each frame step t, we take k consecutive frames of cρ,t representing the spectro-temporal
structure of a short-time speech segment (i.e. of length 10k ms). These k frames are then reshaped
into a column vector Ck,ρ

t of dimension 4kN as schematically illustrated in figure 5.4. From these
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(a) (b)

Figure 5.3: (a) Static and velocity feature vectors derived from the enhanced RTFRs that reveal
timing (top) and frequency (bottom) structure for the word “two”. (b) The corresponding
STFT feature vectors using the same time window parameters.

column vectors, we construct a data matrix:

Ck =


Ck,S

1 . . . Ck,S
t . . . Ck,S

T

Ck,V
1 . . . Ck,V

t . . . Ck,V
T

Ck,A
1 . . . Ck,A

t . . . Ck,A
T

 (5.7)

with T the total number of frames used from the clean training set.

5.2.3 Matrix factorization for unsupervised learning

By applying non-negative matrix factorization to the matrix C (dropping index k for notational con-
venience), it is approximated by the product of factors B and A which are of size 4kN × P and
P × T :

C ≈ BA (5.8)

subject to the constraint that all matrices are non-negative and where the common dimension P of
B and A is much smaller than T and 4kN . Hence, equation (5.8) contains only additive linear
combinations such that the factorization leads to a parts-based representation, where P parts are
found in the columns of B and their activation across time are given by the corresponding rows of A.

In order to capture all feature streams in each basic vector, namely the timing and frequency
spectral structure and their corresponding positive and negative part, additional sparsity constraints
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Figure 5.4: Schematic representation of the construction of data matrix Ck,ρ from feature vectors
cρ,t which contain the feature representations that contain timing (vρ,t) and frequency
(hρ,t) structure.

must be enforced on A. Otherwise, NMF tends to model all these parts in multiple columns of
B. Therefore, we use sparse NMF [29] where the factorization is approximated by minimizing the
objective function:

G(C||BA, λ) = D(C||BA) + λ
∑
i,j

Aij (5.9)

The first term in (5.9) is a generalized version of the Kullback-Leibler divergence [13], defined as:

D(C||BA) =
∑
ij

(
Cij log

Cij

(BA)ij
−Cij + (BA)ij

)
(5.10)

The second term in equation (5.9) enforces sparsity on A by minimizing the L1-norm of its columns.
The trade off between reconstruction accuracy and sparseness is controlled by the parameter λ.

An algorithm for finding B and A given C based on multiplicative updates and with the additional
sparseness constraint can be found in [22]. To address scaling, the constraint that each column of B
sums to unity is imposed. Experiments have shown that with the settings used in this paper, a good
choice for λ is 1000.

5.2.4 Interpreting the time-frequency patches and their activation in time

The columns of matrix B correspond to spectral patches which describe the recurrent time-varying
spectra of speech. A selection of these patches are shown in figure 5.5 and 5.6. Just for visualization,
the rows of each feature stream were extracted from B and were reshaped back into N × k matrices,
then the positive and negative parts were recombined and the feature representations corresponding to
the timing and frequency structure were plotted onto each other by means of the max-operator. These
figures illustrate the patches found for the static and velocity features. The parameter k of section
5.2.2 is set to 10 (figure 5.5) and 20 (figure 5.6) corresponding to a patch length of resp. 100 and
200 ms. Most patches describe formant movements over the duration of about a phone. A smaller
set of time-frequency patches resemble wideband sounds and short-time energy bursts. Others are
modeling the beginning or ending of phones and phone-pair transitions. Since we have discovered
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Figure 5.5: A collection of the discovered time-frequency patches for static (top row) and velocity
features (bottom row) with a duration of 100 ms. Some patches show formant patterns,
wideband spectra and bursts; others model inter-phone or silence-phone transitions.

the acoustic patterns from recordings composed of a sufficiently large set of different speakers, the
patches are assumed to be speaker independent (will be confirmed in section 5.5).

To discover the patches that are present in test utterances of the Aurora2 database, the same proce-
dure as in training is used except that we compute A in equation (5.8) by holding B fixed to the one
obtained from training. As an example, figure 5.7 shows the time-frequency representations (a) and
their corresponding patch activation matrices (b) of three examples of the word “four” each uttered
by different male speakers in clean conditions (left column) and noisy conditions (right column). A
set of D = 100 time-frequency patches were discovered from the training set as described above
with a patch length of 100 ms. As can be seen from the clean speech examples in figure 5.7(b) (left
pane), only few patches are highly active (black) at a certain time and sparse patterns can be discov-
ered in the activation data. Despite variations in speaking style and speaker characteristics, the figure
also suggest that each word corresponds to similar, speaker-independent activation patterns and that
different words can be discriminated by comparing these patterns.

For the noisy speech examples, the babble noise type of the aurora2 database were added at dif-
ferent levels of signal-to-noise ratio (SNR) to the clean word utterances of figure 5.7(a), namely at
15, 10 and 5 dB SNR. In these noisy conditions, the activation patterns of the words remain similar
and are hardly distorted by the different noise types. The noise robustness properties of the proposed
speech model will be investigated in more detail later on (section 5.5).

Finally, figure 5.8 displays ten time-frequency patches for the word “four”. The selected patches
have a patch length of 100 ms and are those with the highest activation values in the utterance. The
patches are ordered chronologically, e.g. patch 1 is activated from frames 31 to 33, patch 10 from
frames 61 to 65.

5.2.5 Comparison with convolutive NMF

Alternatively, convolutive NMF (cNMF) could be used to obtain a parts-based representation of the
data [22]. Therefore, cNMF can be applied onto the sequence of feature vectors cρ,t of equation (5.6).
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Figure 5.6: A collection of the discovered time-frequency patches with a duration of 200 ms.

However, experiments show two major drawbacks in disfavor of cNMF. Firstly, the computational
requirements for cNMF are higher than those of the NMF procedure as described in section 5.2.3. The
training of the time-frequency patches with cNMF involves more computational time than NMF for
the same number of iteration steps. During testing, the processing time spent per iteration is similar for
both factorization techniques, but cNMF requires more iterations to convergence. Secondly, although
cNMF also produces speaker independent activation patterns, it turned out that these patterns are
less robust to additional noise sources. From figure 5.7(c) it can be seen that the activations patterns
of cNMF are more distorted in noisy speech than the patterns of NMF. These observations will be
confirmed in section 5.5 by discussing and comparing the final results.

5.3 Layer 2: Acquiring activation patterns of time-frequency patches

Our bottom-up approach for language learning is driven by the assumption that a particular language
is characterized by similarities in the activation patterns of time-frequency patches, as was illustrated
by figure 5.7. If we assume that the patches correspond with (groups of) auditory neurons, each
sensitive to a specific time-frequency pattern, then a “snapshot” of their firing rate at a certain time is
represented by a column of A. Hence, if recurring acoustic patterns in speech correspond to recurring
neural firing patterns, one can hypothesize that the meaningful objects in a language (e.g. words) are
characterized by similar activation patterns of time-frequency patches.

In this section, a learning algorithm is proposed that is able to acquire the objects of a language.
The objects that are found are words, but could also be phone-like units in a different setting. The
algorithm will discover the latent structures in patch activations by using “histograms of acoustic co-
occurrence” (HAC) which are described by [30] and will be restated next. HAC-features can represent
a given segment of speech in a unique high-dimensional vector without requiring a segmentation of
the segment, time warping or a constraint of its duration. Moreover, each word in the utterance
contributes additively to the HAC of the utterance which motivates to apply the HAC representation
in association with NMF. Word identities are being provided to the algorithm to bring the discovered
activation patterns in relation with the words in the vocabulary.
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(a)

(b)

(c)

Figure 5.7: (a) Time-frequency representations of the word “four” uttered by three different speak-
ers in clean conditions (left) and noisy conditions (right) and their corresponding patch
activation matrix A for patches derived from the procedure with (b) NMF (section 5.2.3)
and (c) cNMF (section 5.2.5).

5.3.1 Histograms of Acoustic Co-occurrences

HAC-models can describe speech by the co-occurrence statistics of acoustic events. In this work,
these models are used to recover recurring patterns in patch activation events which are here the
occurrence of quantized vectors in the activation matrix A.

The activation data of the time-frequency patches will be characterized by its similarity to ex-
amples. Therefore, the columns of the activation matrix A are clustered into Σ centroids using the
K-means algorithm. Given the Euclidean distance metric used in clustering, each centroid can be
represented by a Gaussian with spherical covariance. As a consequence, the posterior probabilities
Pi,n of all centroids n characterize any frame i of A in terms of its similarity to each of the centroids.
For each frame i, the posterior probabilities satisfy:

Σ∑
n=1

Pi,n = 1 (5.11)
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Figure 5.8: Time-frequency representation of the word “four” (top) and the time-frequency patches
(bottom) with highest activation values in the utterance.

A special case is obtained in a “winner takes all” setting, where all posteriors are zero except for the
centroid closest to the observation, which is assigned the value 1. This setting is related to a vector
quantization (VQ) approach where the centroids are the codebook entries labeled from 1 to Σ. After
decoding, each frame of the activation matrix A is then replaced by the best matching centroid of the
codebook, which allows to reduce the activation matrix to a single row vector of VQ-labels.

The HAC-representation is then the number of times all VQ-label pairs (m,n) ∈ Σ × Σ are
observed τ frames apart. In other words, a histogram of lag-τ co-occurrences is constructed where
each co-occurrence signifies that the input of activation frames is encoded into a VQ-label m at time
i, while encoded into VQ-label n at time i + τ . For a given utterance u, the lag-τ co-occurrence is
weighted with the (approximated) probability of the event

[Vτ
u]mn =

Iu−τ∑
i=1

Pi,mPi+τ,n with m,n = 1 . . .Σ (5.12)

where Iu is the number of frames in the utterance. Also note that [Vτ
u]mn 6= [Vτ

u]nm, such that these
co-occurrences are directed.

By stacking all (m,n)-combinations, each utterance can be represented by a single column vector
Vτ
u where the elements express the sum of all Σ2 possible lag-τ co-occurrences. We will refer to this

vector as a HAC (histogram of acoustic co-occurrence).
This procedure can be performed for different τ -values and for a given set of time-frequency

patches with a patch length of k frames. For a set of U utterances, the data matrix for a choice of k
and τ is then formed by

Vk,τ =
[

Vk,τ
1 . . . Vk,τ

u . . . Vk,τ
U .

]
(5.13)

Note that thanks to the vector quantization approach, matrix Vk,τ has a high sparsity. Furthermore,
all its entries are non-negative such that NMF-methods can be applied.
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5.3.2 Semi-supervised learning with NMF

Suppose that the utterances are composed of R recurring acoustic events such as words, each con-
structed from the set of time-frequency patches. Since (5.13) is a sum over time of activations, the
words will contribute additively to the corresponding column of Vk,τ . As each word is characterized
by a HAC, the HAC of each utterance will be a (integer) linear combination of these histograms.

If the HAC of the words are placed in separate columns of a matrix W, and if the corresponding
rows of H would contain the presence of each word in each utterance, one would have (leaving out
indices k and τ ):

V ≈WH (5.14)

Given their interpretation, all entries of W and H are constrained to be positive or zero. Because
of these constraints and given the fact that equation (5.14) will not hold exactly since the observed
symbols are subject to variability and uncertainty, W and H are estimated by NMF. Factorization of
V is performed using the approach of section 5.2.3 without enforcing sparsity constraints, e.g. we set
λ to 0.

Once W is estimated on a training set, new utterances can be analyzed with factorization (5.14) by
estimating H. The degree to which each discovered activation pattern is present in each new utterance
is then found by examining the columns of H.

In this work, the words are unknown and NMF is used to separate them out from the utterances.
However, since utterances can be seen as a sequence of words, but also as, for instance, a sequence of
phones, constraints have to be imposed on (5.14) by exploiting grounding information. If it is known
which words occur in each utterance, this information can be exploited to associate a word identity
to each column of W. Therefore, the L × U grounding matrix G is formed, which holds in its l-th
row and u-th column the number of times the l-th word occurs in the u-th utterance. Here, L is the
number of word identities and U is the number of training utterances. Subsequently, we compute:[

G

V

]
=

[
Wg

Wv

]
H (5.15)

which expresses that word identities need to be explained jointly with the acoustic data by common
model activations H. Given the properties of multiplicative updates [13], grounding forces the NMF
decomposition to associate word models in Wv also to the utterances containing those words. With-
out augmenting V with the grounding matrix, NMF tends to spend columns of Wv preferably on
the more frequent acoustic patterns since this has the most impact on minimizing the modeling error.
Experiments have shown that the common dimension R is better overestimated, hence R ≥ L. This
allows to model acoustic events that have no relevance to grounding such as silence or filler words.

5.3.3 Improving learning by modeling multiple streams

As explained in section 5.3.1, the data matrix Vk,τ contains lag-τ co-occurrences in the activation
data of time-frequency patches with a duration of k frames. For each individual configuration (k, τ),
patterns can be learned using the approach of section 5.3.2 by connecting acoustic information and
by assigning a meaning to these patterns. We may assume that the performance of the learning
algorithm will increase if multiple configurations are combined in the input matrix. This idea has al-
ready been exploited by jointly capturing static, velocity and acceleration feature information in each
time-frequency patch. On the activation level, the data matrix of (5.14) can be further extended by
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incorporating different sets of patches and including co-occurrence data at different time lags. By al-
lowing the use of patches with different durations, we could also compensate for the time differences
of phones. For instance, one can expect that plosives cause more neural activation at neurons mod-
eling time-frequency patches with a duration around 50 ms, while neurons corresponding to patches
of 100 ms better represent diphthongs and vowels. Units with even longer duration (e.g. 200 ms) can
be used to model intra- and inter-phoneme transitions. Therefore P sets of time-frequency patches
are included in the model, each exploiting Q values of τ , augmented with grounding information that
relates to the spoken words:

G

Vk1,θ

...
VkP ,θ

 =

[
Wg

Wv

]
H with Vki,θ =

 Vki,τ1

...
Vki,τQ

 . (5.16)

For these joint streams, the generative parts-based model still holds: the joint stream co-
occurrences of utterances can be written as an additive combination of parts. As we will show in the
experiments of section 5.5, it is indeed advantageous to exploit multiple combination of k and τ in
the HAC-model.

5.4 Layer 3: Detecting words in activation patterns

After the semi-supervised training procedure, Wg and Wv are known. Recognition on unseen test
utterances (from which grounding information G is unknown), is achieved by first computing the
histograms of co-occurrence V and then estimating the matrix factor Ĥ in V ≈ WvĤ by holding
Wv fixed. This matrix Ĥ reveals to which extent the internal representations of the trained words are
present in the new test utterance. By estimating the grounding information as:

Ĝ = WgĤ (5.17)

we obtain estimates for the presence of the words in the test utterances. Hence, for a word that is
present, the corresponding element of Ĝ tends to 1 and to 0 if it is absent. This way, a word detection
system can be build from the content of matrix Ĝ by comparing Ĝ with a threshold ξ. Two types
of errors are involved in the system: missed detections (Ĝij < ξ while utterance j contains word i)
and false alarms (Ĝij ≥ ξ while utterance j does not contain word i). The trade-off of both error
types can be visualized by means of a Detection Error Trade-off (DET) curve [31]. In figure 5.9, the
DET-curve is shown for the word detection task where the model is trained on lag-10 co-occurrence
counts (τ=10) computed on a set of time-frequency patches with a length of 100 ms (k=10). The
performance of the system in clean speech conditions is compared with a noisy test case where the
speech is distorted by babble noise at 10 dB SNR. The estimated grounding matrix Ĝ of five different
utterances for both test cases are shown in figure 5.10 where high values (black) indicate that the
corresponding words have a high probability to be present in the utterance.

In the experimental evaluation of section 5.5, we will not apply this “per word detection” paradigm,
which is relevant for tasks such as keyword spotting. Instead we will measure correct word recogni-
tion per utterance. Assuming that the numberDu of different digits occurring in the u-th test utterance
is given, the Du candidates with highest activation according to equation (5.17) are selected. Notice
that the recognition result is unordered, a problem that is addressed in [30] by a sliding window de-
coder that estimates at which time each word occurs in the utterance. Word error rate is thus defined
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Figure 5.9: DET-curves of the word detection system for clean and noisy speech (babble noise at 10
db SNR).

as the sum of the number of incorrect digits that end up in the top Du, divided by the sum of Du over
the complete test set.

5.5 Experiments

The speech data are taken from Aurora2, a small vocabulary, speaker independent database for con-
nected digit recognition as defined by [32]. All utterances are derived from the TI-Digits database
that contains recordings of male and female US-American adults, downsampled to 8 kHz sampling
frequency. The database contains isolated digits and sequences of up to seven digits. The Aurora2
clean-condition training set consists of 8440 utterances that are used for the discovering the time-
frequency patches and their activation patterns from which the HAC-models are derived. The test
experiments are conducted on test set A consisting of 4004 utterances from the TI-Digits test data,
split into 4 subsets of 1001 utterances each and to which 4 different noises are added at different
SNR-levels: noise recorded in a subway (N1), babble noise (N2), car noise (N3) and noise recorded
in an exhibition hall (N4).

5.5.1 Reference experiment

Baseline recognition results are produced by a conventional HMM-based recognition system using
the complex back-end configuration as defined by the ETSI Aurora group [33]. Whole word digit
models were trained on the clean speech training database using the HTK software package version
2.2 from Entropic [34]. The digit models have 16 emitting states with 20 Gaussians per state. The
optional inter-word silence is modeled by 1 or 3 states with 36 Gaussians per state, while leading and
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Figure 5.10: Estimated grounding matrix Ĝ for (a) clean and (b) noisy speech (babble noise at 10 db
SNR) of the utterances “four six two five” (u1), “zero seven nine six two” (u2), “six”
(u3), “two five two” (u4) and “eight” (u5).

trailing silence have 3 states. The total number of Gaussians is 3628. Feature were extracted by the
Aurora WI007 front-end [35], a cepstral analysis scheme where 12 Mel-scaled cepstral coefficients
and c0 (no log-energy) are determined for a speech frame of 25 ms length using a frame shift of 10
ms. These features are combined with their dynamic coefficients to yield in 39-dimensional feature
vectors for recognition, as explained in [36].

Here, we assume that for each test utterance u the number Nu of digit sequences is known. This
information is then used in the language model by forcing the decoder to recognize exactly Nu digits.
From the recognition result, only the different digits are retained to obtain an unordered string result
of at most Nu digits. Similarly as in section 5.4, a detection error is accounted for each digit from the
set of Du different and correct digits in the utterance that is not present in the unordered recognition
result. The error rate of this HMM-based word detection system is shown in table 5.1. Results were
averaged over the four noise types of Aurora2.

clean 15dB 10dB 5dB
0.16 2.98 11.92 34.88

Table 5.1: Unordered word error rate of an HMM-based word detection system on the Aurora2
database averaged over the four noise types.

5.5.2 Training procedure

In the experiments, multiple sets of time-frequency patches, modeling acoustic patterns of different
durations, were trained on the clean training set of Aurora2. The patches are learned from a data
matrix constructed from static, velocity and acceleration features as explained in section 5.2, while
using the following values for k: 5, 10, 15, 20. For each set, the number of patches P to be discovered
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k τ

5 10 15 20 5 10 15 20 clean 15dB 10dB 5dB
× × 2.10 4.29 7.07 12.54
× × 1.98 3.74 6.37 11.65
× × 2.22 4.02 6.78 11.58
× × 2.67 4.90 7.33 12.64
× × × 2.17 3.80 5.79 10.34
× × × × 1.89 3.58 5.86 10.83
× × × × 1.96 3.74 5.82 10.86
× × × × × 1.93 3.56 5.64 10.67
× × × × × × 1.94 3.41 5.39 9.35

× × × × × × × 1.83 3.26 5.24 9.35
× × × × × × × 2.01 3.36 5.12 8.93

× × × × × × × × 1.87 3.08 4.94 8.67

Table 5.2: Unordered word error rate results on the Aurora2 database averaged over the four noise
types for the proposed recognition system using a combination of different sets of time-
frequency patches and different lag-τ co-occurrence counts. The time-frequency patches
are derived from the enhanced and smoothed RTFR features using the NMF procedure
described in section 5.2.3. The ×-symbol indicates which configurations (k, τ) are inte-
grated in the input matrix of equation (5.16).

is 100. Experiments, not reported in this paper, have shown that this number suffices to model the
different spectral patterns of the small vocabulary task of Aurora2. The obtained patches are modelled
by the columns of the four matrices Bk which are stored for the recognition task on test data.

For each set of time-frequency patches, the patch activation vectors in Ak are quantized using
a codebook of 250 entries, resulting in 4 sequences of VQ-labels. Subsequently, the VQ-label co-
occurrence histograms are computed for all utterances using different lag-τ values: 5, 10, 15, 20.
The VQ histogram counts are divided by a fixed constant (100) such that the acoustic and grounding
information have roughly the same weight in the data matrix Vk,τ . Experiments have shown that
the value of this constant is not critical: it can be changed over several orders of magnitude without
significant impact. To acquire all eleven words of Aurora2, namely the digits “one” to “nine”, “zero”
and “oh”, the training procedure as described in section 5.3 was performed with R = 12 using the
utterances of the clean training set. After factorization (5.15), Wg and Wv are stored for recognition.

5.5.3 Evaluating the results

To discover the digits that are present in the test utterances, the same procedure as in training is used
except that we compute the patch activation matrix A in (5.8) by holding B fixed to the one obtained
from training. Similarly, the word activation matrix H is found by holding W fixed in (5.14) to the
one estimated from the training set.

Table 5.2 shows the unordered word error rate on the Aurora2 test set averaged over the four noise
types, using different stream configurations (k, τ). For clean speech, the self-learning algorithm per-
forms worse than the HMM-based system that makes use of expert speech knowledge that arises
from audiology and linguistics. However, our system performs comparably to the HMM-based rec-
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k τ

5 10 15 20 5 10 15 20 clean 15dB 10dB 5dB
× × × × × × 2.06 4.27 6.48 11.62

× × × × × × × 1.81 4.23 6.78 12.08
× × × × × × × 2.06 4.20 6.40 11.06

× × × × × × × × 1.91 4.12 6.43 11.56

Table 5.3: Unordered word error rate results for Aurora2 averaged over the four noise types using
time-frequency patches derived from STFT features by the NMF procedure.

k τ

5 10 15 20 5 10 15 20 clean 15dB 10dB 5dB
× × × × × × 3.45 6.57 10.23 18.16

× × × × × × × 2.76 5.83 9.48 16.36
× × × × × × × 3.18 5.90 9.44 16.49

× × × × × × × × 2.85 5.50 9.08 15.78

Table 5.4: Unordered word error rate results for Aurora2 averaged over the four noise types using
time-frequency patches derived from the enhanced and smoothed RTFR features by the
cNMF procedure discussed in section 5.2.5.

ognizer at 15 dB SNR and has a remarkably higher accuracy for noisy speech at lower SNRs without
using any noise compensation techniques. From the table 5.2, we can also observe that the robust-
ness can be increased by exploiting more knowledge sources. The reason for this noise robustness is
three-fold: (i) thanks to the parts-based representation of speech, the system easily detects, even in
noisy conditions, which time-frequency patches are active; (ii) these time-frequency patches provide
static and dynamic spectral information over large time windows; (iii) multi-window time-frequency
representations can be exploited by the joint modeling of different streams.

For comparison, we added the results of the STFT features with the same time windows parameters
for the timing and frequency structure (see table 5.3) and those where cNMF are performed onto the
feature vectors of equation (5.6) (see table 5.4). As can be seen from both tables, the word error rates
are worse than those shown in table 5.2. This indicates respectively that the enhanced and smoothed
RTFR features are more robust than STFT features and that the activation patterns acquired by the
proposed approach using NMF to discover time-frequency patches deliver a more robust input stream
to the word detection system than those obtained by the cNMF approach.

5.6 Conclusions

In this paper, we proposed a bottom-up approach for learning words of a language. An unsupervised
technique was presented to discover a set of spectral patches that can describe speech. We exploited
the use of two complementary feature representations derived from a reassigned time-frequency spec-
trogram to obtain a representation that can cope with acoustic events with short and long durations.
The non-negative matrix factorization (NMF) algorithm using sparsity constraints was applied to dis-
cover latent recurring patterns in static and dynamic features. The obtained basis vectors correspond
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to phone-sized spectral patterns which we referred to as time-frequency patches. Experiments on the
Aurora2 database revealed that these patches are activated in speaker-independent patterns which are
related to the words of a language.

Next, a learning algorithm was built that automatically discovers and acquires the recurring pat-
terns in the activation data by applying NMF on the co-occurrence counts of activation events. The
obtained patterns were associated with the words of a language and finally the system was able to
detect the words in unseen (noisy) speech data.

Experimental evidence was given for the noise robustness of the proposed word detection system,
based on the Aurora2 digit recognition task. Although a conventional HMM-based approach using
cepstral features obtained better results on clean speech data, the proposed learning algorithm showed
a superior performance for speech that is distorted by the noise down to 5 dB SNR. The NMF learning
algorithm was shown to be sufficiently versatile to apply it at both levels of speech representations
for discovering structure in the data. NMF has less parameters to be tuned in comparison to HMM-
based systems. The most important parameters are the number of time-frequency patches P , the
sparsity parameter λ in the NMF of the first layer and the number of VQ-labels Σ in the second
layer. Moreover, experiments not reported here have shown that for the small vocabulary task as was
considered in this paper, the performance of the system is not very sensitive to these parameters.

Inspired by research on the auditory cortex of mammals, researchers have suggested that ASR
systems should trigger on the presence of spectro-temporal patches. Such biologically inspired sys-
tems might exhibit properties of human audition such as robustness to noise. In this paper, we have
shown that such an auditory representation with good robustness can be obtained through unsuper-
vised learning (the first layer). We have also shown how the activation patterns can be exploited to
build a speech recognizer. Further work involves extending the word detection system to a speech
recognition system that also provides information related to the order in which the words occur in the
test utterances. Therefore, the HAC-models in the second layer can be extended by moving a sliding
window over the utterance to detect the time of occurrence of the different words in the utterance
and hence the word order. In our current implementation, the noise has been left uncompensated
and we would like to investigate to which extent the performance of the recognition system can be
further improved by exploiting noise reduction techniques. Though, the layered architecture offers
scalability towards vocabularies in the sense that the patch set is reusable across words, more research
is required to reveal how well the proposed system is suited for large vocabulary continuous speech
recognition. At his point, the presented three-layered architecture is not capable to deal with these
vocabularies because of the large data requirements per word. However, the scalability of the system
can be increased by adding more layers in cascade to model the words as a combination of subword
patches instead of learning all the words from scratch.

To conclude, we believe that the presented system is an ideal platform for future research as in its
baseline implementation it already yields competitive results and could open new avenues of research
on automatic speech recognition.
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