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Abstract and embedding in ACORNS 

We describe a bottom-up, activation-based paradigm for continuous speech recognition. Speech is 
represented by co-occurrence statistics of acoustic events over an analysis window of variable length, 
leading to a vector representation of high but fixed dimension called “Histogram of Acoustic Co-
occurrence” (HAC). During training, recurring acoustic patterns are discovered and associated to words 
through non-negative matrix factorization (NMF). During testing, word activations are computed from the 
HAC-representation and their time of occurrence is estimated. Hence, words in a continuous utterance can 
be detected, located and ordered. The plausibility of word activations is verified in multiple ways. First, the 
activations must exceed a threshold. Second, the locations (in time) of the detected words needs to be 
consistent over time. Third, we verify if the order in which words are activated corresponds to the expected 
activation patterns as learned through previous exposure to the language, a mechanism which is 
implemented as a second NMF-based learning and detection layer. 

With this deliverable, we show that it is possible to acquire a vocabulary of 51 words using under 
supervision consisting of unordered utterance-level tags that simulate the multimodal input. Refer to D5.4.2 
for experiments with weaker forms of supervision. Verification of detected words against knowledge 
sources such as a language model is important for scaling the vocabulary further towards the final goals of 
the project. The way in which we achieve this – through a second NMF layer – also proves that NMF-based 
learning can be cascaded, a technique that we want to apply at the lower, acoustic, level of speech 
processing. By introducing a layer below the current ones, reusability of acoustic representations and 
scalability towards a larger vocabulary size will be shown in the final year of ACORNS. 

 
Index Terms: speech recognition, information discovery, non-negative matrix factorisation, co-occurrence 
statistics 

1. Introduction 
Hidden Markov Models (HMMs) have dominated automatic speech recognition (ASR) research for many 
decades. They have shown to be fairly adequate models for speech, but recent research has also uncovered 
some of their weaknesses such as poor robustness to pronunciation variation, co-articulation, assimilation 
and noise. Psycholinguistic studies on human speech recognition (HSR) 0 have also revealed differences 
with the way current ASR systems work. To deal with the intrinsic variation that is found in speech, ASR 
systems are based on statistical models that are learned from examples. However, the model structure is still 
hardwired and engineered: sentences are built of words, which are built of phonemes, which map to different 
allophones, which have statistical models. One of the goals of the ACORNS project 0 is to discover the 
structure in speech from data, much like a baby does not need linguistic theories to understand language. 
Although still outperformed by HMMs, this contribution presents encouraging results along this approach. 

The HAC-model (histogram of acoustic co-occurrence) with its associated learning algorithm based on 
non-negative matrix factorisation (NMF) 0 is able to discover recurring acoustic patterns in speech without 
supervision 0 or with weak supervision 0. In the former case, the algorithm will identify which acoustic 
patterns reappear and therewith find the elements or latent structures that speech is composed of, and this 
without any guidance. With weak supervision, the utterances are accompanied by unordered information that 
relates to the spoken words, much like a baby receives, e.g., visual and tactile information that relates to the 
audio. This is a weaker form of supervision than is used in the training of HMM-based ASR systems, where 
utterances are described hierarchically in terms of word sequences down to HMM state sequences. 

Once the HAC-models are trained, they can be used to decompose utterances in terms of the discovered 
latent structures, which will be words in this paper, but could also be phone-like units. This is a bottom-up 
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process: acoustic inputs activate words that compete, much like in the Shortlist model 0 of HSR. (There are 
differences with this model such as the absence of a pre-lexical level and “possible word constraints”). In 
this paper, HAC-models are extended to not only detect which words an utterance is composed of, but also 
in which order the words occur. 

This paper is organized as follows: section 2 recaptures the ideas behind HAC-models, showing how 
words can be detected. In section 3, it is explained how the detected words can be ordered in time. Section 4 
expands on the idea to build an activation-driven decoder. In section 5, the HAC-model is discussed and 
related to human speech recognition.  

2. HAC-models 

2.1. Histograms of acoustic co-occurrence 
In the present bottom-up approach, recognition is driven by the co-occurrence of acoustic events. In general, 
these events are the occurrence of specific patterns in the time-frequency plane, ranging from patterns with a 
local time and frequency extent, such as the patches described in 0, to fullband patterns that span several 
100ms like phones or even syllable-sized units. Specifically, in previous work 0, phones as well as vector-
quantised (VQ) fullband spectra were used. The acoustic events are represented by discrete symbols from a 
set Σ, such as phone identities or VQ labels, their time of occurrence and an estimate of their posterior 
probability. In 0, acoustic events are represented as the edges in a directed acyclic graph, because it is then 
easy to define the distance or lag τ between edges α and β as the minimal number of vertices that need to be 
visited to travel from α to β, as well as the joint weight pαβ of the edge pair (α,β) as the sum of the posterior 
probabilities of partial paths starting with edge α and ending with edge β. An alternative lag measure could 
simply be the difference in time of occurrence of the acoustic events, which would eliminate the need to 
represent them in a lattice. However, for notational convenience, the lattice will be maintained below. 

Next, all pairs of acoustic events (A,B) ∈ Σ×Σ are considered and the weight of all edge pairs with lag τ 
and carrying symbols A and B respectively is accumulated over the graph. Mathematically, the n-th 
utterance is characterized by 

 ��
(�,

�
) i

in p
∈Θ

= ∑V  (1) 

where Θi is the set of edge pairs with lag τ and labels A and B respectively. The index i is a one-to-one 
mapping of all combinations (A,B) to the integers 1 … |Σ|2. In other words, a co-occurrence histogram of all 
possible acoustic event pairs is constructed. This results in a shift-invariant representation of fixed 
dimension (the square of the number of different symbols), independent of the length of the analysis 
window, which will be referred to as HAC (histogram of acoustic co-occurrence) or simply histogram.  

In this paper, the acoustic events will be quantised fullband spectra computed at regular time instants or 
frames. The lattice of acoustic events then degenerates to a chain where each arc carries a VQ label with 
unity posterior probability. The HAC-representation is then the number of times all VQ symbol label pairs 
are observed τ frames apart. 

For a given segment of speech, a unique high-dimensional HAC representation can be computed. Both 
the actual acoustic events occurring in the utterance as well as their order affect the HAC-representation. 
Conversely, a HAC representation does however not map to a unique symbol sequence or symbol lattice. 
For example, the histogram of the symbol sequence ABCDA and ABCDABCDA differ only by a scaling 
factor. The histograms of ABCDA and its (almost) cyclic permutation BCDAB are identical. In general, 
order is weakly represented in the HAC-model, much like a bigram language model only weakly represents 
grammar. Taking this analogy further, histograms over more than two symbols could alleviate this weakness 
at the cost of complexity. It will however be shown below that even with histograms of co-occurrence pairs, 
encouraging speech recognition results can be obtained. HAC-models are different from convolutional NMF 
0, which describes traces in the acoustic space by an impulse response, a very rigid model for word-sized 
units. 
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2.2. Matrix factorisation for pattern discovery and recognition 
If utterances are composed of one or more out of R recurring acoustic patterns such as words, the histograms 
have a linearity property that is essential in the proposed method: each such acoustic pattern is characterized 
by a HAC and hence the HAC of each utterance will be a (integer) linear combination of histograms. Define 
Θir as the subset of Θi that originates from the r-th acoustic pattern. Then: 

 ��
1 (�,�) 1ir

R R

in ir rn
r r

p
= ∈Θ =

≈ =∑ ∑ ∑V W H  

where Hrn is the number of times pattern r occurs in utterance n and column Wir is the histogram of acoustic 
co-occurrences for the r-th pattern. In matrix form: 

 V � W H (2) 

Given their interpretation, all entries of W and H are constrained to be positive or zero. Because of these 
constraints, equation (2) is known as Non-negative Matrix Factorisation (NMF) 0. Since the observed 
symbols are subject to variability and uncertainty, equation (2) is only approximate and W and H are 
estimated as the positive matrices that minimize the divergence metric 
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,
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 (3) 

An algorithm for finding W and H given V based on multiplicative updates is given in 0. This way, a small 
vocabulary can be discovered without supervision in a collection of utterances of continuously spoken words 
0. 

Without additional constraints, W (and therefore H) is determined within a positive R-by-R scaling 
matrix S with a positive inverse: W H = W S S-1 H. The only possible such scaling matrices are products of 
diagonal matrices with a strictly positive diagonal (scaling of the columns of W) and permutation matrices 0. 
To address scaling, the constraint that each column of W sums to unity is imposed, while permutation will 
not affect the results. 

Once W is estimated on a training set, new utterances can be analysed with factorisation (2) by 
estimating H, whose columns reveal the degree to which each discovered acoustic pattern is present in each 
new utterance.  

2.3. Supervised learning 
If it is known which words occur in each utterance, this information can be exploited to associate each 
column of W to a word identity. Therefore, the  M × N grounding  matrix G is formed, which holds in its m-
th row and n-th column the number of times the m-th word occurs in the n-th utterance. Here, M is the 
number of word identities and N is the number of utterances available for supervised training. Subsequently, 
compute: 

 
g

v

  
≈   

   

WG
H

WV  (4) 

which expresses that word identity needs to be explained jointly with the acoustic data by common model 
activations H. The common dimension R is chosen R ≥ M. Experiments, not reported in this paper, have 
shown that overestimation of R is an acceptable strategy. The resulting columns of Wg will be zero, i.e., be 
associated with acoustic events that have no relevance to grounding, e.g., to a model for silence or filler 
words. 

After supervised training, i.e., computing factorisation (4), recognition on unseen data is achieved by first 
computing 

�
 in V ≈ Wv 

�
 using only the acoustic co-occurrence data and with fixed Wv. The presence of 

words or their activation (i.e., an estimate of the grounding information: typically 1 for a word that is present 
and 0 if it is absent) in the test utterances is subsequently estimated as: 
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ˆ ˆ

g=G W H  (5) 

Notice an important difference with an HMM-based speech recogniser: each column of the matrix � will 
reveal to which extent each trained word is present in the corresponding test utterance. However, it will say 
nothing about the order in which the words occur in the utterance, a problem that is addressed in the next 
section and forms the first novelty of this paper. 

2.4. Activation-verification 
In the previous section, it was shown that word activations can be computed. In this section, it is shown 
experimentally that this measure can be used to detect the absence or presence of words by thresholding the 
activation levels. This is a first mechanism of activation-verification (a second verification mechanism will 
be based on the estimated time of occurrence of the detected pattern - see section 4). In a level-based 
verification mechanism, only word candidates that have sufficient activation are retained for recognition or 
response generation. In this respect, they are equivalent to the confidence levels known in speech 
recognition, which are very useful for dialogue systems. In the present context, they are used for determining 
which words will be allowed in our unordered recognition result.  

The level-based verification mechanism is evaluated on the TI-DIGITS corpus. The training data consist 
of 55 male and 57 female US-American adults, downsampled to 16 kHz. Since including examples of the 
acoustic patterns (words) in isolation would simplify the training problem, the isolated digit strings were 
removed from training and test, totaling 6159 connected digit sequences of length 2 through 7 for training.  

For the acoustic information, 12 MFCC’s plus log-energy are computed at a 100 Hz frame rate. A 
codebook of respectively 150, 150 and 100 for static, velocity and acceleration parameters is trained on the 
training set using the K-means algorithm. All training utterances are then processed resulting in a VQ-label 
for static, velocity and acceleration features per 10 ms analysis frame. Per utterance, the label co-occurrence 
histograms for the three streams are computed with a lag value τ = 5, resulting in a 22500-dimensional 
vector for the static and the velocity stream and a 10000-dimensional vector for the acceleration stream. To 
improve discrimination between speech and non-speech, leading and trailing silence were stripped off each 
training utterance with an energy-based voice activation detector and considered as additional training 
utterances. Hence, a (very sparse) 55000 × 12318 data matrix V is obtained. The VQ histogram counts are 
divided by a fixed constant (100) such that the acoustic and grounding information have roughly the same 
weight in the cost function in supervised learning. Experiments have shown that the value of this constant is 
not critical: it can be changed over several orders of magnitude without significant impact. Subsequently, 
factorisation (4) is computed for R = 12 and Wv and Wg are stored for recognition.  

To test the verification ability of the activation levels, the DET-curves are measured. These are based on 
two measures: the false alarm rate (i.e., the ratio of the number of false positives to the total number of 
negatives) and the miss rate (or 1-recall or 1-sensitivity or the ratio of the number of false negatives to the 
number of positives). Both error rates are plotted as normal deviates, such that the trade-off curves become 
more linear than in typical ROC-curves 0. In a first experiment, the false positives and negatives are 
measured at the utterance level, i.e., for each utterance of 2 to 7 digits (unknown to the detector), the 
activations of all 11 digits are computed and only those whose activation is above a threshold are considered 
as detected. The DET-curve is then obtained by varying the threshold. The DET curves for some digits are 
given in Figure 1. The other digits are removed from the plot so as to not overload it. The best results are 
obtained for “zero”, while “oh” is (not surprisingly) the most difficult word to detect reliably. The DET-
curve for all digits together (applying one common threshold) is shown in red. Overall, the detection 
performance is quite weak and could lead to a few percent of insertions (false alarms) and deletions 
(misses), depending on the chosen operating point.  

The task of detecting the absence or presence of a word becomes more difficult as the length of the 
utterance increases. Therefore, the DET-curves are plotted for different utterance lengths in Figure 2. 
Clearly, shorter utterances yield a more reliable detection. Therefore, an activation-verification approach to 
speech recognition can possibly be optimized in a setting where the NMF model is used to detect words in a 
short window, rather than in a complete utterance. This will be discussed in section 4. In this approach, 
verification will also include information on time, which will now be discussed. 
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Figure 1: DET-curves of the digits “zero”, “four”, “five”, “two”, “eight” and “oh” (blue line) as well  as the 
overall DET-curve for all 11 digits together (red curve, smooth and third from the top). 

 
 

3. Word order and timing 
The method of section 2 uses a “bag of words” approach, in that words can be discovered at training time, 
linked to word identities and subsequently can be spotted in given test utterance. However, word order, 
which is essential in language, is not modelled. A mechanism to find out in which order words occur in the 
test utterance is required. Apart from estimating word order, the estimated times of the detected words can 
also be used in an activation-verification framework as an additional verification criterion (see section 4) 

3.1. Time-scaled histograms 
Next to the histogram of acoustic co-occurrences, the edge pair weights are also multiplied with the time 

of occurrence of the first arc tα (e.g., its ending time) and are accumulated over the lattice. Hence, with the 
notations of equation (1): 

 α αβ

(α,β) i

in t p
∈Θ

= ∑T  (6) 

Using a similar reasoning as the one of section 2.2 for histograms, these time-scaled histograms (6) of an 
utterance are shown to be composed of the time-scaled histograms of acoustic patterns, but the weighting 
time is offset by the starting time of the pattern. Then: 

 

α αβ ,
1 (α,β) 1 1ij

R R R

in ir rn v ir rn
j r r
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= = +∑ ∑ ∑ ∑T X H W U  
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Figure 2: The impact of utterance length on the DET-curves. 

 

  (7) 

where Xir is the time-scaled histogram of the r-th pattern when aligned to some reference time and Urn is the 
time offset of the r-th pattern in the n-th utterance. Hence, for supervised learning mode: 

 

g

v

v

   
    ≈     
       

G W 0
H

V W 0
U

T X W
 (8) 

The estimation of X in (8) appears to be a non-trivial problem. Only with knowledge of the time of 
occurrence of the words within the training utterances was an accurate estimate of X obtained. In order to 
avoid having to resort to exploiting additional (timing) information, the following approximation was 
considered: if the time-scaled histogram of the utterance is modelled as the sum of the time-scaled histo-
grams of the acoustic patterns, but where event occurrence time tα is approximated by the word occurrence 
time, X will equal Wv after normalisation. Accepting an offset in U, (8) can be replaced by (supervised 
mode): 

 

g

v

v

   
   ≈   
      

G W H

V W H

T W U
 (9) 

Rather than estimating Wg, Wv, H and U jointly on the training data using (9), slightly better results were 
obtained when training the W-matrices from (4). This is not surprising since the approximation in the lower 
partition (T) negatively influences the factorization of V. During testing, H and U are estimated separately 
with fixed Wv and the time of occurrence of a pattern is found as U./H (element-wise division). 
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3.2. Multiplicity 
If a word occurs twice or more within an utterance, its number of occurrences as well as its times of 
occurrence will be added in one value for H and U. Hence, the estimated time of occurrence for the pattern 
will turn out to be an estimate of the “average” occurrence time of the pattern and makes ordering the words 
impossible. Although the multiplicity of a word can in principle be determined by inspecting H (or in case of 
supervised learning G), the patterns cannot be separated. This is intrinsically related to the property that 
HAC-models do not make an explicit segmentation of the data. The problem will be partially solved in 
section 4, where a method for handling disjoint repetitions of a word will be described.  

3.3. Experiments 
The setup and models described in section 2.4 are reused in this section. In addition, the matrix T is formed 
like V, but multiplying the counts data with the time of occurrence as in equation (6).  

In this first evaluation, recognition and subsequently ordering of digits is attempted on a per-utterance 
basis. However, as outlined in section 3.2, it is not straightforward to locate multiple occurrences of the 
same word within a sentence, since (roughly) their average time of occurrence would be estimated. For 
consecutive repetitions of a digit, this is not a problem for order estimation. Therefore, utterances with non-
adjacent repetitions of any digit were removed for testing, resulting in 4163 utterances. For example, “998” 
is retained, but “989” is removed as a test utterance. Given the number Kn of different digits occurring in the 
n-th test utterance, the Kn candidates with highest activation according to equation (5) are selected, yielding 
a word error rate of 2.83% and an unordered string error rate of 8.62%. Notice that this recognition result is 
unordered, so word error rate is defined as the sum of the number of incorrect digits that end up in the top 
Kn, divided by the sum of Kn over the complete test set. A string is incorrect if it contains any incorrect digit.  

The recognised digits of each utterance are subsequently ordered by their estimated time of occurrence, 
i.e., H and U are estimated based on equation (9) and the digit position U./H is formed. For the n-th 
utterance, the recognised top Kn candidates are ordered according to their estimated time of occurrence. This 
yields an ordered string error rate of 11.72%. Hence, only in 3.1% of the strings did the ordering process 
introduce additional errors.  

4. A sliding window decoder 
The approach of section 3 takes a holistic approach to recognition in the sense that a complete utterance is 
analysed in terms of the components (words) it is composed of and subsequently those components are then 
located in time. At no point is there an attempt to break down the utterance into segments. For long 
utterances one can expect that unmixing the components leads to ill-conditioned cases. 

In this section, a more local implementation of the same idea is examined. A sliding window of 400 ms is 
moved over the utterance in steps of 50 ms, word activation is computed and location of the best candidate is 
performed. This single best decoding strategy is viable only because no grammatical constraints need to be 
taken into account here. The candidate is accepted if its activation is higher than 0.25 and if its estimated 
location is within 40 ms of the window center. Examples of the activation levels and estimated times of 
accepted candidates by this process are shown in Figure 3. If in subsequent 50 ms frames the same word is 
detected, it is considered as a continuation of the same word and not as a repetition of it. However, when the 
same digit is repeated, this often – but not always – fails to produce an interruption in the activation of 
candidates, hence leading to deletion errors. Thus, the detection of adjacent repetitions of the same word is 
error-prone and not attempted in the sequel: adjacent repetitions of the same digit are mapped to a single 
occurrence in the reference and in the hypothesis during scoring.  

This decoder is evaluated on a subset of the TI-DIGITS test set containing 6214 digit strings of length 2 
through 7. As such, the algorithm leads to a word error rate of 7.40% (4.41% insertions, 2.19% deletions and 
0.81% substitutions). It is observed that “oh” is often inserted after “zero”, which is not unexpected, since 
the former is the last phone of the latter and the decoder does not have a constraint to find complete words. 
Invariantly, the word “oh” receives a large activation when the sliding window reaches the end of “zero”. 
Therefore, all occurrences of “zero oh” were mapped to “zero”. Similarly, “six” is often inserted before 
“seven” and “zero” and was only accepted in this context if its activation exceeds 0.5. This leads to a word 
error rate of 5.57% (2.56% insertions, 2.23% deletions and 0.78% substitutions). For comparison, a discrete 
density HMM was trained and tested on the same material, using the same VQ data and 7 states per digit (3 
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for silence). This yields 3.75% word error rate (1.53% insertions, 1.19% deletions and 1.02% substitutions). 
The lower performance of the HAC-model is mainly caused by insertions and deletions, which is not 
surprising given its extremely simple decoding strategy based on word activation without dynamic 
programming. 

 

Figure 3: Activation level versus center position of analysis window (x) and estimated location (.) for the 
utterance “139oh”. The activation of each digit is plotted using a different colour. The estimated positions 
cluster around four positions, one for each recognised digit. 

5. Two-layered NMF 
In section 4 we mentioned that acoustic similarity can activate unwanted words: the acoustic input “zero” 

can also  activate “oh”. When the goal is to recognise natural language, post-processing strategies like the 
one used in section 4 become unreasonable. In this section, we will describe how words can be activated by 
a first NMF layer that takes the acoustic evidence as input. A second NMF layer takes these word activation 
patterns over a time scale of hundreds of milliseconds and uses this to compute the final activations. The 
activation patterns are therefore verified against a new knowledge source: the language model. Apart from 
verifying the word activations in their context, the second layer can also learn that it is normal that similar 
words are both activated and learn the appropriate conclusion (i.e., in the context of section 4 to reject the 
activation of “oh” during “zero”). 

The second NMF layer is a verification step: its input and output are activation patterns of the same set of 
previously learned words. It therefore acts to accept or reject word activations. It learns what are normal 
activation patterns for a language and it also corrects the mistakes of the first layer. It is therefore expected 
to improve the recognition results of a single layer system. 

To cast the behaviour of the second layer into an NMF problem, the activations in every utterance are 
converted to a vectorised representation. More precisely, for every possible combination of two multimodal 
tags, the product of their activations at a certain offset is calculated and summed over the entire utterance, as 
seen in equation (1) to form the HAC representation. Notice the difference with the HAC representation 
used in the first layer: now weighted activities are accumulated instead of integer counts. Using this 
representation of the activations, NMF can then easily be applied in the same way as in section 2.4. 

5.1. Experiment 
For this experiment it was decided to use the Dutch year 2 corpus of ACORNS 0. This corpus contains a 
total of 12109 usable utterances, spoken by 10 different speakers. Four of these speakers each provided 
about 2100 utterances. while the remaining six each provided 600. The ordering of the utterances was 
randomized and they were divided into a train set and a test set with a ratio of approximately 3 to 1, causing 
the train set to contain 9085 utterances and the test set 3024. The utterances contained simple sentences with 
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a maximum number of four keywords per sentence. In total, there are 51 different possible keywords 
consisting of both nouns and adjectives. 

We define the layer 1 train set and the layer 2 train set, respectively containing 2/3 and 1/3 of the global 
train set, or in absolute numbers, 6056 and 3029 utterances, respectively. 

The grounding matrices of the layer 1 train set and the test set are defined in the same way as in section 
2.3. The HAC-representations of the data are also calculated, using time offsets of 20 ms, 50 ms and 90 ms. 
To obtain a finer acoustic granularity, the codebook size for acoustic vector quantization was increased with 
respect to earlier experiments with smaller vocabularies, to 150 labels for the static stream, 350 for the 
velocity stream and 200 for the acceleration stream. The codebook was trained on the entire database, using 
only speech frames selected by a straightforward energy-based voice activity detector.  Making use of the 
acoustics matrix and the grounding matrix for the layer 1 train set, the internal representations W-matrix is 
trained. This training, as already mentioned above, happens in a weakly supervised way. The acoustic part of 
W is then used in the same way as in section 2.4: we apply a sliding window with a width of 400 ms and a 
window shift of 50 ms to the data in the layer 2 train and test set and calculate the sliding activations of the 
51 different multimodal tags. These activations are then again converted to a matrix representation, using 
lags τ of 0, 2, 4, 6 and 8 window shifts of 50 ms, and combined with the grounding matrix to serve as input 
to the second layer of NMF. Specifically, with the activations for the layer 2 train set, a W-matrix is trained 
by which the activations of all multimodal tags in the utterances of the test set can be calculated. Much like 

in section 2.4, the result can be shown using DET-curves. In Figure 4 we show the result obtained with the 
first layer of NMF, compared to the result from the second layer. For both cases, the DET-curves are 
obtained by comparing the utterance-level activations of all 51 words for which we have learned an internal 
representation with the same threshold and accepting the word if the activation exceeds the threshold and 
rejecting it if it doesn’t. The DET-curve of the first layer can be directly compared to the results in Figure 1, 
since they were obtained in essentially the same way. The lower level of performance in this experiment can 
be explained by the fact that the set of keywords to be detected is much larger, rendering the task more 
difficult. The figure also shows clearly that the performance of the second layer is superior to that of the first 
layer alone, proving the validity of this language-level verification mechanism.  

The performance for individual keywords tends to vary. This is shown in Figure 5 where the DET-curves 
for a small number of keywords are compared to that of the overall result (the smooth curve shown in red). 
In this figure, the activation of each word is compared to its own detection threshold. 

 

Figure 4: The DET-curves for detection by a common threshold applied to 
all 51 key words in the vocabulary for the first and the second NMF layer.  
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Note that the division of the train set in a layer 1 train set and a layer 2 train set is absolutely necessary. If 
we were not to make this division, and used the same train set in layer 1 and 2, the activations used as input 
for the training phase in the second layer would be much cleaner than the activations used as input for the 
testing phase in the second layer, and would generate misleading results.  

 

 

6. Discussion and conclusions 
The present approach shows some interesting similarities with models of human speech recognition (HSR). 
Most notable is that in HAC-models speech data are not segmented, but rather a window of speech is 
considered. Words are activated and compete much like is the case in the Shortlist model 0 of HSR. A 
holistic match of speech with high-dimensional models is made, which differs strongly from the approach 
taken by HMMs. The implicit segmentations that are generated in HMMs lead to sharp boundaries between 
words, a concept that is not so clear in HSR and that also might explain our insensitivity to strong cross-
word coarticulations. However, HAC’s failure to detect or even hypothesise word boundaries also leads to 
the problems with word multiplicity mentioned above. Progress on this front can probably be made if words 
are described as a sequence of subword units, which are then located and thus enabling the detection of word 
beginnings and endings. This will be explored in further research. 

Notice also that at no point was order information in the training data used in any manner. At best, the 
presence/absence of words in the training data was used in supervised mode, though the NMF-based pattern 
discovery method can even function without supervision 0. But eventually, it is capable of recognising and 
ordering the discovered acoustic patterns, as shown above. 

While NMF applied to the HAC-representation not only allows acquiring internal representations linking 
grounding information (tags) and acoustics, it also allows computing the activations of these internal 
representations from newly observed acoustic information. Words can be detected from these activations by 
a simple detection mechanism that consists of thresholding the activations with a common or word-

 

Figure 5: Layer-2 DET-curves for the keywords “geel” (yellow), “zien” (to see) and 
“bedroefd” (sad) shown in blue, together with the smooth overall DET-curve for all 
keywords combined, shown in red 
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dependent value. While this detection process already forms a first verification mechanism, the plausibility 
of the word activations is also verified through other criteria. Accepted words should be consistently located 
at nearby time instants. Finally, we verify if the order in which words are activated corresponds to the 
expected activation patterns. These patterns are learned from example sentences, a mechanism which is 
implemented as a second NMF-based learning and detection layer. 

The current implementation contains two layers of representations: one mapping the acoustic level 
directly to the lexical level and a second one for verifying word activations against the expectations built 
from prior exposure to the language. In ASR as well as in most models of HSR 0, 0, 0, 0, a pre-lexical (e.g., 
phonemic) level is also assumed. This level is required for building larger vocabularies, since re-use of 
acoustic representations (phonemes) can then be achieved for learning parsimonious lexical representations 
that require less storage and which can be learned from a small number of examples. A pre-lexical level, 
however, could also help decrease the ambiguity of the decoding process by imposing possible word 
constraints 0, 0. We consider further research into learning strategies in which such a layer emerges as the 
main goal of this work package in the final year of the ACORNS project. 
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