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Abstract and embedding in ACORNS

We describe a bottom-up, activation-based paradfgm continuous speech recognition. Speech is
represented by co-occurrence statistics of acowst@ts over an analysis window of variable length,
leading to a vector representation of high but dix@imension called “Histogram of Acoustic Co-
occurrence” (HAC). During training, recurring acbaspatterns are discovered and associated to words
through non-negative matrix factorization (NMF). rihg testing, word activations are computed from th
HAC-representation and their time of occurrencessmated. Hence, words in a continuous utteraaoe c
be detected, located and ordered. The plausilgifityord activations is verified in multiple waysirs$t, the
activations must exceed a threshold. Second, tb&titms (in time) of the detected words needs to be
consistent over time. Third, we verify if the ordenwhich words are activated corresponds to theeeted
activation patterns as learned through previousosxe to the language, a mechanism which is
implemented as a second NMF-based learning andtibetéayer.

With this deliverable, we show that it is possilideacquire a vocabulary of 51 words using under
supervision consisting of unordered utterance-léags$ that simulate the multimodal input. RefeD&®4.2
for experiments with weaker forms of supervisiorerification of detected words against knowledge
sources such as a language model is importantéding the vocabulary further towards the final lgaaf
the project. The way in which we achieve this -etiyh a second NMF layer — also proves that NMFdbase
learning can be cascaded, a technique that we teamipply at the lower, acoustic, level of speech
processing. By introducing a layer below the currenes, reusability of acoustic representations and
scalability towards a larger vocabulary size wéldhown in the final year of ACORNS.

Index Terms: speech recognition, information discovery, nogaisze matrix factorisation, co-occurrence
statistics

1. Introduction

Hidden Markov Models (HMMs) have dominated automateech recognition (ASR) research for many
decades. They have shown to be fairly adequate Isvéotespeech, but recent research has also uredver
some of their weaknesses such as poor robustngs®ranciation variation, co-articulation, assirtida
and noise. Psycholinguistic studies on human spesaignition (HSR) 0 have also revealed differences
with the way current ASR systems work. To deal with intrinsic variation that is found in speectgRA
systems are based on statistical models that anedé from examples. However, the model structistill
hardwired and engineered: sentences are built cdsyavhich are built of phonemes, which map toedéht
allophones, which have statistical models. Onehefdoals of the ACORNS project 0 is to discover the
structure in speech from data, much like a babysdu® need linguistic theories to understand laggua
Although still outperformed by HMMs, this contritioi presents encouraging results along this approac

The HAC-model (histogram of acoustic co-occurrengith its associated learning algorithm based on
non-negative matrix factorisation (NMF) O is albdediscover recurring acoustic patterns in speechowt
supervision 0 or with weak supervision 0. In therfer case, the algorithm will identify which acaast
patterns reappear and therewith find the elementatent structures that speech is composed of tlaisd
without any guidance. With weak supervision, thterainces are accompanied by unordered informaiain t
relates to the spoken words, much like a baby veseke.g., visual and tactile information that tedao the
audio. This is a weaker form of supervision thansed in the training of HMM-based ASR systems, @he
utterances are described hierarchically in termsarfl sequences down to HMM state sequences.

Once the HAC-models are trained, they can be usel@tompose utterances in terms of the discovered
latent structures, which will be words in this pagmit could also be phone-like units. This is #&dm-up
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process: acoustic inputs activate words that coeppetich like in the Shortlist model O of HSR. (Tenare
differences with this model such as the absence mfe-lexical level and “possible word constraihtsfi

this paper, HAC-models are extended to not onlgae&thichwords an utterance is composed of, but also
in which orderthe words occur.

This paper is organized as follows: section 2 reges the ideas behind HAC-models, showing how
words can be detected. In section 3, it is expthimav the detected words can be ordered in timeid®ed
expands on the idea to build an activation-drivenodler. In section 5, the HAC-model is discussetl an
related to human speech recognition.

2. HAC-models

2.1. Histograms of acoustic co-occurrence

In the present bottom-up approach, recognitiorriieed by the co-occurrence of acoustic events.eimegal,
these events are the occurrence of specific pattertime time-frequency plane, ranging from pagemth a
local time and frequency extent, such asph&hesdescribed in 0, to fullband patterns that spareisdyv
100ms like phones or even syllable-sized unitsciipally, in previous work 0, phones as well astes-
quantised (VQ) fullband spectra were used. The staavents are represented by discrete symbats &o
setZ, such as phone identities or VQ labels, their twheccurrence and an estimate of their posterior
probability. In 0, acoustic events are represeatethe edges in a directed acyclic graph, becausehien
easy to define the distancelag 1 between edges andp as the minimal number of vertices that need to be
visited to travel fromu to 3, as well as the joint weiglpts of the edge pair(3) as the sum of the posterior
probabilities of partial paths starting with edgend ending with edg@. An alternativdag measure could
simply be the difference in time of occurrence lué acoustic events, which would eliminate the nteed
represent them in a lattice. However, for notati@asavenience, the lattice will be maintained below

Next, all pairs of acoustic events (A,B)2xZ are considered and the weight of all edge paitis l&ag T
and carrying symbols A and B respectively is acdated over the graph. Mathematically, theh
utterance is characterized by

Vin= 2. Py (1)

(a.p)0S

where®, is the set of edge pairs with lagand labels A and B respectively. The indeg a one-to-one
mapping of all combinations (A,B) to the integers.1Ef. In other words, a co-occurrence histogram of all
possible acoustic event pairs is constructed. Thamults in a shift-invariant representation of dixe
dimension (the square of the number of differennlsyls), independent of the length of the analysis
window, which will be referred to 44AC (histogram of acoustic co-occurrence) or sintpstogram

In this paper, the acoustic events will be quadtfs#iband spectra computed at regular time instant
frames. The lattice of acoustic events then degée®ito a chain where each arc carries a VQ laltbl w
unity posterior probability. The HAC-representatisrthen the number of times all VQ symbol labédtrpa
are observed frames apatrt.

For a given segment of speech, a unique high-diimealsHAC representation can be computed. Both
the actual acoustic events occurring in the uttaas well as their order affect the HAC-repregenta
Conversely, a HAC representation does howendmmap to a unique symbol sequence or symbol lattice.
For example, the histogram of the symbol sequerBERA and ABCDABCDA differ only by a scaling
factor. The histograms of ABCDA and its (almostrlay permutation BCDAB are identical. In general,
order is weakly represented in the HAC-model, miilkaha bigram language model only weakly represents
grammar. Taking this analogy further, histogramsravore than two symbols could alleviate this weslsn
at the cost of complexity. It will however be sholglow that even with histograms of co-occurrenaiesp
encouraging speech recognition results can bermtaHAC-models are different frooonvolutional NMF
0, which describes traces in the acoustic spacanbiynpulse response, a very rigid model for wombdi
units.
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2.2. Matrix factorisation for pattern discovery and recognition

If utterances are composed of one or more o r@&fcurring acoustic patterns such as words, thedrams
have a linearity property that is essential ingh@posed method: each such acoustic pattern isctieaized
by a HAC and hence the HAC of each utterance \eilal{integer) linear combination of histograms.iDef
Oy as the subset @, that originates from theth acoustic pattern. Then:

R R
Vin:Z: Z paﬁzzwirHrn

r=1(a,p)06; r=1

whereH,, is the number of times pattermoccurs in utterance and column; is the histogram of acoustic
co-occurrences for theth pattern. In matrix form:

V=WH )

Given their interpretation, all entries W andH are constrained to be positive or zero. Becaudbese
constraints, equation (2) is known B®n-negative Matrix FactorisatiofNMF) 0. Since the observed
symbols are subject to variability and uncertairgguation (2) is only approximate avd andH are
estimated as the positive matrices that minimieedikiergence metric

D(VIIWH)=>'|V, log

i

W ] ~Vi +[wH; (3)

An algorithm for findingW andH givenV based on multiplicative updates is given in 0.sMay, a small
vocabulary can be discovered without supervisioa @ollection of utterances of continuously spokends
0.

Without additional constraintdV (and thereforeH) is determined within a positivB-by-R scaling
matrix S with a positive inversaV H =W SS* H. The only possible such scaling matrices are prisdof
diagonal matrices with a strictly positive diago(sdaling of the columns /) and permutation matrices 0.
To address scaling, the constraint that each colointWii sums to unity is imposed, while permutation will
not affect the results.

Once W is estimated on a training set, new utterances lmranalysed with factorisation (2) by
estimatingH, whose columns reveal the degree to which eadwodésed acoustic pattern is present in each
new utterance.

2.3. Supervised learning

If it is known which words occur in each utteranties information can be exploited to associateheac
column ofW to a word identity. Therefore, thiel x N grounding matrixG is formed, which holds in its-

th row andn-th column the number of times timeth word occurs in the-th utterance. Hereyl is the
number of word identities arfd is the number of utterances available for supedvisaining. Subsequently,
compute:

Ml

which expresses that word identity needs to beagxgdl jointly with the acoustic data by common niode
activationsH. The common dimensioR is choserR =M. Experiments, not reported in this paper, have
shown that overestimation &is an acceptable strategy. The resulting colunind pwill be zero, i.e., be
associated with acoustic events that have no metevéo grounding, e.g., to a model for silenceilberf
words.

After supervised training, i.e., computing factatien (4), recognition on unseen data is achieyefirt
computingH in V = W, H using onIy the acoustic co-occurrence data and fsed W,. The presence of
words or theilactivation(i.e., an estimate of the grounding informatigipi¢ally 1 for a word that is present
and 0 if it is absent) in the test utterances seguently estimated as:
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G= WgH (5)

Notice an important difference with an HMM-basee@eagh recogniser: each column of the mafriwill
reveal to which extent each trained word is pregettie corresponding test utterance. However jlitsay
nothing about therder in which the words occur in the utterance, a mobthat is addressed in the next
section and forms the first novelty of this paper.

2.4. Activation-verification

In the previous section, it was shown that wordvatibns can be computed. In this section, it isvat
experimentally that this measure can be used txt#te absence or presence of words by threslyoida
activation levels. This is a first mechanismaativation-verification(a second verification mechanism will
be based on the estimated time of occurrence ofiétected pattern - see section 4). In a levelebase
verification mechanism, only word candidates theatensufficient activation are retained for recoignitor
response generation. In this respect, they arevalgnt to theconfidence levelknown in speech
recognition, which are very useful for dialoguetsyss. In the present context, they are used farahirning
which words will be allowed in ournorderedrecognition result.

The level-based verification mechanism is evaluatedhe TI-DIGITS corpus. The training data consist
of 55 male and 57 female US-American adults, dompéed to 16 kHz. Since including examples of the
acoustic patterns (words) in isolation would sirfypthe training problem, the isolated digit stringsre
removed from training and test, totaling 6159 caee digit sequences of length 2 through 7 foniraj.

For the acoustic information, 12 MFCC’s plus logrgy are computed at a 100 Hz frame rate. A
codebook of respectively 150, 150 and 100 forsta&glocity and acceleration parameters is tramedhe
training set using the K-means algorithm. All tingnutterances are then processed resulting in da\€l
for static, velocity and acceleration features J@ms analysis frame. Per utterance, the labekcarcence
histograms for the three streams are computed avithg valuet = 5, resulting in a 22500-dimensional
vector for the static and the velocity stream ardd@00-dimensional vector for the accelerationastreTo
improve discrimination between speech and non-spdeading and trailing silence were stripped @iftle
training utterance with an energy-based voice atitm detector and considered as additional trginin
utterances. Hence, a (very sparse) 55000 x 123th8nakatrixV is obtained. The VQ histogram counts are
divided by a fixed constant (100) such that theuatio and grounding information have roughly themea
weight in the cost function in supervised learniBgperiments have shown that the value of this teonss
not critical: it can be changed over several ordérmagnitude without significant impact. Subsedlyen
factorisation (4) is computed f&= 12 andV, andW, are stored for recognition.

To test theverification ability of the activation levels, the DET-curve® aneasured. These are based on
two measures: the false alarm rate (i.e., the mftithe number of false positives to the total nemobf
negatives) and the miss rate (or 1-recall or liseitg or the ratio of the number of false negatvto the
number of positives). Both error rates are plodsdormal deviatessuch that the trade-off curves become
more linear than in typical ROC-curves 0. In atfiexperiment, the false positives and negatives are
measured at the utterance level, i.e., for eadtrarite of 2 to 7 digits (unknown to the detecttny
activations of all 11 digits are computed and dhlyse whose activation is above a threshold arsidered
as detected. The DET-curve is then obtained byingrihe threshold. The DET curves for some digits a
given inFigure 1 The other digits are removed from the plot sdcasot overload it. The best results are
obtained for “zero”, while “oh” is (not surprisingl the most difficult word to detect reliably. THRET-
curve for all digits together (applying one commibmeshold) is shown in red. Overall, the detection
performance is quite weak and could lead to a fencgnt of insertions (false alarms) and deletions
(misses), depending on the chosen operating point.

The task of detecting the absence or presencevadrd becomes more difficult as the length of the
utterance increases. Therefore, the DET-curvesphrtted for different utterance lengths kigure 2
Clearly, shorter utterances yield a more relialdtection. Therefore, an activation-verification eggzh to
speech recognition can possibly be optimized ietténg where the NMF model is used to detect wamnds
short window, rather than in a complete utteraridgs will be discussed in section 4. In this appiga
verification will also include information aiime, which will now be discussed.
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Figure 1: DET-curves of the digits “zero”, “four”;five”, “two”, “eight” and “oh” (blue line) as well as the
overall DET-curve for all 11 digits together (redree, smooth and third from the top).

3. Word order and timing

The method of section 2 uses a “bag of words” aggrpin that words can be discovered at trainimg fi
linked to word identities and subsequently can jpetted in given test utterance. However, word grder
which is essential in language, is not modelledndchanism to find out in which order words occuthe
test utterance is required. Apart from estimatiragdwvorder, the estimated times of the detected svoah
also be used in an activation-verification framewas an additional verification criterion (see gatt)

3.1. Time-scaled histograms

Next to the histogram of acoustic co-occurrendes edge pair weights are also multiplied with iheet
of occurrence of the first atg (e.g., its ending time) and are accumulated dveddttice. Hence, with the
notations of equation (1):

Tin = Z ta paB (6)
(a,p)06;
Using a similar reasoning as the one of sectionf@&.2istograms, thesttme-scaledhistograms (6) of an
utterance are shown to be composed of the timeddaktograms of acoustic patterns, but the waighti
time is offset by the starting time of the patterhen:

R R R
Tin :Z Z tu paB :Z;XirHrn +Z:1Wv,ir Urn
r= r=

i=1(a,B) Oy
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Figure 2: The impact of utterance length on the Biifves.

(7)

whereX;; is the time-scaled histogram of théh pattern when aligned to some reference timelhn the
time offset of the-th pattern in the-th utterance. Hence, for supervised learning mode:

G w, O

g H
Vi =W, O [U} (8)
T X W,

The estimation ofX in (8) appears to be a non-trivial problem. Onlithwknowledge of the time of
occurrence of the words within the training utteesiwas an accurate estimatexobbtained. In order to
avoid having to resort to exploiting additionaln{ing) information, the following approximation was
considered: if the time-scaled histogram of theratice is modelled as the sum of the time-scalgi-hi
grams of the acoustic patterns, but where eveniroaace time, is approximated by the word occurrence
time, X will equal W, after normalisation. Accepting an offsetlih (8) can be replaced by (supervised
mode):

Gl [W,H
V|= WVH (9)
T| |wu

Rather than estimating/,, W,, H andU jointly on the training data using (9), slightlgtter results were

obtained when training th&/-matrices from (4). This is not surprising since #pproximation in the lower

partition (T) negatively influences the factorization\df During testingH andU are estimated separately
with fixed W, and the time of occurrence of a pattern is fousld.&41 (element-wise division).
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3.2. Multiplicity

If a word occurs twice or more within an utteranite, number of occurrences as well as its times of
occurrence will be added in one value fbandU. Hence, the estimated time of occurrence for eteem

will turn out to be an estimate of the “averageturrence time of the pattern and makes orderingviirels
impossible. Although the multiplicity of a word canprinciple be determined by inspectiHg(or in case of
supervised learning), the patterns cannot be separated. This is gitaty related to the property that
HAC-models do not make an explicit segmentatiorihef data. The problem will be partially solved in
section 4, where a method for handling disjoinetimns of a word will be described.

3.3. Experiments

The setup and models described in section 2.4eaised in this section. In addition, the mafriis formed
like V, but multiplying the counts data with the timeooturrence as in equation (6).

In this first evaluation, recognition and subsedlyeardering of digits is attempted on a per-uttes
basis. However, as outlined in section 3.2, it @ straightforward to locate multiple occurrencéshe
same word within a sentence, since (roughly) thggrage time of occurrence would be estimated. For
consecutive repetitions of a digit, this is notralpem for order estimation. Therefore, utterangih non-
adjacent repetitions of any digit were removedtésting, resulting in 4163 utterances. For exampied”
is retained, but “989” is removed as a test uttegaiven the numbe, of different digits occurring in the
n-th test utterance, the, candidates with highest activation according toatign (5) are selected, yielding
a word error rate of 2.83% and anorderedstring error rate of 8.62%. Notice that this ratitign result is
unordered, so word error rate is defined as the guthe number of incorrect digits that end uphe top
K., divided by the sum £, over the complete test set. A string is incorieittcontains any incorrect digit.

The recognised digits of each utterance are subséguordered by their estimated time of occurrence
i.e., H and U are estimated based on equation (9) and the plggition U./H is formed. For then-th
utterance, the recognised tiip candidates are ordered according to their estirtatee of occurrence. This
yields anorderedstring error rate of 11.72%. Hence, only in 3.1#4he strings did the ordering process
introduce additional errors.

4. A sliding window decoder

The approach of section 3 takes a holistic appré@aclecognition in the sense that a complete uiteras
analysed in terms of the components (words) ibiemosed of and subsequently those componentseame th
located in time. At no point is there an attemptbteak down the utterance into segments. For long
utterances one can expect thamixingthe components leads to ill-conditioned cases.

In this section, a more local implementation of shene idea is examined. A sliding window of 400isns
moved over the utterance in steps of 50 ms, wadidadion is computed and location of the best cdatdi is
performed. This single best decoding strategy able only because no grammatical constraints reéee t
taken into account here. The candidate is accapitzlactivation is higher than 0.25 and if itdiemted
location is within 40 ms of the window center. Exdes of the activation levels and estimated times o
accepted candidates by this process are showigyure 3 If in subsequent 50 ms frames the same word is
detected, it is considered as a continuation ok#tme word and not as a repetition of it. Howewéen the
same digit is repeated, this often — but not alwayfsils to produce an interruption in the actigatiof
candidates, hence leading to deletion errors. Timesdetection of adjacent repetitions of the samil is
error-prone and not attempted in the sequel: adfaepetitions of the same digit are mapped tonglsi
occurrence in the reference and in the hypothesisglscoring.

This decoder is evaluated on a subset of the TIFD®&3est set containing 6214 digit strings of léngt
through 7. As such, the algorithm leads to a wordregate of 7.40% (4.41% insertions, 2.19% defetiand
0.81% substitutions). It is observed that “oh” feen inserted after “zero”, which is not unexpegctsitice
the former is the last phone of the latter anddibeoder does not have a constraint to find completels.
Invariantly, the word “oh” receives a large activatwhen the sliding window reaches the end of §zer
Therefore, all occurrences of “zero oh” were mapfedzero”. Similarly, “six” is often inserted befe
“seven” and “zero” and was only accepted in thistegt if its activation exceeds 0.5. This leads tword
error rate of 5.57% (2.56% insertions, 2.23% defetiand 0.78% substitutions). For comparison, eretis
density HMM was trained and tested on the sameriahtasing the same VQ data and 7 states per @#git
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for silence). This yields 3.75% word error rateb@6 insertions, 1.19% deletions and 1.02% subistits}.
The lower performance of the HAC-model is mainlyused by insertions and deletions, which is not
surprising given its extremely simple decoding teigg based on word activation without dynamic
programming.

man/ah/1390
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Figure 3: Activation level versus center positiohamalysis window (x) and estimated location (1) floe
utterance “139oh”. The activation of each digit j@otted using a different colour. The estimateditpmss
cluster around four positions, one for each recsgdidigit.

5. Two-layered NMF

In section 4 we mentioned that acoustic similacép activate unwanted words: the acoustic inputo™ze
can also activate “oh”. When the goal is to recegmatural language, post-processing stratediesthie
one used in section 4 become unreasonable. Iisé¢hion, we will describe how words can be activdig
a first NMF layer that takes the acoustic evideasénput. A second NMF layer takes these word atitiu
patterns over a time scale of hundreds of millisésoand uses this to compute the final activatidihe
activation patterns are therefore verified agansew knowledge source: the language model. Apamt f
verifying the word activations in their contexteteecond layer can also learn that it is normadl ghmailar
words are both activated and learn the appropdatelusion (i.e., in the context of section 4 tgecethe
activation of “oh” during “zero”).

The second NMF layer is a verification step: ifgunand output are activation patterns of the ssehef
previously learned words. It therefore acts to pt@e reject word activations. It learns what acgnmal
activation patterns for a language and it alsoemtsrthe mistakes of the first layer. It is therefexpected
to improve the recognition results of a single fagyestem.

To cast the behaviour of the second layer into 8FNbroblem, the activations in every utterance are
converted to a vectorised representation. Moreigebg for every possible combination of two multidal
tags, the product of their activations at a certdiget is calculated and summed over the entierarice, as
seen in equation (1) to form the HAC representatidatice the difference with the HAC representation
used in the first layer: noweightedactivities are accumulated instead of integer toublsing this
representation of the activations, NMF can theilyebe applied in the same way as in section 2.4.

5.1. Experiment

For this experiment it was decided to use the Dytdr 2 corpus of ACORNS 0. This corpus contains a
total of 12109 usable utterances, spoken by l@mdifit speakers. Four of these speakers each pdovide
about 2100 utterances. while the remaining six gaivided 600. The ordering of the utterances was
randomized and they were divided into a train setatest set with a ratio of approximately 3 tedysing
the train set to contain 9085 utterances and gteset 3024. The utterances contained simple sezgemith
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a maximum number of four keywords per sentencetotal, there are 51 different possible keywords
consisting of both nouns and adjectives.

We define the layer 1 train set and the layer @ tsat, respectively containing 2/3 and 1/3 of giabal
train set, or in absolute numbers, 6056 and 30@%arices, respectively.

The grounding matrices of the layer 1 train set thedtest set are defined in the same way as tiosec
2.3. The HAC-representations of the data are asmfated, using time offsets of 20 ms, 50 ms ahdn8.
To obtain a finer acoustic granularity, the codébsiae for acoustic vector quantization was incedasith
respect to earlier experiments with smaller vocates, to 150 labels for the static stream, 350tier
velocity stream and 200 for the acceleration streEme codebook was trained on the entire datalaasy
only speech frames selected by a straightforwaalgyrbased voice activity detector. Making usehef
acoustics matrix and the grounding matrix for tigel 1 train set, the internal representations Wi
trained. This training, as already mentioned abbgppens in a weakly supervised way. The acouatioob
W is then used in the same way as in section 2edapply a sliding window with a width of 400 ms and
window shift of 50 ms to the data in the layer &rtrand test set and calculate the sliding actwatiof the
51 different multimodal tags. These activations twen again converted to a matrix representatisimgu
lagst of 0, 2, 4, 6 and 8 window shifts of 50 ms, anthbimed with the grounding matrix to serve as input
to the second layer of NMF. Specifically, with thetivations for the layer 2 train set, a W-matexrained
by which the activations of all multimodal tagstie utterances of the test set can be calculatedhNike

miss rate (%)

false alarm rate (%)

Figure 4: The DET-curves for detection by a comrtiorshold applied to
all 51 key words in the vocabulary for the firsdahe second NMF layer.

in section 2.4, the result can be shown using D&Teas. InFigure 4we show the result obtained with the
first layer of NMF, compared to the result from thecond layer. For both cases, the DET-curves are
obtained by comparing the utterance-level activatiof all 51 words for which we have learned aerimal
representation with the same threshold and acagptie word if the activation exceeds the threstaoid
rejecting it if it doesn’t. The DET-curve of thedi layer can be directly compared to the resal&dure 1,
since they were obtained in essentially the same Wae lower level of performance in this experitnesn
be explained by the fact that the set of keywondbé detected is much larger, rendering the taste mo
difficult. The figure also shows clearly that therformance of the second layer is superior toahéte first
layer alone, proving the validity of this langudgeel verification mechanism.

The performance for individual keywords tends toyvahis is shown irFigure 5where the DET-curves
for a small number of keywords are compared to dfidihe overall result (the smooth curve showneid)r
In this figure, the activation of each word is carga to its own detection threshold.
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Note that the division of the train set in a lagdrain set and a layer 2 train set is absolutelyessary. If
we were not to make this division, and used theestiain set in layer 1 and 2, the activations wsedhput
for the training phase in the second layer wouldrheh cleaner than the activations used as inpuho
testing phase in the second layer, and would genersleading results.

miss rate (%)

false alarm rate (%)

Figure 5: Layer-2 DET-curves for the keywords “deéfellow), “zien” (to see) and
“bedroefd” (sad) shown in blue, together with thema@oth overall DET-curve for all
keywords combined, shown in red

6. Discussion and conclusions

The present approach shows some interesting sieawith models of human speech recognition (HSR)
Most notable is that in HAC-models speech datarmtesegmented, but rather a window of speech is
considered. Words are activated and compete miehidi the case in the Shortlist model 0 of HSR. A
holistic match of speech with high-dimensional meds made, which differs strongly from the appitoac
taken by HMMs. The implicit segmentations that geeerated in HMMs lead to sharp boundaries between
words, a concept that is not so clear in HSR aatl alfso might explain our insensitivity to strongss-
word coarticulations. However, HAC's failure to €ett or even hypothesise word boundaries also leads
the problems with word multiplicity mentioned abo®eogress on this front can probably be made iid&o
are described as a sequence of subword units, \ahéctinen located and thus enabling the detecfiarmonl
beginnings and endings. This will be explored iritfar research.

Notice also that at no point was order informationthe training data used in any manner. At béwt, t
presence/absence of words in the training dataus@g in supervised mode, though the NMF-basedrpatte
discovery method can even function without supéemi®. But eventually, it is capable of recognisaryl
ordering the discovered acoustic patterns, as slabone.

While NMF applied to the HAC-representation notyoallows acquiring internal representations linking
grounding information (tags) and acoustics, it a#lmws computing theactivations of these internal
representations from newly observed acoustic inédion. Words can be detected from these activatigns
a simple detection mechanism that consists of hiotdég the activations with a common or word-
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dependent value. While this detection process é&réarms a firstverification mechanism, the plausibility

of the word activations is also verified throughest criteria. Accepted words should be consistdntigted

at nearby time instants. Finally, we verify if tbeder in which words are activated correspondsh® t
expected activation patterns. These patterns aradd from example sentences, a mechanism which is
implemented as a second NMF-based learning andtibetdayer.

The current implementation contains two layers @fresentations: one mapping the acoustic level
directly to the lexical level and a second onewerifying word activations against the expectatitugt
from prior exposure to the language. In ASR as @aglin most models of HSR 0, 0, 0, 0, a pre-lexiea.,
phonemic) level is also assumed. This level is irequfor building larger vocabularies, since re-uge
acoustic representations (phonemes) can then lievadhfor learning parsimonious lexical represeotet
that require less storage and which can be ledinoed a small number of examples. A pre-lexical leve
however, could also help decrease the ambiguityhef decoding process by imposipgssible word
constraints0, 0. We consider further research into learningtegies in which such a layer emerges as the
main goal of this work package in the final yeatted ACORNS project.
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