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1 Introduction 
This deliverable D3.2 report considers the results of the initial automatic speech recognition experiments to 
compare episodic and semantic long-term memory.  An ACORNS memory architecture has been devised 
towards the aim of developing an agent that can comprehend language and communicate based on sensory 
inputs in an emergent manner.  The ACORNS memory architecture was developed based on inspiration and 
constrains from the human memory and cerebral cortex described in deliverable D3.1.  Although in this 
report there is a focus on long-term memory in the ACORNS memory architecture, the structure of the 
architecture relies on an interaction between working memory and long-term memory.  The ACORNS 
memory architecture is described in terms of the processes involved and data stores.  The long-term memory 
representations are the stored weight structures and working memory is the activations.  The architecture is 
also based on the hierarchical memory-prediction model which allows the agent to develop communication 
skills in an emergent manner.   
 
In this report Section 2 examines the current ACORNS memory architecture; Section 3 briefly defines what 
is meant by long-term memory; Section 4 considers examples of semantic long-term memory models 
developed with in the ACORNS memory architecture; Section 5 presents an implementation of the episodic 
long-term memory model associated with the memory architecture; and Section 6 discusses some of the 
outcomes associated with these two sets of memory models.   
 

2 Overview of the ACORNS memory architecture  
 
The ACORNS project investigates the feasibility of the memory-prediction framework (Hawkins and 
Blakeslee 2004) as a basis for understanding language acquisition and communication. The memory-
prediction framework is appealing, mainly because it is based on solid neuro-physiological evidence 
(Mountcastle 1978).  Equally importantly, is the extensive literature on memory processing in psychological 
research (Baddeley 1992) that does not necessarily map one-to-one to the structure suggested by the 
memory-prediction framework. Therefore, much time and effort has been spent during the first two years of 
the project to design a memory architecture that at once reflects the results of decades of psychological 
research and the basic tenets of the memory-prediction framework. 
 
In this memory architecture (Figure 1) the working memory unit receives an attention-gated version of the 
current audio and semantic (visual) feature input (from Echoic and Iconic memory), which produces a 
working memory a representation in the form of activations of the input.  This representation is produced 
through learned weights that are stored in the long-term memory in the form of semantic and episodic 
memory (activations are in short-term memory and weights in long-term memory).  These weights are 
updated/learned based on the activations that are produced in the working memory so new examples of 
audio and visual samples can be incorporated into long-term memory as well as better representations of 
previously stored weights. Attention mechanisms whose weights are also stored in semantic long-term 
memory are used to control the updating of the learned long-term memory weights for other automatic 
speech recognition applications.  By combining the weights and the current activation patterns the devised 
models can perform activities such as automatic speech retrieval, representation and prediction.  With 
semantic features in the ACORNS architecture, the complete scene can be presented to the iconic memory.  
Episodic and semantic long-term memories are produced and updated by changing the weight structures 
stored in long-term memory.    
 
It is possible to map the echoic and iconic memory in Figure 1 onto the lowest level of the memory 
prediction architecture, because neither model makes hard claims with respect to the neural encoding and 
representation of the sensory signals. The processing going on in the working memory and stored weights in 
long-term memory in Figure 1 fit onto the connections that are formed and the information that flows in the 
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higher levels of the structure memory-prediction.  Therefore, we take it that an architecture such as depicted 
in Figure 1 can implement the basic operations in a memory-prediction framework. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1  The ACORN memory architecture.  Boxes and arrows refer to data structures and processes, 
respectively.  
 

Figure 2 shows a representation of the hierarchical structure of the ACORNS memory architecture.  The 
audio and semantic (visual) feature inputs are combined with the learned weights (semantic and episodic 
long-term memory) to produce representations of speech at different levels of abstraction. 1A  represents the 

activations (working memory) that are learned by creating and updating long-term memory 1W  based on 

only receiving audio input and as such are the representation of speech units. The 2A  region provides 

representations of words by combining semantic (visual) features of words sA  with the phone representation 

previous produced by the 1A  region, using learned weights 2W .  The representation is based on learned 

weights in the upper layer of the model.  The symbols sA  in Figure 2 represent the semantic activations and 
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are the result of processing the visual input. The 3A  region provides activation patterns that represent an 

utterance, based on learned weights 3W  of semantic and episodic long-term memory by combining the 

activations for the words 2.A .   

 

 
Figure 2  Hierarchical organisation of the ACORNS memory architecture. 
 
The incorporation of complex feature based semantic (visual) features to achieve grounding into the 
ACORNS memory architecture works towards the development of computational models of an agent that 
learns to communicate.  Pulvermüller (Pulvermüller 1999, Pulvermüller 2002, Pulvermüller 2003) states that 
semantic (visual) features play an important role in the representation of words in the cerebral cortex. He 
argues it is important to relate the neurons that represent the word form with those neurons associated with 
perception and actions that reflect the semantic information on a word.  When considering content words, 
the semantic factors that influence the cell assemblies come from various modalities and include the 
complexity of activity performed, facial expression or sound, the type and number of muscles involved, the 
colour of the stimulus, the object complexity, movement involved, the tool used and whether the person can 
see herself doing this activity (Pulvermüller 2003).  For objects the semantic features represented by cell 
assemblies typically relate to their colour, smell or shape.   
 

3 Long-term memory  
 
Given that this deliverable D3.2 report looks at some of the current ACORNS models from a memory 
architecture point-of-view with a focus on the semantic and episodic long-term memory, we will start with a 
brief description of what is meant by long-term memory.  Long-term memory is said to contain those 
memories that remain for more than just a few minutes.  It includes the memory of recent facts as well as the 
memory of older facts. The robustness of the memory is thought to be also dependent on rehearsal. While 
the memory of recent facts can be quite fragile, the memory of older facts is usually quite robust.  The long-
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term memory is usually thought of as being divided into two types of memory - explicit and implicit.  
Explicit memory (also called declarative memory) is that type of memory that one is aware of and can name.  
Implicit memory is for example motor memories, i.e. those memories that one uses to perform a certain 
action such as riding a bike, once it is learned.  Explicit memory can further be divided into two sub 
categories: Episodic memory and Semantic memory.   
 
Semantic long-term memory is thought of as a declarative system that is responsible for general factual 
knowledge of the world in an abstract and relational form (Baddeley 2002, Neath and Surprenant 2002).  It 
contrasts directly with episodic memory through its lack of association with a specific moment in an 
individual’s personal past, and lacking subjective experience (Eysenck and Keane 2005).  Semantic memory 
is independent of the context (in terms of time and place) in which it was acquired. It is formed by a lifetime 
of information. It can be regarded as a form of reference material, which includes rules and concepts that let 
us construct a mental representation of the world without any immediate perceptions.  
 
Episodic memory was proposed by Tulving as recently as 1972 (Tulving 1972). In contrast to semantic 
memory, episodic memory is thought to retain particular personal experiences at particular times and places 
(Tulving 1972, Eysenck and Keane 2005). The most distinctive feature of episodic memory is that not only 
are events memorised, but also the contexts in which they occurred.  What enters into episodic memory has 
been shown to be dependent on attention mechanisms (Gleitman et al. 1999).  From neuroscience studies the 
frontal and medial temporal areas are found to have a role in representing and retrieving episodic memory 
and the hippocampal system in representing and encoding the spatial-location memories (Hayes et al. 2004).   
 

4 Semantic long-term memory in ACORNS memory 
architecture 

 
In this section of the report we present various models that have been developed in the ACORNS project 
incorporate a semantic long-term memory component in the ACORNS memory architecture (see Figure 1).  
The example semantic long-term memory based models are related to attention based activities, keyword 
recognition, and word and phoneme representation and recognition.   
 

4.1 Attention  
 
As can be seen from Figure 1, a feature of the memory model is the use of attention mechanism at various 
points within the model, which makes use of learned structures that are stored in semantic long-term 
memory.  Most commonly, attention is used to refer to ‘selectivity of processing’.  For Pugh et al. (1996) 
attention should include the capacity to switch focus from one element to another, must be maintained over a 
period of time and be limited in the number of elements that can be focused on at any time.   
 
James (1890) defined attention as:  
 
“Everyone knows what attention is. It is the taking possession of the mind, in clear and vivid form, of one 
out of what seem several simultaneously possible objects or trains of thought. Focalisation, concentration, 
of consciousness are of its essence.”  
 
Various neuroscience studies have considered aspects of attention such as sustained attention, selective 
attention and decision and action control (Pugh et al. 1996).  For sustained attention activation is found in 
the superior parietal area and the prefrontal areas of the right hemisphere when subjects looked for small 
changes in stimulus (Pugh at al. 1996, Pardo et al. 1991).  Turning to selective attention the superior parietal 
lobule is identified to be related to removing focus from one element to the next, the superior colliculus to 
the movement to a new focus and the pulvinar to filtering out stimulus that are not of interest (Posner and 
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Presti 1987, Pugh et al. 1996).  Below is an examination of examples of the attention mechanisms with focus 
on semantic long-term memory that have been developed within the memory architecture.   
 

4.2 Selective attention semantic long-term model  
The aim of the first semantic long-term memory based model described here is to examine whether special 
attentional focus to keywords in utterances facilitates word learning and recognition.  The word-learning 
algorithm (Figure 3) uses a modified concept matrix approach (weights like structures that are stored in 
semantic long-term memory) to track transitional probabilities of vector quantized speech, quantization 
being provided by the clustering algorithm developed in workpackage 2.  2000 utterances, from a single 
Finnish female speaker in the corpus collect in period 1, were used as the test material.   
 
The cornerstones of the algorithm rely on the so-called concept matrices which form an inner representation 
(semantic long-term memory) that associatively combines information from the auditory stream (cluster, or 
“phone”, sequences) with other visual semantic input.  In this case the visual input is simplified to being the 
keyword tag associated with each sentence.  In other words, the algorithm concentrates solely on the 
modelling of auditory stimuli and the interaction between working and semantic long-term memory related 
processing and makes an approximation that non-auditory modality signals are provided by external 
processing modules instead of intertwined multimodal processing streams already at the signal level.  The 
word-learning algorithm takes a multimodal tag and two parallel cluster sequences corresponding to a single 
utterance as the input.  The first sequence 1S  contains a discrete sequence of segmental cluster indices of 
segment onsets (spectral representations created from the first 40% of segment durations) while the second 
sequence 2S  contains cluster indices for the remaining 60% of segment durations in a similar manner. The 
multimodal tag t represents one of the ten possible keywords in the material as an integer. 
 
 

 
 
Figure 3  A schematic representation of the word-learning algorithm. Cross-situational statistics are collected 
for phone-like-segment transitions during presence of multimodal tags. 
 
Whenever a new utterance is introduced, the algorithm goes through all indices in 1S  and adds all pairs of 

two subsequent symbols as transitions to a transition frequency matrix 1f,t,M  defined by the tag associated 
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with the utterance. This is repeated for 2S  2f,t,M .  The stochastic (normalized transition probability 

∑ )(ip =1 from any symbol) matrices 1p,t,M  and 2p,t,M  are then created from both frequency matrices.  

These matrices now contain probability distributions for all possible symbols [x+1] from all possible 
symbols [x] for each concept (keyword).  Similarly to transitions of subsequent symbol pairs, matrices 

3,1f,t,M , 3,2f,t,M , 3,1p,t,M , 3,2p,t,M  are created for transitions from [x] to [x+2].  If the tag t has been never 

seen before, a new set of concept matrices (long-term memory weights) is created for both 1S  and 2S  for 
both [x]�[x+1] and [x]�[x+2] transitions.  Otherwise, the existing frequency matrices and corresponding 
probability matrices in the semantic long-term memory are updated.   
 
To recognize a word from a previously unheard utterance, sequences 1S  and 2S  corresponding to the 
incoming utterance are utilized. Both sequences are windowed simultaneously with a varying sized window 
to obtain sub-sequences B1 and B2 for all possible window locations and for all pre-defined window sizes. 
These sequences are then used to “activate” concept matrices, that is, [x]�[x+1] and [x]�[x+2] transitions in 
the sub-sequences. This process is then repeated for all concept matrices to provide a cumulative probability 
sum for each sub-sequence for each concept matrix. In the case of zero probability for a transition (no such 
transition has ever occurred before in the presence of some corresponding tag), a small penalty to the 
cumulative sum is introduced. The most probable combination of a sub-sequence and a concept matrix 
produces a word hypothesis (i.e., which concept is being activated most) and a hypothesis for the temporal 
location for the word in speech signal. 
 
The procedure is to emphasize segmental transitions occurring during keywords with different scaling 
compared to the surrounding carrier sentences.  Two basic attentional learning situations implemented in the 
current version of the algorithm are tested.  In the first situation the learner has absolutely no feedback from 
the external world except for input consisting of spoken utterances, corresponding tags, and temporal 
locations of the keywords. This simulates a situation where the learner gets accurate information about the 
keyword location from some other process, e.g., by processing of the prosody of the input. In the second 
situation, which is a so-called reinforced learning environment, the learning agent obtains feedback for its 
decisions from the caretaker.  After the learner made a hypothesis about which concept/keyword/tag is being 
referred to by the spoken utterance, the caretaker signals whether the hypothesis is correct or incorrect. In 
the case of a correct answer, only the sub-section of the sequence that yields the best match for a correct 
concept matrix is added to the matrix (note that external temporal focus is not influential in this method, but 
more like a self-driven focus for important content). On the other hand, if the answer is incorrect, all 
transitions in the entire sequence are added to the concept matrix defined by the tag in a similar manner as in 
the non-reinforced case using the temporal focus. This should lead to situations where the contents of 
concept matrices become increasingly selective to the contents of words instead of modelling entire 
utterances.  
 
Four learning experiments were conducted for both the reinforced and non-reinforced cases in which the 
scalar value for a keyword and for the surrounding carrier sentence are varied independently. Three extreme 
and one intermediate situation are considered: (i) no differential scalar value at all, (ii) all scalar value on 
carrier sentences, (iii) all scalar value on keywords, and (iv) 100% scalar value on keywords and 50% scalar 
value on carriers. It turned out that the differences between overall accuracies of reinforced versus non-
reinforced learning, and non-weighted versus the weighted cases are not large. Only when scaling the 
keyword downwards to zero without reinforced learning did poorer recognition rates occur, as is expected.   
 
In the non-reinforced case an increase in the weight of a keyword increases the recognition confidence 
notably due to diminished statistical saliency of carrier sentences that are shared between several concepts. 
Similar trends can be detected in the reinforced case as well, although the change is much smaller in this 
case. However, the suppression of the ‘value’ of carrier sentence information, when compared to the 
keyword case, seemed to impair the keyword recognition rate in both cases, inferring that that the 
surrounding context facilitates keyword recognition. This is a reasonable outcome: at least with such a small 
vocabulary and simple grammatical structure, the statistical properties of carrier sentences are probably 
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biased to point at specific keywords. the surrounding context facilitates keyword recognition. This is a 
reasonable outcome: at least with such a small vocabulary and simple grammatical structure, the statistical 
properties of carrier sentences are probably biased to point at specific keywords. 
 
Figure 4 shows local and cumulative recognition rates for scaled and non-scaled experiments with non-
reinforced learning (top: first 300 utterances in detail, bottom: the entire material in a longer evaluation 
window). As can be seen, the difference in recognition accuracy is not significant, although focused 
keywords obtain a small overhead in the beginning. With large amounts of training material cumulative 
accuracies converge to similar accuracies. An interesting detail can be seen at approximately 700 and 1700 
utterances, where focused keyword accuracy dips clearly due to some local variation within the speech 
material while non-focused accuracy remains relatively stable. 
 
 

 
 
Figure 4 Word recognition accuracy, focused ( keywordw = 1, carrierw  = 0.5) versus non-focused attention. 

 
When the keyword scaling is set to zero, the learner cannot detect directly any cross situational statistics (see 
Smith & Yu, 2008) between occurrences of similar auditory word forms and a specific concept. In a non-
reinforced situation the learner can only make a guess between the concepts sharing the same characteristic 
carrier sentences since the learner does not ‘hear’ the keyword at all. In the reinforced learning case the 
learner can accidentally stumble upon cues for auditory word form. What happens in a reinforced non-
keyword focused situation is that the carrier sentences enable correct recognition every now and then similar 
to the non-reinforced case, but the recognition window can overlap partially with the keyword specific 
segments despite that a small penalty is introduced for zero probability transitions in the recognition 
window. These types of transitions are then summed to the concept matrix, making a small but increasingly 
significant difference to other concepts sharing the same carrier sentence. This gradually increases the 
overlap between the recognition window and the segments associated with the keyword in the future input, 
increasing the selectivity and recognition accuracy near non-focused or keyword-focused learning situations 
on the long run. 
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4.3 Attention-gated mechanism for speech detection 
 
The next attention based model in the ACORNS memory architecture that makes use of semantic long-term 
memory controls the type of input data that is passed from the echoic memory into the working memory.  In 
the architecture the auditory signal in the form of a waveform is split into time slices using a moving 
window and introduced into the attention-gating architecture one at a time so it can learn to detect speech 
(Figure 5).  The training samples for the attention-gated reinforcement model are auditory samples of non-
speech (crowd noise) and speech (first female speaker from English the ACORNS database).  The test data 
includes (i) different samples take from the same crowd scenes used for training; (ii) new non-speech 
samples from scenarios not used in training; (iii) different recordings of the training utterances by the first 
female speaker, (iv) the first female speaker saying different utterances from those used in the train samples; 
and (v) a second female speaker saying the original utterances.   
 
The model uses an adaption of the actor-critical form of reinforcement learning (Sutton and Barto 1988) to 
learn and update the critic’s weights cw  and the actor weights sw  (stored as semantic long-term memory) to 
determine if an auditory input section is speech.  A sample is selected and moving window auditory section 
inputs are created along the full length of the auditory sample and introduced one section at a time to train 
this neural network model. 
 

 
 
Figure 5 Reinforcement based attention-gated model to discriminate between speech and non-speech.  
 
Until the end of the specific auditory sample the following process is repeated to train the model.  The 

reinforcement model uses the auditory input section f
r

 and critic weights cw  (stored as semantic long-term 
memory) to create the activation of the critic unit c  (working memory activations):  
 

j
c

j fwc ⋅=∑          (1) 

 
where j  is the index for the data points in the input section (1 to 30)  
 
Once this is performed then the probability that the actor unit i  is set active for the input section is 
calculated: 
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The next input section of the sample f ′
r

 is then selected and the critic activation 'c (working memory 
activation) is calculated: 
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A difference value between the critic value for the previous input auditory slice c  and the current one c′  
that is determined according to: 
 

))(( γδ −′−= cc          (4) 
 
where γ  is the discount rate at 0.9.   
 
The immediate reward IR  that is used to change the weights after each auditory input section is determined 

using the difference value δ  and the input section values 'f  using the Equation below.  Hence this gated 
model makes use of the fact that it is possible to identify if the input section is correctly detected and 
allocates the immediate reward value: 
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For each input section the critic weights (semantic long-term memory representation) are updated with η  
being the learning rate at 0.0000035:  
 

)( η⋅+= IRww cc                      (6) 
 
The actor weights (semantic long-term memory) are updated based on the immediate reward for the actor 
unit i with the highest probability: 
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The delay reward values kDR  are used to update weights at the end of the full non-speech and speech 

sample and are determined using the equation below.  The DR value reflects the degree based on the 

difference value and input section values 'f
r

that the model correctly identifies the sample, and is defined as 
follow: 
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where k  is the index for delay reward values (1 – positive, 2 – negative) 

 

At the end of the auditory sample the delayed reward values are used to update the critic weights (semantic 
long-term memory): 

 

)( η⋅+= k
c

j
c

j DRww                     (9) 

 

The actor weights (semantic long-term memory) at the end of the sample are also updated with the delay 
reward values based on the actor unit i  with the highest probability at the time when the delay reward 
values are calculated and whether the input sections are detected correctly:   
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s
ij

s
ij sDRww                  (10) 

 
The auditory waveform samples for both the training and test data are converted into auditory input slices 
using the logarithmic mel-spectrum approach.  Training is performed using each full sample of speech and 
non-speech in the training set selected randomly and presented over 17 epochs to allow the reinforcement 
attention gating system to learn to differentiate between speech and non-speech.   
 
The reinforcement based attention-gated mechanism is tested using speech and non-speech samples made up 
of auditory input section values one at a time along the full sample.  The reinforcement gating system is able 
to detect correctly 93% of the new non-speech auditory input slices from the crowd scenes that are used to 
train the network.  When considering the detection of speech the performance is 80% for the new versions of 
the same utterances and new utterances by the training female speaker.  The incorrect detection of speech 
slice inputs by the gating network is due in part to periods in the speech samples where there are no speech 
sounds for instance between words.  However, as a frame-based approach is used and given speech typically 
crosses multiple frames, it will be possible to use this characteristic to identify wrongly detected speech 
frames.  This is possible in that when a frame of speech is correctly detected and then a frame representing a 
signal within say 200ms is also detected as speech the frames between these can also be assumed to be 
speech.  When considering the performance on speech from a female speaker who is not used in training the 
reduction in performance is not that significant (76%), which indicates that the system is not specific to the 
training person and can be used for other female speakers.   

4.4 The phoneme and word recognition within the memory architecture 
 
An application of the memory architecture for identifying words and phones has been devised using the non-
negative matrix factorization (NMF) approach.  The conceptual representation related to the memory 
architecture is shown in Figure 6.  NMF has been used in the ACORNS project to discovered pattern in an 
utterance. In the present NMF bottom-up approach, recognition is driven by the co-occurrence of acoustic 
events. In general, these events are the occurrence of specific patterns in the time-frequency plane.  This 
leads to a vectorial representation of high but fixed dimension called ‘Histogram of Acoustic Co-occurrence’ 
(HAC).  In HAC, the probability of acoustic events is accumulated over a graph (representing speech input). 
The HAC-model (histogram of acoustic co-occurrence) with its associated learning algorithm based on NMF 
is able to discover recurring acoustic patterns in speech both without supervision and with weak supervision.  
By extending this model using ‘time Histogram of Acoustic Co-occurrence’ (tHAC) it is possible to estimate 
at which specific times the acoustic patterns have occurred.  A second option for localizing the patterns is to 
use a sliding window. If a pattern is detected at the current position, we know it must be within the window 
boundaries. By combining both ideas, an even finer time estimate is obtained. With this approach, 
continuous speech recognition on the TIDIGITS database was successful. There is now a bottom-up 
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activation-based recognizer that doesn’t need a search algorithm like Hidden Markov Models (HMM) (see 
also Deliverable D4.1). 
 
In Figure 6 the echoic memory contains the buffer of speech for copying exemplars and eHAC and ichonic 
memory buffer of semantic features for copying exemplars and eHAC.  The working memory representation 
incorporates a gated buffer of speech and semantic features and eHAC representation of activated phones 
and semantic features.  eHAC instead of multiplying the probability of acoustic events with the time at 
which they occur (tHAC), multiplies the probability of acoustic events with two or more monotonous 
function of time, e.g. exp(-αt) to allow estimating the time at which a pattern is activated.  This means that 
the input representation maintains cells (nodes or rows in an input vector) which are activated by an acoustic 
event and whose activity then decays. This is cognitively very plausible. From that NMF computes 
activations of discovered patterns and their activation time.  Hence the output becomes activated events 
(patterns) which decay with time.  The methods described above have been validated and are operational.  
 
The architecture will be developed further as described below. In order to develop semantic long-term 
memory representations of words in terms of phone-like acoustic units the NMF approach can use a 
hierarchical approach.  Assume hundreds of VQ-based word-sized patterns were discovered with NMF: 
V=W*H with W the word models (one per column) in terms of VQ-label co-occurrences. Factorizing 
W=Y*G should result in common units across the words, like phones, in Y and the presence/absence of each 
of these units in each word in G. This is an off-line training process: a discovery on the structures in 
memory.  Hence this produces V=Y*G*H.  Once Y is fixed and the phones in a language are learned, only a 
new entry in G is needed to extend the vocabulary with one word.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 A conceptual representation of the NMF model for word and phone recognition related to the 
ACORNS memory architecture. 

4.5 Semantic long-term memory models for semantic (visual) feature 
for word representation 
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speech input do not resemble real input, do not account for the variability of real world perception of objects 
and actions, and due not represent the ambiguities in terms of reference that language acquiring children 
have to face.  Instead they represent a strong form of a prior knowledge that is not in accordance with the 
general goals of the ACORNS project. To overcome this shortcoming it was decided to use semantic 
features to approximate the visual input of the learner.  In particular, features can be used to model (i) token 
variation (noise), (ii) type distance, and (iii) referential ambiguity. Token variation means that actions and 
objects of a category look different at different instances, either due to a change in perspective, or they might 
actually be different individuals.  Type distance means that some semantic categories are more similar to 
others giving rise to confusing in the learner.  
 
Semantic features allow the modelling of similarity and simulate phenomena like over-generalization 
(calling a cat “dog”) that can be observed in during language acquisition. Further, referential ambiguity can 
be accomplished by using several object position slots.  An object is defined by a set of features, depending 
on which categories apply to it.  For example one position might be filled with the feature sets of red, furry, 
eats, bear, and animal, while another slot might be filled with the feature sets of round, green, apple, food. 
The learning system might then be exposed to an utterance such as ‘The bear eats the apple’ or ‘The red 
furry animal eats the round green food’.  Although the main switch from the usage of rigid tags to the use of 
full set of ACORNS semantic features as described in deliverable D5.4.2 for the database that combines 
recording made in the two periods of the project, first explorations with semantic features were already made 
using a features set defining the concepts of the records produced in the first period of the project.  The 
primary issue to solve was what sort of cognitive plausible module could provide a good interface between 
the features and the parts of the acorns implementation which is concerned with the acquisition of the 
auditory representations.  
 
The acquisition of semantic categories on the basis of these semantic (visual) features is performed using 
two mapping approaches: self-organising map and biased competitive layer.  The weights produced by these 
models (see Figure 1) are stored in semantic long-term memory and activations associated with a specific 
semantic feature word patterns occur in working memory.  A self-organising map (Kohonen 1997) is an 
unsupervised learning algorithm that uses an additional competitive output layer of nodes in addition to the 
input layer. Each unit of this output layer acquires a prototype vector.  The closer the prototype vector is to 
the input vector the stronger it reacts to it. During learning (semantic long-term memory weights) the output 
vectors systematically adapt to cover the categories present in the input vectors so that the final output map 
captures the distance of input vectors in the topography of the output grid.  Simulations are made with binary 
output (winner-takes-all) and probabilistic outputs.  
 
Like a self-organising map the Biased Competitive Layer is an unsupervised learning algorithm that uses an 
additional competitive output layer of nodes in addition to the input layer.  Also in this algorithm, each unit 
of this output layer acquires a prototype vector, with the closeness of the prototype vector determining the 
strength of its reaction. However, in contrast to the self-organising map where the distance in the output grid 
is supposed to represent the distance in the input space, the biased competitive layer does not use an output 
grid, but merely a number of output units that have no relation to each other.  The algorithm uses a bias that 
increases if a unit is not selected to make sure that every unit is selected an adapted to the input space. A 
number of experiments were run to generate over-generalizations, one of the most basic behavioral findings 
explained by semantic features during first word acquisition. Over-generalization in this context is the 
application of one concept, such as [[dog]], for everything similar to a dog (like furry animals with four legs) 
- a behavior reported for children during language acquisition (e.g., Clark, 1973).  With a 4x4 output grid 
(16 units for 13 concepts) the self-organising map did not lead to a unit for every concept. The reason for 
this can be seen in the general mechanisms of the Kohonen algorithm. It strives to map similar vectors closer 
to each other. Hence, it mapped similar vectors (like mama and papa) into the same unit. Choosing a higher 
resolution (8x8) overcame this problem, since consequently the self-organising map had more space to 
represent distances in input space while still using different output units for different concepts. Further, we 
demonstrated that the conceptual analogue of the hypernym/hyponym problem did not occur in this 
architecture.    
 



FP6-2002-IST-C                                                               Spec. targeted research p roject 
         ACORNS 

 

 
Deliverable D 3.2  13/ 31 

© 2008 ACORNS Consortium  
 

Biased Competitive Layers performs as well as self-organized maps. Since this architecture did not attempt 
to map conceptual similarity into output space, it always uses different units for different concepts. We 
showed that the model develops 13 conceptual units, each of which activates the strongest when the feature 
set that defines the concept is presented to the model. In simulation designed to test for over-generalizations, 
it could be observed that the [[dog]] concept is applied to a feature set defining a cat for a number of time 
steps, until the concept [[cat]] is established. This result suggests that over-generalization is not necessarily 
caused by a representation of wrong or insufficient features, but just by the activation of the concept which 
is the closest match.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Representation of semantic long-term memory based recurrent self-organising memory model for 
emergent speech representation. 
 

4.6 Semantic long-term memory self-organising based word 
representation  

A further semantic long-term memory based approach within the ACORNS memory architecture uses a 
recurrent self-organising map model for learning an emergent representation of speech.  This model 
combines speech signals and semantic (visual) features to develop emergent speech representation.  The 
complete model is depicted in Figure 7. The lower speech signal recurrent self-organising model is trained 
using two inputs, namely the current speech window time slice representation of the speech waveform and 
the previous time-step activations from the recurrent self-organising network.  The previous time-step 
activation can be seen as the abstract representation of the previous speech signal slices in working memory.  
Making use of finding from the semantic (visual) feature long-term memory model considered in subsection 
4.5 a self-organising network is trained using the semantic (visual) features to produce an unsupervised 
semantic representation for specific words.  It should be noted however that the semantic feature set was 
devised as an intermediate approach for test of concept related to the recurrent self-organising map model.  
In future implementations and extensions of the model the ACORNS semantic (visual) feature set (see 
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deliverable D5.4.2) will be used as it is now available and offer a better approach for representing the visual 
scene.  Once training is completed for these two lower networks, the upper recurrent self-organising model 
is used to associate the speech signal activations with the semantic (visual) feature activations of the words 
overtime.   
The semantic long-term memory model approach applied to emergent speech representation described here 
uses the basic self-organising map for semantic (visual) features representation and an adaption of the 
recurrent self-organising maps of Voegtlin (2002).  In the lower speech signal recurrent self-organising 
model (Figure 8) the speech slices making up the word representations are introduced one at a time with the 
previous activation from the self-organising network acting as the working memory information.  In the 
model a set of weights (semantic long-term memory model) are trained so they are associated with the 
current speech input slice and another set of weights are trained so they relate to the recurrent self-organising 
activations at previous time step.  The upper associator recurrent self-organisation network structure is 
depicted in Figure 9. This network is trained to produce speech representations using the activations of the 
lower speech signal recurrent self-organising network for each speech time slice, the activation for the upper 
associator recurrent self-organising map at the previous time step and the activation for the appropriate word 
from the semantic feature self-organising network.  For the full word input semantic (visual) feature 
representation with the semantic self-organising network and each time speech slice for the lower speech 
signal recurrent self-organising network and the upper associator recurrent self-organising network a best 
matching unit with the lowest activation on the output layer is identified.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 The representation of lower speech signal recurrent self-organising network structure. 
 
The activations (working memory in ACORN memory architecture) in the lower speech signal recurrent 
self-organising network is determined using two different sets of Euclidean distance values and in the upper 
associator recurrent self-organising networks using three sets of Euclidean distance values.  The two sets of 
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step )1( −tJ
r

 and the related weights Jw .  The sets of Euclidean distance values are normalised based on 

the largest value in each of the sets.  Two parameters α  and β  for the lower speech signal recurrent self-

organising network and three parameters χ , δ  and ε  for the upper associator recurrent self-organising 
network are used to control the level of impact of the sets of Euclidean distance values when creating the 
activation for the recurrent self-organisation maps.   
 
To determine the activation (short-term memory) for the units in the lower speech signal recurrent self-

organising map E
r

 and the best matching unit, A
r

 and B
r

 are combined (Equation 12) and normalised based 

on largest value.   
 

))()(( iii BAE ⋅+⋅= βα                   (12) 
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Figure 9  The representation of upper associator recurrent self-organising network structure for emergent 
speech representation. 
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where the learning rate is γ  (0.01) and the neighbourhood function is ikh . k  is the index of the best 

matching unit and i  index of other units in self-organising network, ikh  reduces the greater the distance 

between i  and k .  The shape and units in the neighbourhood depends on the neighbourhood function used.  
The number of units in the neighbourhood usually drops gradually over time.   
 
The training and test input for the recurrent self-organising memory model are words extracted as they 
appeared in 50 utterances taken from the ACORNS English database from a female speaker repeated 5 times 
and the test data is the same words extracted from 5 new recording by this female speaker of the 50 training 
utterances.  703 words are used for training and the same number for testing, with 42 distinct words, with the 
same words extracted when recorded in utterances containing different words.  For instance, two diverse 
utterances made of different words from which the same word ‘shoe’ at different points is extracted are ‘a 
shoe is a fashion item’ and the second ‘what matches this shoe’.  The input includes words that could be 
learned by a young child including ‘daddy’, ‘mummy’, ‘nappy’, ‘did’, ‘what’ and ‘shoe’.  The semantic 
feature network is trained and tested using semantic (visual) feature inputs for 30 nouns and verbs used in 
the lower speech signal recurrent self-organising network.  Semantic features were only produced for a 
selection of nouns and verbs as an examination for the approach and so words such as ‘what’, ‘did’ ‘finally’, 
‘today’, ‘matches’ and ‘the’ were not consider.  The upper associator recurrent self-organising network is 
trained and tested using the activations produced by the lower speech signal recurrent self-organising map 
for the logarithmic mel-spectrum value speech time slices and the semantic feature self-organising map for 
the subset of 30 nouns and verbs.  The speech waveforms for the 30 distinct nouns and verbs are extracted as 
they appear in the same 50 recorded utterances as those used for the lower recurrent speech signal self-
organising network which produced 417 words for training and the same number for testing the upper 
associator recurrent self-organising network.   
 
The lower speech signal recurrent self-organising network and the semantic feature self-organising network 
are trained separately with the words in each training set epoch introduced in random order.  For the 
semantic feature self-organising network the semantic features for the 30 nouns and verbs are introduced as 
a single representation per word.  The semantic feature inputs are based on an approach similar to 
McClelland and Kawamoto (1986) and use various semantic features and their values.  For example, for the 
verbs one such feature is the level of physical effort required when performing the action associated with the 
verb and the possible values are ‘small’, ‘medium’ or ‘large’.  The full set of features for the verbs and 
nouns and possible values are shown in Table 1 and Table 2, respectively.  The values associated with 
semantic features that have a single option have an extent value between 0 and 1.  A telephone can be seen 
as a piece of furniture to the extent 0.5 for example. For those features that have multiple possible options 
such as texture each of the three options should have a value that adds up to 1.  A shoe for example has a 
smooth top and a rough sole and hence would have the following value for semantic feature ‘texture’: 
smooth: 0.5, rough: 0.5 and liquid: 0.0.   
 

Table 1 Semantic features for verb meaning 
Semantic Features Responses Semantic Features Responses 
Body Movement Small/Medium/Large Precise of activity Extent (0-1) 
Interaction with object Small/Medium/Large Communication Extent (0-1) 
Interaction with agent Small/Medium/Large Change to object Small/Medium/Large 
Task Complexity Small/Medium/Large Cognitive complexity Small/Medium/Large 
Emotion related Extent (0-1) Instigated activity Extent (0-1) 
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Table 2 Semantic features for noun meaning 
Semantic Features Responses Semantic Features Responses 
Worn Extent (0-1) Tool Extent (0-1) 
Food related Extent (0-1) read Extent (0-1) 
Furniture Extent (0-1) animate Extent (0-1) 
Inanimate Extent (0-1) man made Extent (0-1) 
Communication device Extent (0-1) Provides information Extent (0-1) 
Gender Male/Female/Neuter Texture Smooth/rough/liquid 
Used by Child/Adult/Non technology Small/Medium/Large 
Creates noise  Extent (0-1) Size Small/Medium/Large 
Breakable Fragile/Durable/Strong   

 
When considering the best matching units for the semantic feature input for the semantic self-organising 
network (Figure 10) in most cases each word is located in an individual unit on the network.  Furthermore, 
similar words are also located in close regions of the self-organising map.  For instance higher level 
cognitive function such as ‘like’ and ‘see’ are located in the top left of the network and words associated 
with humans such as ‘daddy’, ‘mummy’, ‘Ewan’ and ‘baby’ are found in lower left hand corner.  Also the 
written communication media ‘newspaper’ and ‘book’ are located close together as are the action verbs 
‘comes’ and ‘join’.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 Best matching units for semantic feature self-organising map. 
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Table 3 Best matching unit locations of the upper associator recurrent self-organising for the speech time slices 
for two examples of the words ‘change’ and ‘baby’. 
 

Time slice Change (1) Change (2) Baby (1) Baby (2) 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

10 16 
10 16 
10 16 
8 15 
18 12 
18 12 
18 12 
18 12 
18 12 
18 12 
18 12 
16 17 
15 17 
14 17 
13 18 
4 16 
7 15 
8 16 
8 16 
8 16 

8 16 
10 16 
10 16 
10 16 
8 15 
18 12 
18 12 
18 12 
18 12 
18 12 
18 12 
18 12 
16 17 
16 17 
14 17 
3 15 
4 16 
7 15 
8 16 
8 16 
8 16 
8 16 

10 11 
16 10 
16 10 
16 10 
16 10 
16 10 
16 10 
16 10 
16 10 
12 12 
13 10 
7 13 
6 14 
5 13 
9 12 
 

7 14 
16 10 
16 10 
16 10 
16 10 
16 10 
16 10 
16 10 
16 10 
16 10 
14 11 
8 12 
6 14 
5 14 
7 14 
10 13 
12 12 
 

 
When examining the best matching units for the speech slices for lower speech signal self-organising map 
and the speech slices and the semantic (visual) features upper associator recurrent self-organising network it 
is possible to identify that the word units have distinct representations.  Such a representation would allow 
an agent to learn and recognise words without a real need for an understanding of the underlying speech 
sounds structures underlying the words.  For instance, two representation from the upper associate recurrent 
self-organising map showing the best matching unit locations for each of the speech time slices for two 
examples for the words ‘change’ and ‘baby’ are shown in Table 3, with those for ‘baby’ being very different 
to those for ‘change’ and visa-versa.  In the representation the x-axis location is the first digit in the pair and 
the y-axis location the second.  This feature of the recurrent self-organising model in that speech in the first 
case is represented in terms of the individual word units is also felt to be found in children (Saffran et al. 
2001).  
 
In addition, when considering the sequences of best matching units produced by the lower speech signal 
recurrent self-organising map and upper associator recurrent self-organising map for the speech slices it is 
found that they are associated with specific speech sounds.  The speech sounds include English phones from 
the DARPA phonetic alphabet such as N, IY, EY, AH, SH and CH.  By developing such speech sound 
representation this would aid the learning of new words which contain similar sound sections.  The ability to 
recognise that words are made up of distinct speech sounds such as phones also occurs in children once they 
learn the capacity to recognise individual word units (Dietrich et al. 2007).  For the lower speech signal 
recurrent self-organising network, it is possible to identify various best matching unit regions for sequences 
of input slices that are found to be associated with different speech sounds.  The top left hand area coloured 
light grey on Figure 11 represents the sound ‘S’ at the end or start of words such as ‘matches’, ‘taps’, 
‘news’, ‘seen’, and ‘comes’, as well as the ‘S’ sound inside words such as ‘newspaper’, ‘closer’ and ‘house’.  
The units in top right of the recurrent self-organising map in Figure 11 are those best matching units for the 
input speech slices that are associated with ‘SH’, ‘CH’, ‘JH’ and ‘K’.  These are sounds found in words such 
as ‘fashion’, ‘shoe’, ‘shy’, ‘matches’, ‘couch’, ‘j oin’ and back.  The sound ‘AH’ is located in the lower left 
corner of the network and occurred in words such as ‘telephone’ (T EH L AH F OW N),  ‘Ewan’ (Y UW 
AH N) and ‘what’ (W AH T).  In the bottom right of the map there is a region of best matching units that is 
associated with the ‘A’ , ‘I’ and ‘OW’ sounds.   
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Figure 11 Units of recurrent self-organising map associate with specific speech sounds from word speech signal.   
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Figure 12 Units of upper associator recurrent SOM that have learned to associate specific speech from the 
speech signal.   
 
 

SH S S F AH AW  P M 

F L  L  

CH Z AE P AW 

T T F AE K Z  

HH R W Y Z

K AH P M M S S 

K T T  UW 
W 

AO T

D K T M JH S 

K T AH Y JH 

 UW 

W 

UW 
AH 
OW 

AH 
OW N N N D D CH JH 

EH 
 L 

UH UH 

AE M AH UW AH IY  L UW AH 

IY  B B IY  UW B 
AE 

AH 

B 
AA 

B 
AA AH AH UW L EY 

AW AA AE AE IY  IY  AO IY  

T B AW B 
EY R AY 

V EY IY  

B G 
OW 

AH AY AY D 
EH

EH 

IH  AA  OY 
AE 

B 
AE EY D EY AO D K 

N  N  

AE 
K 

IY  

OY AO 
ER 

S 



FP6-2002-IST-C                                                               Spec. targeted research p roject 
         ACORNS 

 

 
Deliverable D 3.2  21/ 31 

© 2008 ACORNS Consortium  
 

The representation of the upper associator recurrent self-organisation network in Figure 12 shows the 
location of best matching unit sequences related to specific speech sounds for particular words.  The labels 
represent the associated speech sounds (using the DARPA phonetic alphabet). The colour patterns indicate 
the associated words based on semantic (visual) features.  It is possible to identify that various units of the 
network are associated with specific speech signal sounds and semantic (visual) features for words.  For 
instance, the ‘SH’ speech sound for the word ‘shoe’ (SH UW) is associated with the top-left cell (x=1,y=1).  
This is the light grey unit labelled ‘SH’.  When considering the sequence of best matching units it is found 
that the ‘S’ speech sound for the words ‘taps’ (T AE P S) and ‘house’ (HH AW S) are located close together 
on the map in cell (x=1,y=3) and cell (x=1, y=5) respectively.  It is also possible to identify further regions 
of the map that are associated with specific speech sounds such as the ‘K’ sound.  Units x=1 and y= 6 and 7 
are associated with the ‘K’ sound for ‘car’ (K AA R) and units x=1 and y= 8 and 9 are associated with the 
‘K’ sound for ‘couch’ (K AW CH).  The ‘T’ sound for the words ‘telephone’ (T EH L AH F OW N) and 
‘taps’ (T AE P S) can also be seen on the upper associator self-organising map to be location in their own 
individual units but close together on the map.  These units for the speech sound ‘T’ for ‘taps’ are 
represented on the map as units that are dark grey labelled ‘T’ and the units for the sound ‘T’ for ‘telephone’ 
are those that have black dots with a white background labelled ‘T’.    
It is also possible to see that related words are located in near units on the associated self-organising map.  
For instance,  the sounds ‘M’ in ‘mummy’ (M AH M IY), ‘D’ (D  AE D IY) in ‘daddy’ and ‘Y’ for ‘Ewan’ 
(Y UW AH N) and hence family-human related words are located around x=8 and y=13.  This also the case 
for family-human related words for sounds such as ‘AH’ and ‘IY’ for the word ‘mummy’ (M AH M IY), 
‘IY’ and ‘AE’ for the word ‘daddy’ (D AE D IY), ‘AH’ and ‘UW’ for ‘Ewan’ (Y  UW AH N) and ‘baby’ (B 
EY B IY) ‘B EY’ speech sound.  These units are located around x=11 and y=15.  This is also the case for 
communication media such as ‘telephone’, ‘newspaper’ and ‘book’, with speech sounds associated with 
these words located close together on the self-organising map around x=10 and y=7.  The sounds associated 
with these words at this location are ‘AH’ and ‘OW’ for ‘telephone’ (T EH L AH F OW N), ‘UW’ and ‘N’ 
for ‘newspaper’ (N UW Z P EY P ER) and ‘UH’ and ‘B’ for ‘book’ (B UH K).  The speech sounds that are 
included in a specific word can be seen to be distributed in different units despite the semantic (visual) 
features input being the same for full length of word, which indicates that the speech signal and semantic 
feature representations are combined in such away that the two sets of activations have a joint impact on the 
associator recurrent self-organising network organisation.  For the word ‘like’ (L AY K) the ‘L’ speech 
sound is located on x=14 on x-axis and y=16 and ‘AY’ speech sound is located at x=17 and y=11 and 12.   
 
 

5 Episodic long-term memory in ACORNS memory 
architecture  

 
There is growing interest in the use of episodic long-term memory for automatic speech recognition, hence 
in this section of the report we consider one model within the ACORNS memory architecture. The episodic 
long-term memory model in the ACORNS memory architecture incorporates a modification of the 
MINERVA2 approach to perform alpha character and keyword recognition.  MINERVA2 is a 
computational multiple-trace episodic memory model that successfully predicts basic findings from the 
schema-abstraction literature.  MINERVA2 simulates episodic long-term memory by first storing ‘traces’.  
Inputs to the system - ‘probes’ - are compared to all  of the traces in long-term memory. The retrieved ‘echo’ 
returns a vector containing additional knowledge that is unspecified in the input, e.g. its class.  The 
activations are determined by the similarity between the input and each stored trace. Hintzman (1986) 
showed that such a model is able to create abstract representations of stored data, and that by probing 
repetitively with the abstracted representations (a process referred to as ‘echoes of echoes’), it is possible to 
refine the response and exploit the implicit relationships between individual stored traces.  In response to a 
probe, MINERVA constructs an echo by activating all samples in the training data – see Figure 13.  
 
The main parameters of the model are (i) the feature representations, (ii) the similarity function, (iii) the 
activation function and (iv) the echo retrieval function.  In the implementation the feature vector consisted of 
the standard representation used in ASR tasks – mel frequency cepstral coefficients (MFCCs). The class 
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labels (i.e. the identities of the keyword) are stored as blocks of features.  The similarity between the input 
and stored traces has to be computed using an intermediate step that is different to Hintzman’s original 
binary approach.  In our implementations, the distance measure used is the Euclidean Distance: 
 

∑
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Figure 13  Schematic diagram of MINERVA2 
 
Where iI  is the thi  feature of the input vector and it is the thi  feature of the trace t.  The similarity between 

the input I and the trace t is then computed by: 
 

))max(/(1 ,,,, tItItItI EDEDEDSIM =−= ,  

 
where tIED ,  is the vector of length n, with n equal to the number of features, and max( IED ) is the 

maximum value in the vector. It is necessary to normalise ED in order to ensure that the range of tIsim ,   is 

between 0 and 1. To gain the final activation value w of the traces with respect to input I, the similarity 
measure is raised to the power of p. This in effect gives more importance to the most similar traces and less 
to those traces that are not similar. 
 

p
tItI simw ,, =                    (17) 

 
Hintzman sets the value of the power factor p to 3, however p can have any value. 
 
Echo intensity is a measure of how much activation has been triggered.  The more traces that match the 
input, and the more similar they are to the input, the greater the value of I. Echo intensity can be used to 
judge frequency and familiarity; it is defined as follows: 
 

∑=
T
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where I is the input, T is the total number of traces stored. 
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The echo is the derived abstraction of the stored traces as a response to the input. This is accomplished by 
computing a weighted sum of all traces in memory. The echo then becomes: 
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where tIw ,  is the weight on trace t for input I, and T corresponds to the number of stored traces. Note that in 

our adapted approach, a normalisation of this value is necessary for numeric reasons. 
 
MINERVA2 offers a powerful means for generalizing by accessing the fine detail retained in all the training 
data. However, it is severely hampered by its inability to model temporal sequence.  MINERVA2 is 
essentially a single-frame classifier; hence moving to a corpus of utterance as provided by the ACORNS 
database requires the addition of a mechanism for handling variable length tokens.  However, such a step 
constitutes a fundamental change in the underlying methodology. Prior to the development of a fully 
functional temporal episodic model, several intermediate solutions present themselves. In this study, a ‘bag-
of-frames’ (BoF) approach was adopted as the configuration that involves the least number of assumptions 
about the temporal evolution of speech patterns. BoF simply means that a word is classified according to the 
accumulated response of all of its constituent frames regardless of the order in which they occurred.   
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where bagsClass is the class that is attributed to the whole ‘bag-of-frames’ constituting an utterance, W is a 
class from the set of all classes C, n is the frame-index, and echoClassesVals are the values that the echo 
returns for all possible classes. 
 
Before assessing model results, it is necessary to assess the relationship of single-Gaussians and Gaussian 
mixtures models (GMM) to the MINERVA2 approach.  MINERVA2 is an instance-based approach which 
has an element of abstraction. Instead of performing the abstraction before the current problem (i.e. the 
current test input) is known, MINERVA2 waits for “training” of some of its parameters (such as setting the 
mean of the data to the current problem). At “training time” the similarity weighting in MINERVA2 
substitutes all training data for a locally averaged, weighted single mean that best fits the current input. 
Hence, MINERVA2 models the various classes to be expressed using only one value per feature. This 
means that after training, its parameter complexity could be considered to be comparable to a single 
Gaussian.   
 
On the other side, allowing for multiple Gaussian to represent the data could allow the storage of more and 
more detailed, “episodic” information, with the extreme being to allow one Gaussian per training frame.  At 
the extreme end, the HMM can no longer approximate the variance as there is only one data point per 
sample Gaussian, and hence either the variance is set to zero or to an artificial value. If the variance were set 
to zero, the system would lose any power of abstraction. On the other hand, setting the variance artificially 
to any value above 0 means over generalising the dataset, and hence discrimination between classes should 
become very difficult. 
 
Of course, it is extreme to model a whole sentence with one Gaussian. This has been done in those 
experiments that were performed on the ACORNS database, since the speech databases used only offers a 
general label for the sentences; it should be noted, though, that often in real ASR applications different 
classes will have some frames that are very similar. For example, sometimes the models of plosives such as 
/p/ and /t/ will include the generic silence and burst at the beginning of the phones. Each separation of parts 
of a speech signal spoken as a stream holds assumptions. As such, this can be seen as an extreme example of 
a problem that occurs in ASR.   
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In order to consider the suitability of the episodic long-term model some initial experiments have been 
performed on less complex data than what is found in the ACORNS databases.  The database chosen for this 
investigation was the TI-ALPHA isolated word corpus. The data consists of 16 speakers (eight male and 
eight female) uttering the 26 letters of the US English orthographic alphabet (“A”, “B”, “C”, etc.). The 
complete test set consists of 6628 utterances, and the complete training set consists of 4142 utterances.  All 
experiments were conducted using standard MFCC features and their first and second derivatives, giving 
rise to a total of 39 features per frame. A 25ms frame was taken every 10ms. The classes corresponded to 
whole-word labels. Results were also obtained using a standard whole-word HMM baseline that employed 
left-to-right HMMs with three emitting states per model. A further HMM model was trained with only one 
emitting state in order to emulate the same ‘temporally-invariant’ model as in the BoF scheme. All HMM 
models were trained by incremental mixture splitting. The number of components per mixture was 
optimized for best performance.  
 
In statistical pattern recognition, the process of generalization is achieved by combining information during 
training. For example, in state of- the-art classifiers such as HMMs or Gaussian mixture models (GMMs), 
training data is used to find the mean and variance of a single- or multi-component Gaussian mixture 
distribution of the data. In direct comparison, episodic long-term memory model does something very 
similar – it also computes the mean of similarity-weighted data; however, there is no overall mean as the 
similarity weighting attempts to substitute a general distribution for one that best fits the current input. 
Hence, the episodic long-term memory approach models the various classes to be expressed using only one 
value per feature. The consequence is that the use of such similarity weighted training data allows the 
constructed models to take into account the fine-phonetic similarity found within a frame. Therefore, a 
hypothesis to be tested is as follows: does the use of similarity-weighted training data enhance the model’s 
recognition performance using the minimum number of model parameters? If so, then one would expect that 
episodic long term memory model would outperform a one-state single-Gaussian HMM, if it makes sense to 
take the similarity of such fine details into account. As can be seen from the results shown in Table 4, 
episodic long-term memory model clearly outperforms the single-state HMM.  
 
Table 4 Comparison between a single-Gaussian and MINERVA 2 model.  Multi- Speaker (MS)  and Speaker-
Independent (SI) recognition results on TI-ALPHA data.   
 

Classifier Error Rate 
MS: HMM S1 (single-Gaussian) 35.41 % 
MS: Episodic Model  11.27 % 
SI: HMM S1 (single-Gaussian) 39.97 % 
SI: Episodic Model 27.53 % 

 
 
HMMs typically use GMMs (rather than single Gaussians) in order to allow data belonging to one class to 
be modelled using different distributions.  In effect, the training data is split up and clustered during training 
to a previously defined number of Gaussian distributions. This means that in the subsequent testing stage, 
partially clustered training data is compared to the unknown input. However, in direct contrast, MINERVA2 
is based on the assumption that an online comparison of the input data to all of the training data leads to a 
more appropriate weighting of the information, and this may offer an advantage in recognition accuracy.  It 
is interesting to find out just how well/badly MINERVA2, which uses episodic long-term memory would 
perform in comparison to HMMs using GMMs and/or multiple states. The first experiments were run on the 
complete test- and training data in multi-speaker mode, and the results are presented in Table 5. As 
expected, the best recognition performance was obtained using the three-state-HMM with 120 Gaussians per 
state. 
 
In the second experiment a subset was developed using utterances from the English ACORNS database, 
which consists of 4 speakers (two male and two female) saying 6 different utterances.  These 6 utterances 
contain 6 keywords and 2 different carrier sentences (i) ‘daddy comes’; and (ii) ‘where is the’.  The 
keywords associated with the first carrier sentence are ‘back’ and ‘closer’ and the keywords associated with 
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the second carrier sentences are ‘car’, ‘daddy’, ‘book’ and ‘nappy’.  The training and test data consists of 
each speaker repeating the utterances 5 times, there are 120 training utterances and 120 test utterances.  This 
approach allowed us to establish the performance of the episodic long-term memory model on speaker 
independent (SI) and speaker dependent (SD) data.   All experiments were conducted using standard MFCC 
features for a 27ms frame taken every 13.5ms. The classes corresponded to keyword labels. 
 
Table 5 Multi-speaker recognition results.  S1 (S3): HMM with one (three) emitting states. 
 

Classifier  Error rate  
HMM S3 (30/60 GMM)  11.7 % 
HMM S3 (1 GMM)  33.4% 
HMM S1 (60 GMM) 11.9% 
HMM S1 (3 GMM)  52.6% 
Episodic Model (p=29) 27.5% 

 
 
For the speaker dependent (SD) experiments the Minerva2 system shows superior recognition results to the 
GMM.  The best GMM recognition results were found for 15 Gaussians per GMM. Experiments were 
performed with up to 120 GMM. This provides enough parameters to model every part of a sound in each of 
the test phrases. In the SI condition the 120 GMM model shows superior recognition performance over the 
MINERVA2 based episodic long-term memory system. It is noticeable that the number of Gaussians for 
optimal performance is rather high, (given that there are only about 15 utterances per model in the SI 
condition).  This suggests that the individual Gaussians in the mixture generalise less than the echo response 
of MINERVA2 based episodic long-term memory model, and hence the decision may be based on even less 
information than the echo acquired by MINERVA2.   
 
Table 6 Comparison between a single-Gaussian and MINERVA 2 model. Speaker dependent (SD) and Speaker-
Independent (SI) recognition results on ACORNS speech data. 
 

Classifier  Error rate  
SD: HMM S1 (single-Gaussian)  26.03 % 
SD: HMM S1 (15 GMM)  10.94 % 
SD: Episodic Model  5.0 % 
SI:   HMM S1 (single-Gaussian) 66.58 % 
SI:   HMM S1 (120 GMM)  44.80 % 
SI:   Episodic Model 58.33 % 

Classifier Error Ra te 

 
In response to the Episodic long-term memory based MINERVA2 bag-of-frames model’s ability to classify 
temporal speech data, the aim is to build on this by using a new model known as TEMM (Temporal 
Episodic Memory Model).  TEMM not only overcomes the inability of MINERVA2 to use temporal 
sequences for recognition flexibly, but it also employs a prediction mechanism as an additional source of 
information.  As the base operation, TEMM follows the principles of MINERVA2 and in doing so, the 
system acquires knowledge about how well each trace (i.e a memory representation containing features and 
their classification) in the database fits the current input data.  Feature prediction is a central part of TEMM. 
The fit of the predictions to the input data and how discriminating those predictions are with respect to the 
next best class provides an indication of (i) the goodness of fit of previous decisions (i.e. future decisions 
can influence past decisions), and (ii) the goodness of fit of current data to future data.  The prediction step 
fits neatly into the overall TEMM framework; by using the acquired similarity, or activation, of traces to 
input frames, it is possible to construct predictions for the features of the next input frame. Since it is speech 
recognition that is of interest, the competition between different classes is of primary importance. So, 
predictions are constructed for the features of each possible class.  
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As a consequence, the prediction step allows the model to keep track of how likely it is that the next input 
frame is going to belong to a particular class. This information is the same as the “intensity” of a prediction 
(corresponding to the summed activations that led to the prediction). I.e. a prediction’s intensity corresponds 
to a prior expectation that the next frame belongs to the same class. The prediction intensity is used when 
updating activations.  
 
Temporal information in TEMM is introduced using the concept of a ‘trace unit’ - a sequence of successive 
traces from the database. The database stores traces in sequence. So, the trace that follows any one trace in 
the database holds the frame that followed the previous frame in the speech signal. This means that trace 
units are blocks of traces (i.e. frame values and class information). These trace units hold an expanding 
context which, due to the fact that they preserve an accurate account of sequence in the original speech 
signal, contains the fine temporal information. Trace units expand as a function of the confidence associated 
with the classification of the input frames. 
 

6 Discussion and Conclusion 
In this report we have reviewed how the ACORNS project as successful developed a memory architecture 
within which various long-term memory models have been developed towards the aim of an intelligent agent 
that is able to communicate.  While these models in isolation can either focus on semantic or episodic long-
term memory, within the overall memory architecture they complement each other to work towards the 
overall project aim.  For the selective attention semantic long-term model (Section 4.2) it can be said that 
reinforced learning seems to compensate for keyword spotting.  Focused attention does not directly 
lead to better recognition results in this type of a learning problem, but it may help word segmentation and 
therefore acquisition of word models. However, a reinforced learning algorithm can also detect keyword 
locations with a moderate accuracy.  The attention-gating mechanism (Section 4.3) offers a semantic long-
term memory based model that offers the opportunity to limit the data being introduced into the working 
memory and so prevents it from being swamped by the use of reinforcement dopamine-like feedback by 
learning to differentiate between speech and non-speech.  The model when learning offers feedback in the 
form of the agent to itself as an immediate reward and from a caregiver in the form of a delayed award at the 
end of the auditory sample to achieve speech detection.   
 
By expanding on the current NMF models it has been shown that within the overall ACORNS memory 
architecture it is possible to make use of the hierarchical nature of the architecture to perform phone and 
word recognition (Section 4.4).  In line with the memory prediction model, we have strived to allow the 
representation of semantic (visual) features of words (Subsection 4.5) to work with minimal a priori 
knowledge, i.e. the processing architecture should not have any prior knowledge about what concepts it was 
expected to learn.  Both self-organising maps and Biased Competitive Layers appear to be good theoretical 
and computational accounts for the emergence of conceptual units as well as being biologically inspired 
unsupervised learning algorithms. Both models solve the hypernym/hyponym problem on the conceptual 
level. The can transform a set of input features into a set of conceptual probabilities, i.e. a vector defining for 
every concept that has emerged during training, how well it applies to input. The only weakness of both 
approaches is that a maximum number of output units need to be determined a priori and this number has a 
strong effect in the resolution of conceptual distance.  While the hyperonym problem is not very prominent 
in the speech corpus produced in first period with its limited words, it will additional records towards the 
corpus collected in period 2 when words like man and daddy, bear and toy, or food and apple are in the 
vocabulary of almost every child, indicating that the human cognitive system is able to deal with this 
problem.   
 
The use of an adaption of the recurrent self-organisation map approach (Section 4.6) offers a new manner of 
temporal representing of speech emergence that combines working memory (activations) and long-term 
memory (weights). Similar to the neurocognitive model of Pulvermüller, the recurrent self-organising 
network model uses different regions of the associator recurrent self-organising network to represent 
different word sounds.  This model of language acquisition as an emergent property offers interesting 
parallels to the memory-prediction theory of intelligent neural processing put forward by Hawkins and 
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Blakeslee (2004).  Drawing on the hierarchical structure of the neo-cortex the recurrent self-organising 
memory model detects recurring patterns in speech. These patterns are stored in higher levels of the cortical 
hierarchy, where they are associated with visible and tangible objects, actions and concepts in the external 
environment through the use of semantic features. There are also parallels with the memory prediction 
theory as the self-organising networks have the same structure but perform different activities such as 
providing a contextual memory representation for lower and upper recurrent self-organising network, 
semantic feature representation and combine the speech signal representation with the semantic feature 
representation.  The activations on the lower speech signal recurrent self-organisation network acts as the 
phonological loop in working memory while the semantic features network activations act as the 
visuospatial sketchpad in working memory.  The final speech representation in a working memory episodic 
buffer model is a combination of the visual semantic feature activation representation and the speech signal 
representation.  The weights in these models represent emergent speech patterns and are stored in semantic 
long-term memory.   
 
Speech recognition may benefit from the use of some episodic long-term memory (Section 5). Episodic 
memory keeps the fine details of the underlying data, fine details that get abstracted away in semantic long-
term memory.  Episodic long-term memory for ASR has been defined as a system that has the raw data 
available.  In statistical pattern recognition, the process of generalisation is achieved by combining 
information during training.  For example, in state-of-the-art classifiers such as HMMs or GMMs, training 
data is used to find the mean and variance of a single- or multi-component Gaussian mixture distribution of 
the data.  The episodic memory model on the other hand computes the mean of similarity-weighted data: 
there is no overall mean as the similarity weighting attempts to substitute a general distribution for one that 
best fits the current input.  Hence, in the episodic long-term models the various classes are expressed using 
only one value per feature.  The consequence is that the use of such similarity-weighted training data allows 
the constructed, very simple models to take into account the fine-phonetic similarity found within a frame.  
However, the semantic long-term memory models described here offer learning that produces weights and 
representations in a more emergent and less directed manner than currently available in the episodic long-
term memory model.  The semantic long-term memory models predominately offer learning and abstraction 
from examples in a manner typically found in the cerebral cortex rather than a comparison with a set of 
existing representations stored in the memory as found in the episodic long-term memory model. 
 
The episodic long-term memory model offers a centre-of-attention-component, which can be seen as one of 
the main differences between instance-based and statistical models. In a statistical model such as HMM 
trained on example data, the model represents the mainstream speech patterns. The variance is influenced by 
all those speech patterns that are atypical.  Such a model performs well with test speech that is very typical, 
but less so for those that are not mainstream.  For an episodic long-term memory model instance-based 
system based on the same training data, the centre of attention can be said to be there where the test input 
lies.  Just by comparing the bottom-up acoustical data, it will find the most relevant examples and shift focus 
there. This means that such a system pays always more attention to that data that should be the most relevant 
to the current test input.  While statistical, pre-trained systems have no other choice but to predefine the 
centre of attention the way the training data says it is most likely that the class’s centre is, instance based 
systems have the luxury of paying close attention to data that is the most relevant to the current input.  
Instead of predefining the centre of attention for all possible future data, instance-based minimum-distance 
systems can set the centre of attention to where it is the most relevant. 
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