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Abstract

This report describes the progress within the ACORNS project towards augmentation of the standard
spectral features used for speech recognition with millisecond and decisecond features and towards
feature selection based on knowledge of the human auditory system. Our work on millisecond fea-
tures has resulted in an algorithm that automatically estimates the voicing onset of plosives. Our
work towards defining decisecond features consists of a study on the efficacy of including measures
of prosody (rhytm and pitch movement). We find that the measures are useful at the initial learning
stage. Our work on feature selection led to an algorithm that selects features based on the ability
of the features to describe the components of speech that are most clearly perceived. Experimental
results confirm effectiveness of this generic strategy.
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Chapter 1

Overview

This report is the description component of deliverable D1.2 of the ACORNS project. As listed in
the Annex, the deliverable was aimed to consist of “Modules for a) augmentation of standard spectral
features with a stream of milli-second and decisecond features and evaluation on specific phone clas-
sification tasks and b) feature selection by sensitivity-analysis method (software and report)”. Part a)
of the deliverable is associated with Task 2 (“phone-class specific features) and part b) with Task 1
(“distortion-based approach”).

With respect to Task 2, our work towards defining milli-second features has taken the form of
an algorithm that automatically estimates the voicing onset of plosives. The work towards defining
and decisecond features is a study on the efficacy of including measures of prosody (rhytm and pitch
movement) in the feature set used in the ACORNS project. With respect to Task 1, we developed an
algorithm to select from a larger set of features a subset of features based on the ability of the subset
to describe the audible components of the signal.

This report part of the deliverable consists of three chapters, each describing on of the fore-
mentioned topics. Chapters 2 and 4 are based on papers that are currently under review.

Chapter 2 describes the algorithm to automatically estimate the voice onset time (VOT) of plosives.
The VOT is the time delay between the burst onset and the start of periodicity when it is followed
by a voiced sound. Since the VOT is affected by factors like place of articulation and voicing it can
be used for inference of these factors. The algorithm uses the reassignment spectrum of the speech
signal, a high resolution time-frequency representation which simplifies the detection of the acoustic
events in a plosive. The performance of our algorithm is evaluated on a subset of the TIMIT database
by comparison with manual VOT measurements. On average, the difference is smaller than 10 ms for
76.1% and smaller than 20 ms for 91.4% of the plosive segments. We also provide analysis statistics
of the VOT of /b/, /d/, /g/, /p/, /t/ and /k/ and experimentally verify some sources of variability. To
illustrate its use, we integrate the automatic VOT estimates as an additional feature in an HMM-
based speech recognition system and show a small but statistically significant improvement in phone
recognition rate. The new features are ready for integration in the ACORNS system.

Chapter 3 describes our study towards defining decisecond features based on prosody. The specific
aim of the study was to investigate whether the addition of prosodic cues, rhythm and pitch, would
increase word detection accuracy for the nonnegative-matrix factorization (NMF) approach. It was
hypothesised that the addition of prosodic cues to the input stream would increase the accuracy at a
faster rate. As hypothesised, the addition of prosodic cues as an aid for word detection helped raise
accuracy results during the early learning period. Rhythm had more of an impact than the use of the
pitch contour with accuracy almost 2% better than the baseline during the first 100 utterances. After
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this period the accuracy tends towards the baseline for both cues. Calculating the pitch contour with
dynamic programming smoothing slightly enhanced the results, but at the expense of computational
complexity. Since the method aids only in the initial learning phase, we probably will not use these
features in the ACORNS system.

Chapter 4 describes our algorithm to find a good subset of features for recognition from a larger
set, using only knowledge of the human auditory system as a measure. The underlying assumption
of our work is that the human auditory system is effective at extracting relevant information from the
speech signal. We use a psycho-acoustic model to perform a sensitivity analysis on speech, based on a
distortion measure. The method eliminates the dependency of the feature set to the speech recognition
system used, and results in a generic set of good features. We evaluated the selected feature subsets
on a real speech recognizer. The results confirm that knowledge of the human auditory system forms
a good basis for selecting a subset of features from a larger set for the purpose of speech recognition.

While the feature selection method of Chapter 4 can be used within ACORNS to limit the number
of features, this is not a major concern for project. Rather, the method should be seen as a first step
towards a method that uses auditory-knowledge to improve existing features and define new features.
Work towards this goal is currently in progress and will be described in deliverable D1.3. The new
features will fit naturally within the ACORNS concept: the features under development reflect the
innate perception of a baby (or human in general), and are not based on the recognition performance
of some of some automatic speech recognition system.

The software for the three components forms part of the software that is available to the partners
of the ACORNS project. As indicated in the project Annex, the software is not publicly available.
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Chapter 2

Automatic Voice Onset Time Estimation
from Reassignment Spectra

V. Stouten, H. Van hamme (KU Leuven)

2.1 Introduction

State-of-the-art automatic speech recognition (ASR) systems typically use a sliding window with a
length of about 30 ms and a shift of about 10 ms to extract features such as Mel Frequency Cepstral
Coefficients (MFCCs) from the acoustic waveform of the speech signal. However, plosives also
exhibit distinctive acoustic events at a finer time scale. Typically, the closure interval ends in an
abrupt increase in acoustic energy across the frequency range. The release interval is measured from
this burst onset to the start of periodicity or to the onset of noise or silence. The duration of the
release interval is then called voice onset time or VOT in case periodicity is present. These events can
be as short as a few milliseconds. Nevertheless, they contain potentially important information on the
plosive identity which is lost when a sliding window of the mentioned size is used. The subsampling
caused by the 10 ms frame shift is too slow to accurately represent the timing of the events that define
the release interval and the window length is too large to accurately resolve the very distict phases of
the plosive. The length of the sliding window and the frame rate that are used by today’s ASR systems
are a global compromise on all phones, involving e.g. effects of the variance of the spectral estimator,
the trade-off between temporal and frequency resolution as dictated by the Heisenberg inequality,
the data rate and the modelling constraints imposed by the subsequent acoustic modelling techniques
such as Hidden Markov Models (HMMs).

Recently, there has been considerable interest in supplementing ASR systems with information
that is lost during frame-based front-end processing or that is difficult to model with popular methods
such as HMMs or (hybrid) Multilayer Perceptrons [1]. For instance, the phone or state duration
distributions implied in an HMM match poorly with actual distributions measured on speech. In
general, timing at different scales is poorly modeled in traditional ASR systems. Minor ASR accuracy
improvements were found with phone duration models by [2], but the elapsed time between acoustic
events at the smallest scale such as in the current VOT study, or at larger scales such as for prosodic
breaks seem to be difficult to integrate in an ASR system. The work reported in [1] also illustrates
that the exploitation of speech attributes like the VOT is a substantial piece of research.

The emphasis of this paper is on the automatic measurement of the VOT itself including an ac-
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curacy analysis. The fact that VOT is not a frame-synchronous feature but that it is measured at the
phone level and that it is only relevant for a subset of phones makes direct integration in an HMM ar-
chitecture difficult. However, though we realize that this is a suboptimal approach, we will illustrate
the usefulness of the VOT feature by rescoring phone lattices generated by an HMM-based phone
recogniser. Newer statistical modelling frameworks such as graphical models [3] probably offer ad-
ditional opportunities for more rigorous approaches to exploit information sources of the type of the
VOT. The complexity of the dependencies on various parameters like gender and phonetic context
will therefore also be described experimentally.

Apart from applications in ASR, the current automatic VOT estimator can also be of interest in
speech analysis, phonetics and speech pathology.

Acoustic information relevant to the identification of plosive sounds has been studied in the litera-
ture [4, 5, 6, 7]. Plosive consonants are produced by first forming a complete closure in the vocal tract
via a constriction at the place of articulation, during which there is either silence or a low-frequency
hum (called voicebar / prevoicing). The vocal tract is then opened, suddenly releasing the pressure
built up behind the constriction. This opening of the vocal tract’s airway is manifested acoustically by
a transient and/or a short-duration noise burst. The duration of the interval between the release of the
plosive and the beginning of voicing in the vowel is called the voice onset time or VOT. During this
interval there is silence and/or noise caused by the release and/or aspiration noise. The VOT is one
of the many acoustic cues for distinguishing plosives. The acoustic cues relevant to the articulation
of a plosive can be related to manner (plosive, nasal, . . . ), place (bilabial, alveolar, velar, . . . ) and
voicing (voiced, voiceless). A comprehensive discussion of these cues can be found in chapter 5 of
[8] and we limit ourselves to an enumeration here. The manner cues for plosives include the presence
of the silent region in the stop gap (obstruction phase), the rapid formant transitions and particularly
a low locus frequency for the first formant F1, sudden energy change, release burst and aspiration.
The place cues for plosives include the burst centre frequency (i.e. the main spectral peak of the
turbulence occurring at the release), the locus frequency for the second and third formant transitions
and the VOT. The voicing cues for plosives include the VOT, the presence of aspiration, the presence
of an audible F1 transition, the intensity of the burst and the duration of the preceding vowel.

In this paper, we describe a VOT estimation algorithm using a high resolution signal analysis
method which will better preserve timing information than MFCCs can. The next section is devoted to
this signal representation, the reassigned time-frequency representation (RTFR). This representation
allows to locate well-separated impulses, cosines and chirps in time and in frequency. Because speech
can to some extent be seen as a sum of such signals, we advocate the use of this representation for
our current task. In section 2.3, the VOT characteristics are highlighted. A VOT estimation algorithm
starts with indentifying segments of speech that potentially contain a plosive sound. We therefore
describe our plosive data sets in section 2.4 and move on to section 2.5 where the actual algorithm that
computes the VOT feature from the RTFR is described. Although the VOT has already been studied
extensively, there are not many algorithms described to automatically extract this feature. Related
work can be found in [9, 10, 11, 12, 13]. However, to our knowledge this is the first time that the RTFR
has been used to reliably extract the VOT feature. The performance of our algorithm is evaluated in
section 2.6.1, while section 2.6.3 illustrates the modelling complexity as well as the usefulness of
our automatic VOT extraction algorithm for phonetic studies by measuring some statistics of the
VOT feature on the TIMIT database. Finally, in section 2.6.4 a rescoring approach shows a modest
improvement in speech recognition accuracy using VOT. Conclusions can be found in section 2.7.
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2.2 Spectral reassignment

Time-frequency reassignment [14, 15, 16] offers an interesting solution for analysing transient sig-
nals such as plosives. The corresponding reassigned time-frequency representation (RTFR) has an
increased sharpness of localisation of the signal components without sacrificing the frequency res-
olution. The RTFR is obtained by moving the spectral density value away from the point in the
time-frequency plane where it was computed. The spectral density is reallocated from the geomet-
ric centre of the spectral analysis kernel function to the centre of gravity of the energy distribution.
Though this principle can be applied to a multitude of time-frequency representations, here it is ap-
plied to the short time Fourier transform (STFT). Let H(t, ω), D(t, ω) and T (t, ω) denote the STFT
of the signal obtained with the window function h(t), the derivative of h(t) and its time-weighted
version th(t) respectively and let <(X) and =(X) be the real and imaginary parts of X , then the
energy at (t, ω) is reassigned to:

t̂ = t+ <
(
T (t, ω)
H(t, ω)

)

ω̂ = ω −=
(
D(t, ω)
H(t, ω)

)

In practical implementations, the time-frequency plane is overlaid with a grid and reassigned en-
ergy is accumulated per cell.

In case the signal is a single cosine, linear chirp or Dirac impulse, the localisation in time and
frequency is perfect. For instance, for a Dirac impulse δ(t − t0) all energy will be reassigned to t0.
When applied to speech with a sufficiently short analysis window, the RTFR clearly shows vertical
(i.e. well-localized in time) lines for plosive bursts as well as for energy releases by the vocal folds.
This property will make the construction of detectors for the burst onset of a plosive and for the
subsequent start of periodicity (if any) fairly easy, as will be shown below. We have experimented
with the multi-taper version of the RTFR [17], but a single window seemed to provide sufficient
detail of the plosives to reliably reveal the acoustic events of interest, while it is computationally less
demanding. Given the impulsive nature of the acoustic events we are trying to characterize, we opt
for a Hamming window of length 8 ms, shifted by 0.625 ms per analysis frame. This corresponds to
128 and 10 samples respectively at a sampling frequency of 16 kHz which is adopted throughout this
paper. Compared to the typical window lengths of 20 to 30 ms with a frame advance of 10 ms which
are mostly used in speech recognition, our signal analysis offers a higher resolution in time. We used
256 equally spaced frequency bins for reassignment, a choice which is not critical given the wideband
nature of the variables upon which the detection of the burst and the voicing onset will be based.

Figure 2.1 shows an example of the RTFR for a voiceless plosive (/t/) segment (followed by the
vowel /ih/ as in "pit"), taken from the TIMIT database. The burst and onset of voicing as detected by
the algorithm described in this paper are shown with arrows at the top. In this example, the burst of
the /t/ is located at 15 ms, while the voicing starts at 87 ms, such that the VOT has a value of 62 ms.
For comparison, we also show the original STFT from which the RTFR is computed in figure 2.2.
Clearly, both the dental burst and the effects of glottal activity are better localized in time in the RTFR.
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Figure 2.1: Reassigned time-frequency representation of a /t/ segment followed by /ih/. Color encode
the logarithm of the energy.

2.3 Properties of the Voice Onset Time

On average, the VOT of voiceless plosives is larger than the VOT of voiced plosives, and the VOT
increases from a bilabial to an alveolar and to a velar stricture. Hence, on average we have :

VOT(/b d g/) < VOT(/p t k/)
VOT(/b/) < VOT(/d/) < VOT(/g/)
VOT(/p/) < VOT(/t/) < VOT(/k/)

From the literature, we know that the VOT is influenced by several factors: the left and right
context of the plosive, the position within the word, the lexical stress, speaker gender, speaking rate,
the language, fundamental frequency F0 of the vowel,. . . For instance, there are notable differences
in voicing across languages: Spanish has negative VOTs for the voiced plosives, while the VOTs of
English are mostly positive. Women produce longer VOT values for voiceless stops than men [5].
Also, the VOT of children slightly changes with their age. When the plosive is followed by the vowel
/i/, the mean VOT is larger than when it is followed by vowel /a/ [5]. An increase of the speaking rate
causes a decrease of the VOT of voiceless plosives. Voiceless stops produced at a high fundamental
frequency display shorter VOTs than those at low or mid F0’s [6]. In addition, voiceless stops tend
to display shorter VOTs and voiced stops display increased VOTs during conversational speech and
reading, compared with single words.

Because of these effects, VOT distributions tend to overlap. Hence, the relation between the VOT
value and plosive identity or even its voicing is not straightforward. Many studies try to circumvent
this overlap by only considering plosives that are uttered in a constrained way, e.g. single words with
a plosive in syllable initial pre-stressed position. In this way, the variability of the VOT within one
class of plosives becomes smaller. In section 2.6, it will be shown that statistical models of the VOT
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Figure 2.2: STFT representation of the /t/ segment from figure 2.1. Color encode the logarithm of the
energy.

are more precise when they are conditioned on the phonetic context. If these models are to be used
for accuracy gains in ASR as in section 2.6.4, the context can be assumed available (although not
with 100% accuracy) from a first recognition pass when evaluating the estimated VOT. By using this
knowledge, the overlap of the distributions can also be reduced to some extent.

2.4 Data sets

Experiments are conducted on the TIMIT database [18] since it contains manually verified phonetic
transcriptions. It contains English read speech at office recording quality, uttered by native adults
selected from eight dialect regions in the USA and sampled at a sampling frequency of 16 kHz.
Though the algorithm may also apply to other plosives and affricates, this study focuses on the six
plosives /p/, /t/, /k/, /b/, /d/ and /g/.

To study the quality of the VOT estimation algorithm that will be specified in (section 2.5), we
adopt four data sets that are referred to as "forced", "manual", "free" and "test". Each of these sets
contains a collection of segments of speech in which we expect to find one of the six plosives. De-
pending on the data set, the segment identity as well as its boundaries are generated in different ways
as described below. The number of speech segments for each plosive is given in table 2.1.

2.4.1 The "forced" data set

The "forced" data set is relevant for phonetic studies, for automated studies of the parameters affecting
the VOT or for automated pronunciation scoring in (foreign) language learning. In these settings,
speech segments can be found in which one of the plosives under study is present and our task is to
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estimate the VOT. The segment boundaries are obtained from a forced alignment with an HMM-based
speech recogniser using the manually verified phonetic transcriptions available in the TIMIT database.
Hence, we rely on information that is normally not available in an automatic speech recognition
system. All occurrences of the six plosives from the 3696 phonetically rich "si" and "sx" training
utterances originating from 462 different speakers in the TIMIT database are included in the "forced"
data set, irrespective of the left and right phonetic context.

The acoustic models used for segmentation are context independent HMMs with 2 to 4 states per
phone trained on an independent data set. In total, there are 141 GMMs sharing 5550 Gaussians with
diagonal covariance. The speech features are mel-scaled log-filterbank outputs that are linearly trans-
formed with a decorrelating and diagonalizing transform [19]. Since these features are recalculated
every 10 ms, this is also the segmentation resolution. Voiced plosives and voiced affricates share a
common 2-state HMM for the closure. The voiceless plosives and affricates also share their closure
model. By including separate models for the phone components of plosives, the HMM will produce
separate segments for the closure and the burst. The segment boundaries that are associated with the
plosive are those of the burst only. The reason for this choice is that the segment boundaries generated
by the HMM will serve as a fallback in case we fail to detect the burst or the onset of voicing, while
the duration of the burst segment can be seen as a measurement of the VOT.

2.4.2 The "free" data set

In a fully automatic VOT extraction setting, a forced alignment is not possible due to the lack of
a unique transcription hypothesis. Therefore, in the second data set, plosive segment candidates
are generated by a phonetic automatic speech recogniser as described in [20] applied to the same
utterances used in the "forced" data set. The HMMs described in section 2.4.1 are used to find the
best matching phonetic transcription using a phone-level bigram language model with Witten-Bell
smoothing [21]. Any segment automatically labeled as the burst of one of the six plosives under
study was included in the set, irrespective of the detected phone or phone component on the left and
on the right.

2.4.3 The "manual" data set

The performance of the algorithm will be evaluated by comparing the automatic VOT estimates with
values derived by an expert. To this end, a subset of the plosive speech segments was selected from
the "forced" set as follows. Cycling through all 16 gender/dialect combinations, we randomly drew a
speaker from that gender/dialect combination and subsequently we randomly drew a recording (sam-
ple file) from that speaker. For any of the six plosives for which we collected less than 130 exam-
ples so far, the expert manually estimated the VOT of all occurrences in the recording by inspection
of waveforms and spectrograms centered around the automatically generated segment boundaries,
marking the burst onset time and the start of voicing and finally storing the time difference. In total
268 different recording files from the TIMIT database were used. All plosive segments that were not
followed by a voiced sound or for which the manual annotator could not detect a burst or the start of
voicing were removed. There is no constraint on the left phonetic context. Table 2.1 shows the exact
number of examples thus retained in the "manual" data set.
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Table 2.1: Number of speech segments in each of the data sets.

forced free manual test
/b/ 2181 2012 115 754
/d/ 2432 2222 76 728
/g/ 1191 977 98 386
/p/ 2588 2749 111 821
/t/ 3948 4052 92 1180
/k/ 3794 3968 90 1039

total 16134 15980 582 4908

2.4.4 The "test" set

This set is constructed exactly like the "forced" data set, except that the sentences are taken from the
TIMIT test set ("extended" set without the "core" set), a total of 1152 sentences from 144 speakers.

2.5 The VOT estimation algorithm

The actual estimation of the VOT requires that the burst onset and the start of periodicity are deter-
mined for each plosive segment. In this section, we will describe how the segment boundaries are
obtained and how both events are detected. The process is illustrated in figure 2.4. The estimated VOT
is then the elapsed time between the estimated burst onset time and the estimated start of periodicity.

2.5.1 Detection of plosive segments

The first step in the algorithm consists of finding segments in the speech signal that could contain
a plosive. Such segments could be found using dedicated detectors, as is shown in the research on
automatic extraction of phonological features. In [22] and [23], detectors are described that exhibit
sufficient accuracy to generate candidate plosive segments. The method used for generating plosive
segment candidates is important to the performance of the algorithm for three reasons. First, segments
may be missed or overgenerated, leading to unrecoverable errors. Second, we will search for burst
and voicing within boundaries derived from the proposed segment. Errors in the segment boundaries
may cause to wrongfully identify an acoustic event as the burst or voicing onset. Third, in case either
burst or voicing cannot be detected automatically, fallback estimates of their time of occurrence are
derived from the proposed segment boundaries.

In the current work, we have opted for a HMM-based automatic speech recogniser to generate
plosive segment candidates, as explained in section 2.4. Depending on the application of the VOT
estimate, it may or may not be reasonable to assume that a phonetic transcription of the speech around
the plosive is available. We therefore defined the "forced" and "free" data sets in which plosive
segments are generated with or without phonetic knowledge of the test utterance. In both sets, the
algorithm will start looking for the burst 2.5 ms or 4 frames prior to the burst segment start found by
the recogniser. Starting earlier would increase the risk of misdetecting energy bursts from the previous
phone as belonging to the plosive. Starting later would increase the risk of missing the burst. The
end of the segment is extended by 10 ms or 16 frames to the future. Extension of the segment end to
the right just means more pitch cycles will be included and is harmless to the algorithm. The value of
10 ms is a compromise such that at least one glottal closure will be seen in most cases, while avoiding
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unreasonably high VOT estimates in case some initial glottis vibration cycles are not detected. Notice
that even if the successor segment was manually or especially automatically labeled as a vowel, this
does not guarantee that glottal activity will be detected.

In the discussion below, we will refer to extended segments to refer to the plosive segment starting
2.5 ms before and ending 10 ms after the segment determined by the speech recogniser.

2.5.2 Burst onset detection

Figure 2.1 shows that the onset of the release phase gives rise to a sudden increase of the amplitude
over the whole frequency range.

To limit the influence of the high-amplitude pitch pulses which also have a strong low-frequency
component, only the frequency range 3.2-8 kHz is retained for burst detection. The corresponding
frequency bins in the RTFR power are summed to form the "burst power" p(n) estimate for frame
n. Then, the first local maximum that is sufficiently strong and ramps up sufficiently sharply is
identified as the burst onset. The condition is asymmetric because p(n) can stay high during the
release interval after the burst. In formulae, frame n is retained as a possible burst location if it
satisfies all of the following conditions p(n) > p(n − j), for j = −1, 1 and 2 (local maximum),
p(n) − p(n − i) > pm(n) for i = 2 . . . 5 (sufficiently sharp and strong peak), where pm(n) is a
measure that relates to the average signal energy so the criteria are invariant to scaling of the signal.
In our experiments, pm(n) is taken to be the mean of p(n) over 150 plosive frames.

If the automatic algorithm does not find a local maximum, the start of the (unextended) segment
is marked as the burst onset. This may happen because the burst is simply missing (by construction,
this will not happen in the "manual" data set) or because it is too weak. The resulting estimate is
less accurate: measured over all plosives of the "manual" data set, the square root of the mean square
estimation error is 12.6 ms if a burst was detected, while it increases to 22.6 ms if a burst could not
be detected.

2.5.3 Start of periodicity

As can be seen from the RTFR in figure 2.1, the periodicity of the signal gives rise to vertical lines of
high amplitude with valleys in between. The distance between these lines is determined by the pitch
period. This periodic structure is mainly present in the lower part of the frequency range.

To obtain a robust estimate of the start of voicing, only the frequency range 0-4 kHz is retained.
At a sampling frequency of 16 kHz as used in this work, this comes down to keeping only the lower
half of the RTFR. Then, a short term autocorrelation is computed by multiplying every RTFR frame
(for every 0.625 ms frame advance) with a weighted version of the frames at lags 1 to 40 and sum-
ming these values over the lag index and over the retained frequency bins. The weighting function
(figure 2.3) is given by the difference of two decaying exponential functions and has a large value in
the adult pitch period range of 5 to 20 frames, corresponding to a pitch period between 3.1 ms and
12.5 ms or a pitch frequency of 80 Hz down to 320 Hz. An asymmetric weighting function is chosen
because we want to extract the start of periodicity. The result is normalised with the total energy in
the frames under the autocorrelation window over the whole frequency range (0-8 kHz).

The aurocorrelation function obtained in this way will exhibit a large value at times where there
is a substantial amount of energy that is periodically repeated within the analysis frame, i.e. at the
time instants for which a pitch pulse is present in the RTFR. To be marked as a local maximum, the
following conditions have to be met : its value has to be larger than the value of its direct neighbours,
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Figure 2.3: Weighting function of the periodicity detector.

and it has to exceed the value of its neighbours at distances of +/-2, +/-3 and +/-4 frames with an
increasing threshold to assure that the selected peaks are at least 5 frames (or the minimum pitch
period) on either side from their neighbours and at least 0.03 in height, a value which was determined
from visual inspection on the "forced" data set (excluding the "manual" set).

With this scheme, some of the bursts will also be marked as pitch pulses. Moreover, a velar
stricture can have multiple bursts that should not be confused with pitch pulses. To avoid selecting
the burst as the start of voicing, an additional constraint is imposed. A local maximum has to be
within the maximal pitch period (20 frames or 12.5ms) from the next local maximum (or from the
end of the extended segment). For low-pitched voices, the wrong starting point of voicing can still
be selected if some pitch pulses are not detected. However, the risk of selecting the burst onset is
strongly reduced, especially if multiple bursts are present.

If the algorithm cannot detect voicing within the extended segment, the end of the unextended
segment is marked as the start of voicing, i.e. we fall back to the HMM’s decision of the start of the
next phone. This is a reasonable choice for English, where VOTs are mostly positive, but for other
languages, voicing may already start in the closure interval. On the "manual" data set, we measure a
square root of the mean square error of 12.2 ms if voicing was detected, while it increases to 17.8 ms
if voicing could not be detected within the extended segment. Not surprisingly, the HMM does a
better job at detecting the start of the next vowel than it does at detecting the burst.

2.5.4 Discussion

The proposed peak picking algorithms are surely not the only possible approaches to detecting the
burst and voice onset events in RTFRs. The advantage of the RTFR is that the peaks are clear and
sharp, which motivates the high time resolution of 0.625 ms used in our proposed algorithm. Often,
both the burst and the glottal closures can be located to a single frame. Decreasing the frame rate
might make the algorithm computationally more efficient, but would make the peak picking more
error prone. In any case, even at pitch periods down to about 3 ms, sampling needs to be fast enough
to resolve the pitch peaks. Similarly, the burst onset may exhibits multiple clicks which should not be
merged into a single broad peak of p(n) if the same peak detection criteria are maintained.
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Figure 2.4: Left: illustration of the peak picking on a /b/ segment with a right context /aa/ (from
"flat bottom") taken from the "free" data set. From top to bottom: RTFR, burst detection
and periodicity detection. The peaks that satisfy the selection criteria are marked with
vertical lines. Right: /b/ segment (from the word "thereby") with erroneous detection of
the start of voicing.
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2.6 Experiments

2.6.1 Algorithm performance for phonetic studies

The VOT was estimated for the complete "forced" data set by means of the automatic algorithm of
section 2.5. Since the "manual" data set is a subset of the "forced" set, it is possible to compare the
manual and automatic VOT estimates on this subset. Figure 2.5 shows the cumulative distribution
of the absolute difference between the manually and the automatically extracted VOT estimates. On
average, the difference is smaller than 10 ms in 76.1% of the plosive segments, smaller than 20 ms
for 91.4% of the plosive segments, and smaller than 30 ms for 96.2% of the plosive segments. The
average deviation from the manually assigned VOT is the largest for /d/ and decreases from /d/ to /k/,
/g/, /t/, /p/ and /b/.

Table 2.2 gives an indication of the bias of the algorithm. For each plosive, it contains the average
of the manually and of the automatically extracted VOTs on the "manual" data set. The resulting
bias is calculated as the difference of both means and the uncertainty on this estimate is given as
its standard deviation assuming independent bias measurements. There is an overall bias of 2.9 ms,
which is even statistically detectable on most individual plosives. To show that the bias is mainly due
to the fallback in case either burst or voicing onset cannot be detected automatically, the right side
of the table gives the same statistics measured only on those segments from the "manual" data set
for which the algorithm was able to detect both events. The overall bias is now down to 0.9 ms and
mostly realized on /d/. A further analysis would need to question the human annotation as well as
the peak selection criteria. Phenomena as illustrated in the right pane of figure 2.4 are likely to play a
role here.
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Figure 2.5: Absolute difference between the manually and the automatically extracted voice onset
time.

2.6.2 Algorithm performance for automatic speech recognition

While the above accuracy analysis is relevant for e.g. phonetic studies, where segment boundaries can
be generated based on a manually produced phonetic transcription, its validity can be questioned in
a fully automatic setting, where the goal of VOT estimation could be to improve speech recognition

Deliverable 1.2
c©2008 ACORNS Consortium

18/40



FP6-2002-IST-C ACORNS Spec. targeted research project

Table 2.2: Comparison between the average manually and automatically extracted VOT for each
plosive. Left: all plosive segments of the "manual" data set. Right: only the plosive
segments for which both burst and voicing onset could be detected automatically.

VOT (ms) VOT (ms)
all segments without fallback

manual autom bias stdev manual autom bias stdev
/b/ 7.7 9.8 2.1 0.9 7.9 8.8 0.9 0.8
/d/ 8.5 16.1 7.7 1.9 8.2 13.5 5.2 2.0
/g/ 21.8 22.7 0.9 1.1 21.7 21.7 0.0 1.1
/p/ 39.4 44.1 4.6 1.1 38.5 40.4 1.9 1.2
/t/ 50.9 51.4 0.6 1.2 50.2 48.9 -1.3 1.3
/k/ 54.3 56.4 2.1 1.7 56.2 55.2 -1.1 2.0
avg 30.3 33.1 2.9 0.5 28.8 29.7 0.9 0.5

accuracy on plosives. Therefore, in the second study, the absolute difference between manual and
automatic estimates is analysed on the "free" data set. However, an automatic phone recogniser can
mislabel plosive segments, insert or omit them, or generate different segment boundaries. We related
the plosive segments from the "free" data set with one from the "forced" data sets by selecting the
"forced" plosive segment with the largest overlap in time. For 9.2% of the segments, there was no
overlap. Only 0.04% of "free" segments overlapped with more than one "forced" segment, in which
case we took the "forced" plosive with the largest overlap in time. Notice that it may well be that
the phone identity (among the set of six considered) is different in both sets, corresponding to the
mislabelings by the recogniser that we are trying to correct. In this analysis, the manual phonemic
labelings provided the TIMIT database are assumed to be correct.

With this procedure, 566 plosive segments from the "free" set could be linked with a segment
form the "manual", which allows to recompute the cumulative distribution of the absolute difference
between manual and fully automatic VOT estimates. The percentiles for 10 ms, 20 ms and 30 ms
deviation now become 72.6%, 87.8% and 93.8% respectively (instead of 76.1%, 91.4% and 96.2%).
Hence, the main source of estimation error is not caused by the automatic generation of segment
boundaries. Also notice that only 16 (= 582 − 566) out of 582 plosive segments from the "manual"
set could not be found automatically, which is far less than 53 (9.2 % of 582). Hence, the HMM-based
plosive detector performs a lot better on plosives for which the human annotator found a burst and
that are followed by a voiced sound.

2.6.3 Estimated VOTs

With this automatic algorithm, we can investigate to which extent factors such as gender and phonetic
context could be taken into account in statistical models. In this study, we focus on the voicing
dimension, rather than place of articulation.

First, we measure the effect of gender. The second column of table 2.3 shows the VOT obtained
on the "forced" data set for each of the plosives, averaged over all speakers and all contexts. These
values confirm the inequalities of section 2.3. Columns 3 and 4 contain the VOT values averaged over
all contexts but including only the male, or only the female speakers, respectively. On our database,
the VOTs of plosives uttered by women are on average 12% longer than that of men. For /p t k/,
this is in line with [5], but the latter article did not ment ion the same effect for /b d g/. Notice that
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Table 2.3: VOT estimate [ms] for each plosive class, averaged over all contexts in the "forced" data
set. Mean value for all speakers, only male or only female speakers. Columns 5-7 indicate
the corresponding number of segments.

VOT [ms] # segments
m + f m f m + f m f

/b/ 11.8 11.3 13.0 2181 1522 659
/d/ 18.6 17.7 20.5 2432 1681 751
/g/ 21.8 20.7 24.0 1191 800 391
/p/ 40.8 39.0 45.0 2588 1798 790
/t/ 43.6 41.8 48.1 3948 2791 1157
/k/ 48.0 47.1 50.3 3794 2686 1108

the gender-independent averages differ from those of table 2.2 because the phonetic context of the
plosives differs, as explained in section 2.4.

The effect of the right context can be found in figure 2.6, which presents the VOT means together
with the standard deviations without any right context imposed or when it is followed by a vowel /ih/
(as in "bit"), /aa/ (as in "box") or /eh/ (as in "bet"). There is no constraint on the left context. In total,
there are between 68 and 253 examples of each right-context dependent plosive in the database when
pooling over all speakers. If the phonetic context is constrained, the overlap of the VOT distributions
usually decreases. For instance, the error bars of /k eh/ and /g eh/ do not overlap, while the error bars
for the context independent /k/ and /g/ do. The same can be said about /p aa/ and /b aa/ versus /p/ and
/b/. The longer average VOT for right context /ih/ than for context /aa/ is only observed for plosives
/b d g t/.

Figure 2.7 shows histograms of the context dependent VOTs of plosives followed by the vowel
/eh/, constructed on the "forced" data set. From this figure, the overlap of the distributions is clearly
apparent. This overlap is even larger for the context independent histograms. This illustrates that the
relation between the VOT value and the voicing cue of the plosive is not straightforward.

2.6.4 VOT as a feature for automatic speech recognition

Histograms like the one of figure 2.7 can be used in a likelihood ratio test to discriminate, for instance,
along the voicing dimension. To this end, context dependent but gender independent histograms are
built with 23 uniformly spaced bins 5 ms apart between -10 ms and +100 ms using the "forced" data
set. Let N(V, l, p, r) be the number of times the estimated VOT falls in bin V for plosive p with left
context l and right context r. Overall, 1298 different phone/plosive/phone combinations are observed.
Many of these histograms have little data, so a multi-stage backoff scheme is applied to histograms
having less than 40 counts, i.e. if ∑

V

N(V, l, p, r) < 40

First the left context is generalised to one of 12 broad phonetic classes, then the right context is
generalized, then the left context is disregarded and finally the right context is disregarded. The back-
off steps are terminated as soon at least 40 counts are observed in the histogram with the generalized
context. We will call the thus obtained generalized left and right context l̃ and r̃ respectively.
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Figure 2.6: Mean VOT for plosives /p b t d k g/ by context (context independent, right context /ih/,
/aa/, /eh/). The left context is always unconstrained. Error bars indicate +/- one standard
deviation. Measured on the "forced" data set.

Figure 2.8 shows the logarithm (to base 10) of the likelihood ratio versus the estimated VOT
value for the "test" data set. This set contains data that was not used during the construction of the
histograms, while the ground truth about plosive identity and its context is known from the manual
labeling provided in the TIMIT database. So let P (V |l, p, r) be the probability that the estimated
VOT falls in bin V for plosive p as measured on its histogram, and let P (V |l, p, r) be the probability
read from the histogram for the plosive with opposite voicing. The log-likelihood ratio is then

log10

(
P (V |l, p, r) + ε

P (V |l, p, r) + ε

)
where

P (V |l, p, r) =
N(V, l̃, p, r̃)∑
V N(V, l̃, p, r̃)

and ε is a small constant to cope with zero probability estimates and was set to 10−3 in our
experiments. The left panes show the log-likelihood ratio on the voiceless data and assuming the
voiceless sound (p is /p/, /t/ or /k/ and p is /b/, /d/ or /g/ respectively), while the right panes show the
log of the reciprocal on the voiced data (i.e. assuming p is a voiced sound). Figure 2.8 illustrates
that large (small) VOTs for voiceless (voiced) sounds indeed lead to positive log-likelihood ratios,
but that negative log-ratios can occur. That the choice of ε is not a critical one is also apparent from
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Figure 2.7: Normalised histogram of VOT estimates on the "forced" data set for plosives /b d g/ and
/p t k/ followed by vowel /eh/, without constraint on the left context.

these scatter plots. Its side-effect is to limit extreme values of the log-likelihood ratio, an effect that
is mostly observed on the positive side.

In an attempt to improve the phone recognition rate by exploiting the VOT as a feature, phone
lattices were generated on the TIMIT test data as described in [20]. These are the same sentences
as used in the "test" data set, but now the lattice will include more plosive candidates. The best path
through the lattice will generate the phone segmentation of the "test" data set. In formula 2.1 (see
below), the likelihood L(A) of each plosive arc A in the lattice is then linearly combined with the
log-likelihood ratio of it being correct versus its variant with opposite voicing being correct. There is,
however, a difference with the above. When dealing with the "test" data set, the left and right phonetic
context are unique. In a lattice, multiple arcs may arrive in the starting node of A and multiple arcs
may leave from its ending node, so the left and right phonetic context are not unique. We denote the
set of phone labels of arcs ending (starting) in the starting (ending) node of arcA with L (R) and sum
the statistics over all contexts of A allowed by the lattice:

P (V |L, p,R) =
∑

l∈L
∑

r∈RN(V, l̃, p, r̃)∑
l∈L
∑

r∈R
∑

V N(V, l̃, p, r̃)

The corrected acoustic likelihood of a lattice arc A becomes:

L(A) + αlog10

(
P (V |L, p,R) + ε

P (V |L, p,R) + ε

)
(2.1)

Linear combination of log-likelihoods of different information sources was examined in [24]. The
single free parameter α we introduced was tuned on the "forced" data set, which is independent of the
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Figure 2.8: Logarithm of the likelihood ratio versus the automatically calculated VOT value, mea-
sured on the "test" data set.
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"test" data set. This procedure reduced the phone error rate from 26.70% to 26.53% on the TIMIT test
set. Hence, we observe that the VOT feature has contributed only very little to error rate improvement.
This is not surprising, since we observe in figure 2.8 that the log-likelihood ratio can become negative
for valid utterances of the plosive. On the other hand we have to realize that we attempt to correct only
the plosive hypotheses generated by the HMM system, and this only along the voicing dimension. We
can find the best obtainable error rate by correcting the voicing of the plosives in the first best path
through the phone lattice using the reference transcription. This yields an error rate floor of 25.85%.
Hence, we have obtained (26.7− 26.53)/(26.7− 25.85) = 20% of the performance gain that would
be achievable using an ideal voicing detector. In absolute numbers, the VOT-based likelihood ratio
test corrected 80 out of 1853 plosive errors and hence the improvement is statistically significant. The
gain shows that the VOT estimate does contain information that the HMM is not able to exploit. Apart
from the overlap in the distributions of the VOT, the performance in this particular implementation
is also limited by the pruning in the phone lattice. Each plosive hypothesis (arc) is rescored, but this
can only lead to a change in decision if the hypothesis with opposite voicing is also in the lattice
(and receives a better combined score). Hence, if the alternate, correct hypothesis was not included
in the lattice because of pruning, it cannot be recovered, even with an ideal voicing detector. Further
performance improvements might also be obtained by combining the HMM and VOT likelihoods in
a non linear way.

2.7 Conclusions

We described an algorithm to automatically extract the voice onset time. It operates on the reassigned
time-frequency representation of the signal, which has an improved localisation of the relevant acous-
tic events. The algorithm performance was charactarised for English plosives on the TIMIT database.
The accuracy seems sufficient to reconstruct some of the findings of the literature on phonetics about
the factors affecting VOT. Using a rescoring approach, it was shown that the automatic VOT esti-
mate does provide some additional information about the phone identity which is not exploited in
state-of-the-art HMM-based ASR systems.
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Chapter 3

Using Prosody with NMF

G. Aimetti (Sheffield), H. Van hamme (KU Leuven)

3.1 Introduction

The aim of these experiments was to investigate whether the addition of prosodic cues, rhythm and
pitch, would increase word detection accuracy for the nonnegative-matrix factorization (NMF) ap-
proach. It was hypothesised that the addition of prosodic cues to the input stream would increase the
accuracy at a faster rate.

3.2 Rhythm Vectorisation

The first prosodic cue to be employed was rhythm. The Rhythmogram model of Todd and Brown [1]
is used to detect peaks within the speech signal (Fig. 3.1), by looking over a range of different time
constants in order to derive hierarchical structure of the onsets of individual events.

The amplitude envelope of the utterance is calculated which is then passed to a multi-scale Gaus-
sian low-pass filter system. The rhythmogram output is derived by finding the peaks in the low-pass
response or zero crossings of the 1st derivative. An example is provided in Fig. 3.1 (right). Time is
displayed across the horizontal axis and the different time constants used are on the vertical axis.

The NMF technique requires the data to be decomposed and made available in the form of a data
matrix. This implies that an additional stream of information must be encoded in terms of a sequence
of vectors. To vectorise the rhythm for NMF we exploited the manner in which syllabic-type events
converge to higher levels within the utterance. We achieved this by creating event strings across all
channels with varying time constant. So, for each event we collect the time distance of the nearest
peak in each consecutive time constant channel, where the root position is channel 1 (time constant =
1ms). Figure 3.2 shows the event strings within an example utterance.

The time distances are then quantized and labelled in terms of a value between 1 and 20 (see 3.2),
with finer resolution for shorter distances. The result is a histogram in terms of the labels 1-20. The
final stage of the rhythm vectorisation process is to create a co-occurrence matrix of the quantised
peak distances within the utterance (Fig. 3.3). This stream can now be appended to the NMF input.
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Figure 3.1: Rythmogram processes and output.

 

Figure 3.2: Syllable-type event string within utterance.

Table 3.1: Quantization of time distances between peaks.

Distance (ms) Mapping Distance (ms) Mapping
0 1 -1 11
1 2 -2 12
2 3 -3 13
3 4 -4 14
4 5 -5 15

5 - 7 6 -6 - -8 16
8 - 10 7 -9 - -10 17

11 - 20 8 -11 - -20 18
21 - 50 9 -21 - -50 19
50 -∞ 10 -51 - -∞ 20
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Figure 3.3: Co-occurrence matrix of quantized peak distances.

 

Figure 3.4: Plot of the key word tag recognition accuracy with and without rhythm a) for 1000
utterances b) for 150 utterances.

3.3 Rhythm VQ results

The first experiment carried out was to simply append the rhythm stream to the spectral input. Figure
3.4 shows the key word recognition accuracy using the same experimental set-up as described in
section 3.4.3. The original result (baseline) is in blue and is an average of five attempts to correctly
guess the associated key word tag of 1000 incoming utterances. The red plot is the average of five
attempts with the rhythm stream appended to the current speech VQ labels. It appears that there is
not much difference between the two, with most of the variance occurring in the first 500 utterances.

It was hypothesised that using the rhythm stream would help NMF learn key words faster. Looking
at the first 150 utterances it can be seen that the prediction of key words is consistently better than the
baseline for all five attempts (Fig. 3.4)).

The next set of experiments was carried out with varying weights of the rhythm stream. The plots
in Fig. 3.5 show the accuracy (%) difference from the baseline taken every 50 utterances for each
weighting. The only weighting that is consistently better than the baseline is a factor of 0.1, where
there is an improvement of nearly 2% after the first 100 utterances. The biggest accuracy difference
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Figure 3.5: Accuracy difference from the baseline with different rhythm weightings for 1000 utter-
ances.

is during the first 300 utterances, after this period they all tend towards baseline. Thus, the largest
difference in accuracy is at the very beginning of the learning phase, but once the system has created
a stable representation, then the rhythm stream does not improve performance.

3.4 Pitch Vectorisation

The second prosodic cue under investigation here is pitch. To vectorise the pitch for NMF we de-
vised a procedure that relates pitch movement at different time instants within the utterance. This
is achieved by calculating the deltas of the pitch contour and then accumulating the co-occurrence
counts of a user defined lag value within this stream.

This procedure consists of three steps. In step 1, the pitch contour is calculated. There are two pitch
extraction methods being used and compared in these experiments; the ACORNS Pitch Estimator
(described in deliverable D1.1) and the Subharmonic function [2] which uses dynamic programming
smoothing. Both methods carry out speech detection processes to give voiced/unvoiced values which
are used to exclude unvoiced regions.

In step 2, the frequency range of the pitch contour within the voiced regions (i.e. regions consisting
of consecutive voiced frames) is then quantized into a 50-channel filter bank. Fig. 3.6 shows the plot
of the quantized pitch contour of the example utterance. The pitch contour was calculated either
using the ’PitchEstimator’ or the ’Subharmonic’ method and then quantized to 50 frequency bins.
Both methods calculate unvoiced regions of the signal which were removed.

We are now able to accumulate counts of lag-τu co-occurrences using:

C(qt, qt−τ ) = C(qt, qt−τ ) + 1, (3.1)

where C is the co-occurrence matrix, qt is the label of the quantised pitch stream at time t and τ is
the lag of frames of 10 ms.

Figure 3.7 shows the plot of the co-occurrence matrix within the example utterance. This data
matrix is appended to the NMF input stream. The figure shows that there is significant pitch variation
as otherwise clusters of dots along the diagonal of the plot from top-left to bottom-right would be
seen.
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Figure 3.6: Island of voiced pitch contour after quantization.

 

Figure 3.7: A plot of the co-occurrence matrix showing pitch variation within the example utterance.
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Figure 3.8: Accuracy difference from the baseline for pitch VQ using Subharmonic and pitchEstima-
tor.

3.5 Pitch VQ results

The key word recognition accuracy difference from the baseline is plotted in Fig. 3.8.
The results show that using a longer lag-tau greater accuracy while only the Subharmonic method

for calculating the pitch contour was better than the baseline.

3.6 Conclusions

As hypothesised, the addition of prosodic cues as an aid for word detection helped raise accuracy
results during the early learning period. Rhythm had more of an impact than the use of the pitch
contour with accuracy almost 2% better than the baseline during the first 100 utterances. After this
period the accuracy tends towards the baseline for both cues. Calculating the pitch contour with
dynamic programming smoothing slightly enhanced the results, but at the expense of computational
complexity. Thus, the overall conclusion is that the improvements in word detection achieved by
using rhythm are marginal.
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Chapter 4

Feature Selection Based on Knowledge of
the Auditory System

C. Koniaris, M. Kuropatwinski, W.B. Kleijn (KTH)

4.1 Introduction

Recent improvements in performance of automatic speech recognition (ASR) systems can be at-
tributed to a large extent to the development of effective acoustic modeling schemes. It is, however,
generally accepted that the representation of the acoustic data is an important issue in the design and
performance of any ASR system. In other words, if the speech features used for acoustic modeling
do not include all relevant information available in the speech signal, then the performance of the
classification stage is inherently suboptimal and likely cannot reach human recognition performance.

It is still an open issue whether all relevant information needed in distinguishing words is preserved
by the front-end. In all cases, the goal is to reduce the dimensionality but often vital information of
the original signal can be lost. The most widely used features in speech recognition, are the mel-
frequency cepstral coefficients (MFCCs). The popularity of MFCCs among researchers is motivated
by their low complexity and the high recognition rates especially for clean environments [1].

To reduce the dimensionality of given feature sets, algorithms have been proposed in the litera-
ture to select optimal subsets. One approach is to find the maximum statistical dependency between
a feature subset and a class by computing the mutual information. This method is computationally
intractable. An alternative approach proposed in [2], combines the minimal-redundancy-maximal-
relevance (mRMR) criterion with a wrapper, a method to minimize the classification error for a par-
ticular classifier. In [3], the maximum entropy discrimination (MED) feature selection proposed for
ASR. Results were comparable to a wrapper but the algorithm was less computationally expensive.
In all methods, the relation between features and target classes was investigated and different criteria
were applied to reduce the classification error.

The human hearing system has been modeled by complicated auditory models. Since the percep-
tually optimal processing of speech signal is difficult, a sedulous effort using distortion measures that
are based on human perception is needed. In [4] the assumption of asymptotically small errors was
used to construct more convenient distortion measures based on the so-called sensitivity matrix. This
theme was later developed further in the context of rate-distortion theory [5, 6].

In [7], the sensitivity matrix is used to simplify a perceptual distortion measure for its use in audio
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coding. In this paper, we use the sensitivity matrix to select features that humans perceive. In our
approach we establish a measure of goodness for a given feature based on a perturbation analysis
and distortion criteria derived from psycho-acoustic models. Based on this measure of goodness, a
compact set of relevant features is derived. We assume that both the features and the distortion criteria
are continuous and differentiable functions of the speech signal.

The paper is organized as follows. In Sec. 4.2 we introduce the distortion measure and the van de
Par auditory model [8]. In Sec. 4.3, we present our algorithm for rating the perceptual significance
of features. In Sec. 4.4 we apply the method in ASR using MFCCs as features. In Sec. 4.5 we
investigate the range of the linearity assumption and show recognition results. Finally, in Sec. 4.6,
we discuss our conclusions.

4.2 Preliminaries

We are interested in approximating quantitative models of human perception. We first discuss a
distortion analysis and then its application to a particular auditory model.

4.2.1 Distortion analysis

In [4] the concept of the sensitivity matrix was introduced to approximate a given distortion measure
used in the problem of quantization of the linear predictive coding (LPC) parameters in speech coding
systems. Later, this work was extended and generalized in [5] and in [6]. In [7], a method for deriving
the sensitivity matrix for distortion measures that are relevant for audio signals was developed based
on spectro-temporal auditory models.

Let x = [x1, x2, ..., xN ]T be a speech signal vector. x can be simply a time-domain vector, but it
can also be, for example, a periodogram. Furthermore, let x̂ be a distorted version of x and let d[x, x̂]
be a distortion measure between x and x̂. For small distortions, we perform a Taylor series expansion
of d

d[x, x̂] = d[x̂, x̂] +
∂d[x, x̂]
∂x̂

∣∣∣∣
x̂=x

(x− x̂)+

1
2

(x− x̂)T
∂2d[x, x̂]
∂x̂i∂x̂j

∣∣∣∣
x̂=x

(x− x̂) + O[‖ x− x̂ ‖3]. (4.1)

In the above expansion we know that d[x̂, x̂] = 0, and because x̂ is a unique minimum of d[x, x̂], the

term
∂d[x̂, x̂]
∂x̂

∣∣∣∣
x̂=x

vanishes. Moreover, all the terms that are of order three and above O[‖ x− x̂ ‖3],

are approximated to zero. Hence, the distortion measure is approximated [4] as

d[x, x̂] ≈ 1
2

(x− x̂)TDx[x](x− x̂). (4.2)

where

Dx[x] =
∂2d[x, x̂]
∂x̂i∂x̂j

∣∣∣∣
x̂=x

(4.3)

is called the sensitivity matrix. The word “sensitivity” refers to the fact that each element of this
matrix represents the sensitivity of the distortion d[x, x̂] to a particular (x− x̂).

Deliverable 1.2
c©2008 ACORNS Consortium

34/40



FP6-2002-IST-C ACORNS Spec. targeted research project

4.2.2 van de Par auditory model

The van de Par [8] auditory model is a psychoacoustic masking model that accounts for simultaneous
processing of sound signals. Let x denote the square-root of the periodogram of a signal segment.
The model consists of channels, which we index with f , in each of which the ratio of the distortion
x(f)− x̂(f) to masker x(f) is estimated. In the end, all ratios are combined together, to account for
the spectral integration property of the human auditory system. The complete model is then described
by

d[x, x̂] = CsLeff

∑
i

1
N

∑
f

|hom(f)|2|γi(f)|2|x(f)− x̂(f)|2

1
N

∑
f

|hom(f)|2|γi(f)|2|x(f)|2 + Ca

, (4.4)

where Cs and Ca are constants calibrated based on measurement data, Leff is the effective duration of
the segment according to the temporal integration time of the human auditory system, hom(f) is the
outer and middle ear transfer function which is the inverse of the threshold in quiet and finally γi(f)
is the i’th gammatone filter.

In our system, the van de Par model is used to obtain the sensitivity matrix in the speech frequency
domain. Combining (4.3) and (4.4), we obtain that Dx[x] is a diagonal matrix with diagonal element

Dx,ff [x] ≈ 2CsLeff

∑
i

1
N
|hom(f)|2|γi(f)|2

1
N

∑
f

|hom(f)|2|γi(f)|2|x(f)|2 + Ca

(4.5)

for row f .

4.3 A method for rating the perceptual significance of features

The relative importance of perturbation vector and, therefore, the corresponding feature to a psycho-
acoustic distortion measure can be established with a sensitivity analysis of the distortion measure for
a given speech vector. A sensitivity analysis [7] establishes a basis for the speech block where the
basis vectors have ordered sensitivity. That is, for a given speech vector we know which perturbation
vector in the signal space has the largest impact on distortion, which perturbation vector in the remain-
ing subspace (signal space without the first perturbation vector) has the largest impact on distortion,
etc. Thus, by setting an audibility threshold, we can establish a signal subspace where changes to
the signal are most audible. We call this subspace the perceptually relevant subspace. Combining
the above feature and distortion measure analysis, we derive compact signal representations based on
human perception.

4.3.1 Feature and speech: a linearized relation

The relationship between the extracted features and the speech signal is not linear in general. How-
ever, we can linearize it around the observed speech vector x. We use as speech vector the square
root of the periodogram, since both the features we study and the van de Par model are a function of
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these magnitude spectra. Let c[x] be the transform of the spectral description of the speech segment
onto the feature vector i.e., c : RN → RQ. Then we can write

c[x̂] ≈ c[x] +
∂c[x̂]
∂x̂

∣∣∣∣
x̂=x

(x̂− x). (4.6)

Denoting A =
∂c[x̂]
∂x̂

∣∣∣∣
x̂=x

, where A ∈ RQ×N , we arrive at

δc ≈ A δx, (4.7)

where δc = c[x]− c[x̂] and δx = x− x̂.
Eq. (4.7) gives a linear approximation of the transformation of the speech error vector to the

feature. Since the above equation is underdetermined, it has infinite set of solutions. However, all
solutions if projected onto the image subspace of A give the same result. This projected solution
results in a N-dimensional vector δxc lying in Q-dimensional subspace and has the following form

δxc ≈ A+δc. (4.8)

In the next section, we show how to use this result to compute the sensitivity matrix in the feature
space.

4.3.2 The sensitivity matrix in the feature domain

In Sec. 4.2.1, we derived the distortion measure shown that it can be expressed as in (4.3). Moreover,
in Sec. 4.2.2, we obtained the sensitivity matrix (4.5) in the speech frequency domain from the van
de Par auditory model.

We can now move to the feature domain, and use (4.8) to compute the new sensitivity matrix for
the features

d[c, ĉ; x] =
1
2
δxTc Dx δxc =

1
2
δcT (A+)T Dx A+δc (4.9)

or,

d[c, ĉ; x] =
1
2
δcT Dc[x] δc. (4.10)

Matrix Dc[x] is the new sensitivity matrix in the feature domain and can be considered that it de-
scribes a linearization of the perceptual transform [7].

Motivated by the assumption that good features subset should cover the perceptually relevant
signal subspace, we define a measure of features goodness G(i) to rate the perceptual significance
of features set i over all speech segments j. We want the squared error in the feature domain to be
proportional to the auditory-model distortion, for small distortion, and over all signal segments. A
suitable measure is

G(i) = min
i


∑
j

Γj −

∑
k

ΓkBk(i)∑
k

Bk(i)Bk(i)
Bj(i)

2
 (4.11)

where we have introduced Γj as

Γj =
∫
ε
δxT Dx δx dx (4.12)
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and Bj(i) as

Bj(i) =
∫
ε
δxT AT (i) A(i) δx dx. (4.13)

In (4.12) and (4.13), ε is a small positive real number defining a region in which we compute distor-
tions over a set of equal but very small norm errors for all speech signal segments. (In an implementa-
tion the value of ε can be set to the smallest value that facilitates reasonable computational precision.)
During the computation of G(i) both A(i) and Dx are adapted to the specific segment x. A small
G(i) means that the local distortion (averaged over small deviations) in the feature domain, Bj , be-
haves like the local distortion (averaged over small deviations) in the auditory domain Γj except for
a scaling, and hence the best features set should minimize the shape difference in (4.11).

4.4 Application to speech recognition

As we have already mentioned in the introduction, MFCCs are the features that most researchers use
for speech recognition. Mel frequencies are based on the knowledge of the human auditory system.
Human ear resolves frequencies in a nonlinear manner. The response is linear at frequencies below 1
kHz and becomes logarithmic with increasing frequency [1].

4.4.1 The A matrix for MFCCs

Mel-frequency cepstrum coefficients (MFCCs) can be computed as [1]

c[q] =
M−1∑
m=0

s[m] cos
[
q(m− 1

2
)
π

M

]
, q = 1, 2, ..., Q, (4.14)

where Q is the number of cepstrum coefficients, s[m] represents the log-energy output of the m’th
filter of the filterbank, and M denotes the number of triangular bandpass filters used.

In Sec. (4.3.1) we introduced the matrix A that characterizes the local relation between the featurs
and the signal x. To find A for MFCCs, we follow the steps on computing them, backwards. As a
result, (4.14) can then be written as

c[q] =
M−1∑
m=0

ln z[m] cos
[
q(m− 1

2
)
π

M

]
, (4.15)

where z[m] is the product of power spectrum and the triangular mel weighted filters or,

c[q] =
M−1∑
m=0

ln
{N−1∑
n=0

x[n]Hm[n]
}

cos
[
q(m− 1

2
)
π

M

]
, (4.16)

where x[n] is the periodogram and Hm[n] is the m’th triangular mel-filter. From the above, we can
calculate A as the product of the following derivatives

A[q, n] =
∂c[q]
∂s[m]

∂s[m]
∂z[m]

∂z[m]
∂x[n]

, (4.17)

which is

A[q, n] =
M−1∑
m=0

cos
[
q(m− 1

2
)
π

M

]
1

z[m]
Hm[n]. (4.18)
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Figure 4.1: Scatter plots of the estimated δc’s vs. δctrue’s for the 1st and 2nd MFCC, respectively.

4.4.2 The selection process

The goal is to find the subset of MFCCs that describes the most audible signal components best, in
an average sense. To this purpose we introduced the goodness gain G in the previous section. The
process starts by computing in every segment, the value of Γj and the sensitivity matrix Dx. Then,
for each possible combination of features subsets i, we consider the matrix A(i) and calculate the
quantity Bj(i). We repeat the above procedure for all the speech segments. In the end, we compute
the goodness gain measure for every feature subset and for the whole speech. A comparison of the
goodness gain values of all possible subsets is considered, and the one that has the minimum value is
rated to be the optimal in terms of minimizing the shape difference as it is given by (4.11).

4.5 Evaluation

4.5.1 Range of linearization

In this we examine the range of the linearization assumption between the cepstrum and the speech.
The speech is distorted with i.i.d. Gaussian noise at different SNRs ranging from 30 to 90 dB. The
sampling frequency is at 16 KHz, and the segments length is 25 ms.

Test Set A 12 MFCC,C0,E 11MFCC,C0,E 10MFCC,C0,E 9MFCC,C0,E 8MFCC,C0,E
full set AMFS ref AMFS ref AMFS ref AMFS ref

Clean 1 97.6 % 97.6 % 97.3 % 97.9 % 97.1 % 97.7 % 95.5 % 97.6 % 94.8 %
Clean 2 97.1 % 97.0 % 96.8 % 97.3 % 96.5 % 96.9 % 95.0 % 97.0 % 94.5 %
Clean 3 97.3 % 97.3 % 96.9 % 96.9 % 96.6 % 97.0 % 95.1 % 96.9 % 94.6 %
Clean 4 97.5 % 97.7 % 97.1 % 97.7 % 96.7 % 97.7 % 95.2 % 97.4 % 94.8 %

Average 97.4 % 97.4 % 97.0 % 97.5 % 96.7 % 97.3 % 95.2 % 97.2 % 94.7 %

Test Set A 7MFCC,C0,E 6MFCC,C0,E 5MFCC,C0,E 4MFCC,C0,E 3MFCC,C0,E
AMFS ref AMFS ref AMFS ref AMFS ref AMFS ref

Clean 1 97.4 % 93.4 % 97.3 % 90.4 % 97.1 % 88.8 % 96.9 % 84.0 % 86.5 % 79.8 %
Clean 2 97.0 % 93.0 % 96.9 % 90.2 % 96.4 % 88.6 % 96.3 % 84.3 % 86.2 % 80.0 %
Clean 3 96.9 % 93.4 % 96.6 % 90.3 % 96.7 % 88.7 % 96.5 % 84.4 % 86.6 % 79.8 %
Clean 4 97.5 % 93.2 % 97.1 % 90.6 % 97.0 % 88.6 % 96.8 % 84.2 % 86.6 % 79.4 %

Average 97.2 % 93.3 % 97.0 % 90.4 % 96.8 % 88.7 % 96.6 % 84.2 % 86.5 % 79.8 %

Table 4.1: Recognition accuracy for the full set of 12 MFCCs and for several subsets of auditory-
model based feature selection (AMFS). The reference (ref) is the average accuracy ob-
tained from 5 different, randomly selected features subsets.

Fig. 4.1 shows the δc i.e., computed from the linearized relation (4.7) versus the true difference
δctrue between the cepstrum of the original signal and the cepstrum of the distorted one for only the
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1st and 2nd MFCC, respectively. It can be seen, that the linearity assumption is a good approximation
in this range of SNRs.

4.5.2 Speech recognition experiments

In this section we present experimental results comparing the selected feature set, obtained from our
proposed method, to the conventional feature sets that are used in most cases.

We use the AURORA 2 [9] database. The MFCCs are extracted by using a Hamming window of
25 ms with an overlap of 12.5 ms. The length of the DFT is set to 256, while the number of filters
used are 23. In the end, a set of 12 conventional MFCCs are extracted. As a recognizer we use the
HTK [10] toolbox. The digits are modeled as whole word HMMs with 16 states (HTK notation is 18
states including the beginning and end states) and three Gaussian mixture components per state. At
first, we produce an initial model with global data means and variances, same for each digit and then
we run 16 iterations to build the final model. Table 4.1 shows the recognition accuracy for only the

subset MFCCs
11 c[1],c[2],c[3],c[4],c[5],c[7],c[8],c[9],c[10],c[11],c[12]
10 c[1],c[2],c[3],c[4],c[5],c[8],c[9],c[10],c[11],c[12]
9 c[1],c[2],c[3],c[4],c[5],c[9],c[10],c[11],c[12]
8 c[1],c[2],c[3],c[4],c[9],c[10],c[11],c[12]
7 c[1],c[2],c[3],c[4],c[10],c[11],c[12]
6 c[1],c[2],c[3],c[4],c[11],c[12]
5 c[1],c[2],c[3],c[11],c[12]
4 c[1],c[2],c[3],c[12]
3 c[1],c[11],c[12]

Table 4.2: Selected MFCCs

clean part of test set A of the database. In the first column, the recognition accuracy of the full set is
shown and in the next columns, the accuracy of the auditory-mobel based feature selection (AMFS)
in different cardinalities. For comparison, the average performance of 5 different, randomly selected
MFCCs subsets is shown, too. The performance of the AMFS remains sufficiently stable, comparable
to the full set, as the number of coefficients reduces. In comparison to the reference configuration,
AMFS has better recognition accuracy in a range from 0.4% up to 12.4%. Finally, table 4.2 shows the
selected MFCCs. The system favours not to choose coefficients from the middle part of the MFCCs’
range, keeping only the initial and last coefficients.

4.6 Conclusions

We presented a new method to select speech features based on human perception. The selection
algorithm was based on a particular, relatively simple auditory model. We applied it to MFCCs to find
an optimal set that removes redundancy and thus, lowers dimensionality. We evaluated the subsets
with a series of classification experiments on the AURORA2 speech database. Results showed that
the system can indeed perform well based only on perception, and ignores the aspects of sound that
we do not hear. In the future, it is natural to apply the method to auditory models that include the
effect of time-domain masking.
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