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0. Introduction

This report consists of three main sections. We startdtiosel with general, introductory notes on pattern
theory and pattern discovery including some special topics and questions dithegien during the ACORNS
project. Different aspects of the pattern discovery areusésd first on a general, principal level, in order to
help the reader to orientate to the methods applied and the common problems fgnthdyourney.

Section 2 deals with more practical and technical issues andlassthe present status of the different
pattern discovery activities in ACORNS, especially thoss #re not reported elsewhere (e.g., the NMF-
method).

Section 3 gives a summary regarding the main results obtainét lajfferent approaches. It collects
both the positive and critical issues related to the different methods,aked some general conclusions.

1. General notes on pattern theory, pattern discove  ry, and other
related issues arisen during the project

This section consists of some general, introductory, notesliaodssion that covers some of the most
fundamental aspects of pattern discovery. Some aspects aretedripegeneral pattern and information theory,
some to the theory of knowledge, and some may reach up to the problems of epigtemol

This general discussion attempts to illuminate the common backgimualtithe different efforts made
in the ACORNS project that concern studying, understanding, and salgadgvorld pattern discovery
problems. A general discussion with different viewpointsiésessary to understand the nature of problems
arising out of practical work and to better comprehend the poskffdeences and implications found between
the various approaches.

As discussed below, pattern discovery currently does not rely afidansethodological basis and
theory. This causes the field to be very diverse withhalse different methods, tools and approaches. At the
current phase of the development this may be the only wayntb detter solutions, to create deeper
understanding, and to take steps toward a universal pattern theory.

Also in the ACORNS project we have worked in parallel in fietl of pattern discovery, we have
applied different tools and methotisthe same datm order to understand the nature of the problem, perhaps
even the nature of the speech, and to evaluate criticallpdbi#ive and negative properties found in the
different approaches.

In the following subsections we start with the general questibhsw to define a pattern and is there
any proper pattern theory available. Then we continue with atbees like: how to cope with noisy sequential
patterns, what kind of representations and models are needed, arid bope with the problem of multiple
keywords.

1.1 How to define pattern?

Many well-known textbooks related to pattern discovery, dlaatibn, and recognition, do not discysattern
theoryat all. Even the concept patternis not always defined (see e.g., [31]). The fundamental proiblehe
field is not only how to formulate a good definition fopattern but how to create a unified view or even a
theorythat is able to provide a robust framework for all pattern based informabcessing.

If we are not able to define the central concepts soiarte the field and fail to derive a new,
comprehensive and solid theory on which we are able to illumittegeconcepts, their relations and
constructions, we risk going on forever performing different kindsnofe or lessad hocexperimentations
without understanding the deeper meanings and aspects of the preEmmore frustrating, we may end up
fumbling in the dark without guidance of a solid methodology supported by a solig.theor

Deliverable D2.2 1/51
© 2008 ACORNS Consortium



FP6-2002-IST-C Spec. targeted research p roject
ACORNS

This is a fundamental question and maybe therefast of the time it is not touched upon at kllthe
following subsections we try to find answers to this and otheterklguestion with the help of the recent
literature.

1.1.1 Attempts to define Pattern and general Patter n Theory

An example of a team working towardgattern theoryis the Brown University pattern theory group which
was founded bWIf Grenander(http://www.dam.brown.edu/ptgd/in 1972. They define the field as well as their
goals and methodology in the following way:

The Brown University pattern theory group is working with the belief thahe world is complex
and to understand it, or a part of it, requires realisticesgmtations of knowledge about it. We
create such representations using a mathematical formaligtarn theory, that is compositional
in that the representations are built frample primitives combined into (oftenfomplicated
structuresaccording taules that can baleterministic or randomThis is similar to the formation
of molecules from atomsonnected by various forms of bonds.

Pattern theory is transformational in that groups or semigroups of transformations operate on the
primitives. Thesdransformations express the invariana#she worlds we are looking.at

Pattern theory isariational in that it describes the variability of the phenomena obdeiwe
different applications in terms gfobability measurethat are used with Bayesian interpretatian
This leads to inferences that will be realized by compaigwrithms. Our aim is to realize them
through codes that can be executed on currently available hardware.

(Text inbold, italic, and_underlinedvas added by ukl)

The methods and goals of this team clearly reflect the idesented in the bookieneral Pattern Theorpy
UIf Grenander [32]. In March 1995 Professaosef Kittlerfrom the University of Surrey, who is a specialist in
machine intelligence, evaluated the book, e.g., with these words:

Grenander's General Pattern Theory is the result of some 25 peaesearch that puts forward a
unified representational model for sensory patterns. The represamtiatian algebraic structure

with topological, probabilistic and statistical aspects. Its basislding blocks are generators
equipped with bonds allowing their spatial interconnection. The reptaenal capacity of the

structure lies in the combinatorial nature of the configuration spaof these generators.
Invariance to transformations and deformations is handled by equivalense<las

Kittler concluded:
Grenander's book is neither light reading, nor necessarily the farswer to the pattern
representation issue.

In any case, up to now this work is still one of the few attertptcreate a universal theory for patterns and
mathematical methods for processing them. It tries to giveeasgo the hard problems like: How to deal with
noisy patterns and how to deal with transformed (distorted) pstt&renander’'s answer is to study the
topological properties of the algebraic structures selected torégrasentations for the patterns.

It could be added that the statistical methods adopted by Greranederainly limited to Markovian
approaches. However, in ACORNS we have selected more praotitaand we have built on one of the most
general and classical definition of the pattern:

A pattern is an organized whole made of elements (parts) or pattern prémitive
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Here we consider a pattern as something that can alwagledmnposednto a set of primitives. This also
includes primitives that may be reused in order to constrwetpagterns. An abundance of examples exist in
nature: six different types of quarks and leptons composedaiscprotons and neutrons in the early universe.
Electrons, protons and neutrons form atoms, atoms combine into molecules, etc.

The process where the primitives self-organize to fornew system, a newhole, exhibiting new
properties is calledmergentAt the same timaew qualitiesappear. Qualities, that anet explicitly presenin
the parts but can only appear (emerge) through combinations anéctions between proper elements
(primitives).

For this type of integration to occur the parts must haveopepty “to be reactive”, or “to be able to
interact”. They have to bsensitiveto detect the other potential parts in order to form intensiteractions
needed in construction of relatively stable, new structures.y Thest “sense” and “recognize” the other
elements in order to form bindings or connections with them. Raasiy neutral elements without the ability to
interact strongly and permanently cannot form any stable cotistrua new whole An ideal gas at room
temperature can never form permanent patterns from its elements.

A wholewith its novel qualities and properties can only be defined Ipaits and their interactions (the
way they are organized), aadoart (element, primitive) can often be defined by the whole (construction) only

One interesting direction of thinking related to these gomestis callechologenesisvhich attempts to
describe the relationships between the primitives and tlosistimictions. These principles and views have
evolved in the studies of human perceptidfan Leeuwenwho first coined this concept around 1997
summarizes his views in the following way [33]:

In the process of setting @psystem approach to perceptjdarain processes cannot be neglected.
The problem igo find a broad, general characterization of these processesccordance with the
system approach, the dynamics of perceptual organization in tmedo@d be approached from
the perspective of self-organization. | propodseualogenesisas a uniform principle of self-
organization in the perception of object structure and suggestethitharinciple is embodied in
the chaotic activity of the brain (ltalics added by ukl).

Naturally, van Leeuwen is not the only one searchingfbroad, general characterization of these processes
for perception of patterns by humans and ageld. Hawkinshas communicated similar ideas, views and
hopes. Many different branches of science have generated knowlemfigls rand hypotheses around tinds
point We are still lacking an integrating theory able to illuminateastito some extent processes like:

- Efficient modeling, storing, memorizing, recognizing and reconstrgcif patterns based on their
commonessentiaklements (primitives) and tliéerarchic interactionswithin

- Noise robust, incremental, latent, multimodal learning

- Emergent processes created by these latent learning and sel&zioganinciples

On the practical level we may conclude that at the presest rasearchers are looking &tatistical or rule-
based methodto describe and analyze important connections between thetlpgrisiake up a whole, i.e.,
regularities in chaos.

More generally, from philosophy, nuclear physics, and branches of mmatibs to pattern processing
engineering and cognitive sciences, researchers are preleekilyg for new views, models and theories on
how to deal with patternshe whole vs. part problenhow to extract theelevant informatiorhidden innoise
cleanwholesfrom theirnoisy componentg\t the moment no one knows if there is a universal theoriingao
be discovered just behind the corner, or, are we trying to capmigeneral things not present in this complex
hierarchic world with so many different qualities and layers (see, e.g)., [34]
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1.2 Pattern as a regular part of noisy sequence

Language, in written as well as in spoken form, can be repegséyt sequences of discrete elements. The
discretizationof speech in such a way that it helps the recognition is naturaflgsential and also a demanding
problem. Our auditory, cognitive processes are able to find thsgnéts from the continuous dynamic flow of
speech. More generally, this reflects a universal cogniiveciple: learning and constructing of internal
invariant representationsWithout this skill, e.g., the evolution of written forms ehguages with different
orthographic coding systems is difficult to explain. However, howctumition has solved the discretization
and the learning of invariant representations is still an oper,is®d how to model and mimic these skills in
language acquisition systems are the largest challenges of the A QBj€ct.

In many practical situations patterns can be treategt@darities in noisy sequences. In ACORNS
sequences with local regularities have been studied by the follovetigpds:

- Multigrams

- N-grams

- DP N-grams

- Discrete transition matrices of VQ-indices (also delta & dettambined to NMF
- Computational Mechanics (CMM/CSSR)

- Discrete transition matrices (concept matrix) of segmentatesdi

- Discrete transition matrices (concept matrix) of VQ and SLVQagli

Also ACORNS with these different approaches demonstratesmihertance of processing noisy sequences
created by a limited alphabet efficiently. The activitietated to the different approaches, the benefits and
current problems of the method, and future plans are closer described in radiie Gsction 2.

1.3 Information hierarchy and pattern discovery

Objects in our environment as well as processes these oajeatseating and participating to, do often have a
spatio-temporal hierarchy, which helps us to discover not only the \elielg but also the elements and their
way to form an organized whole through their hierarchy. In technical patteovelig we should not only focus
on the discovery or recognition of the elements, but also trisgtowker and model the way they are organized to
form a larger totality.

The cognitive literature gives us examples where thetipialfirst recognized and after that its details
and elements (see, e.g., [35]). However, is this effect just tieeions part of the recognition process and could
there still be a “hidden” (unconscious) process before the cassoi®, which uses a strong bottom-up strategy
and starting from the elements proceeds to the totalitytlaerd “displays” the outcome to the conscious level
before the details? If this is accepted then the bottom-up methdd still be plausible even if the top-down
approach seems to fit the subjective experience better.

From the practical point of view it is difficult even todgine a pattern discovery process ablstéot
from the total patterr(the whole) withoufirst looking at and analyzing any of its components.

On the other hand cognitive science has plenty of examples Wwhsee on the holistic view a person
can fill the caps in an audio, or a visual stream. This islaively strong argument for a kind of top-down
processing.

When the recognizing system is able to construct a hierarcbitel for the object or event, the
hierarchy contains information of the internal structure of thecokge event), too, thus providing a mechanism
to “guess” the missing spatial or temporal data by providing giieds from the model in the memory or by
creating associations between the information provided and the totahgagteepresentation) in the memory.

A tree structure is an illustrative example of a hieramblg to do this kind of task. Up to now in the
ACORNS project these aspects are touched, e.g., in connectidiffeieent memory architectures and not
directly in connection to the pattern discovery methods digclim this report. However, during the last project
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year it may be possible to integrate the mentioned memory poeditsociation mechanisms at least to some
of the methods discussed in this report.

1.4 Statistical approach vs. deterministic model elements

One of the most difficult questions in the pattern discoveilyow to cope with the noise present in the input
data. For example, in the standard N-gram and computational nstithapproach we try to model all the
details in the data stream equally closely as if thesevegually important and true. This leads to an ever-
increasing complexity in the modeling, which has to be limited, eyga proper pruning method. However,
pruning needs good rules and theory in order to be efficient andte dight thing

Randomness in the input data leads to complex models if we mpdel everything given with the
same accuracy, and what is even worse, when the complexity ofathel in the number of model elements
increases, we need larger and larger amounts of data intortbeild upa sufficient statisticfor all these
elements, their appearance and their combinations. An eversimgesmount of data is needed and the data
will bring in more and more noise, which causes that new mdelaleats have to be learned and stored. In this
way a circle of increasing problems is created.

One possible way out of this circle is to apply a proper staisapproach where the model elements
are no more “exact”, rigid representations of the segmentsaidgjrof the input stream, but a somewhat more
“fuzzy” picture of it. This is one argument for the usage ofifeer@nt kind of statistical model Instead of
looking after equal N-grams or causal states (in CMM appjoappearing in the input stream, we may
construct a discrete statistical model able to estinh&t@robability of that N-gram or causal state not based on
the whole pattern but based on its elements and their organization.

However, we have to remember that the limitations describedeamay not béundamental Both the
N-gram approach and the CMM approach may be equipped with a new methhldgo help to overcome the
problem of the increasing complexity. A developmental work is presently running lofidids.

In principle, the HMM-method provides one possible solution toghestion, too. However, it seems
to be difficult to apply the method to model human kind of increnhdarmyuage learning and acquisition.
Furthermore, as discussed in the Section 3, speech does ne¢ téaliMarkov property. Wider temporal
dependencies must be taken into account in order to reach higfemaeice and robustness. For example, in
Finnish the first word of a sentence may predict last phoneath@nword in the same sentence — sometimes
even the last phones of the whole sentence!

These questions motivated the TKK team to search for a ratistisal method, which could learn
more efficiently and could handle the statistics in a nrarle and flexible way without any limiting pre-
assumptions about the nature of speech (see section 2.5).

1.5 On the problem of multiple keywords

The second year (Y2) ACORNS speech material is richer thar\l¥&.sentences with multiple keywords are
present. This evokes the question how to select the methods swetlcah cope with this more complicated
speech material (see also WP5 document: D5.2).

The first look to the problem of multiple keywords was done bglystig the statistics of different N-
grams found in the VQ label sequences of the UK-Y1 matésed section 2.6.2). After these preliminary
studies we found a better method, which seems to solve theempraifl multiple keywords and provides
promising recognition results. It is a novel method to applysthge transition matrices (concept matrices) as
statistical models for the keywords (see preliminary results tioaez.5).
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Figure 1.1: Sentences of different keywords are analyzed antescommon N-grams discovered. Some of thenpare
primitivesappearing only in the sentences of the same kelv@&wme other primitives may appear in sentencegfefent
keywords {mpure primitive}.

Figure 1.1 illuminates the usage of N-gram primitives. Whersanee primitive is found in several sentences it
helps to build statistical connections (associations) betweesethtences and possibly between the keywords,
too. Most of the primitives can be found in sentences of any d&ely{impure primitives) whereas some other
may always be found only in sentences of the same keyword (porigiy@). Typically a pure primitive can
stay “pure” only in a limited speech material. Most prigat are located somewhere on the scale: pure-impure,
outside the absolute pure point. High number of occurrences shthe primitive in sentences with the same
keyword naturally helps to construct a useful statistical model foreyeded.

One possible method studied preliminary could approximately go in the folleveyng

1° Create a library of common primitives.

2° Create statistics of the occurrences of the primitivesiitesees with different keywords.

3° Search after maximally pure primitives which occur often.

4° Construct statistical word models based on primitives found in 3°, whereiissible to take into
account the temporal ordering of the primitives, too.

From a statistical point of view, the carrier sententemilsl provide a “noisy background” for all keywords.
Ideally, the distribution of this background material over sarge of different keywords is flat. Thus selecting
those primitives having the highest selectivity between keysvare could construct selective word models. To
some extent the case of multiple keywords in the sentencendbewmake any difference so far the other
keywords being present simultaneously with the actual one faiwsaly uniform distribution in the statistics
collected separately for each keyword. In this case the e@tbeds, as well as the other keywords of the
sentences, can be modeled just as an additional background noibed words, the combinations of the
keywords and the words of the carrying sentences should be rich in order tleelredpodeling and recognition.

Under these conditions we may say that the issue of mukeeords is quite irrelevant from the
keyword discovery, spotting, and recognition point of view (see @iultiple keyword learning experiments in
ACORNS deliverable D5.2).
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1.6 Signal representations for pattern discovery in speech

1.6.1 Representations and their relation to languag e

The nature of representations derived from the stimuli isrg important aspect in pattern discovery. Almost
always some sort of conversion from the original raw datanwmi@ compact form is required in order to do
meaningful statistical or rule based analysis of the input. In caseattspignals, the first step in computational
processing is to convert continuous acoustic waveforms intseceeti-time finite-resolution representation that
tries to capture all the necessary information required for pattemvdiscfrom the speech stream. This leads to
a re-description of the original signal by a series of units defined afispaints in the signal timeline.

For the task of pattern recognition, the important questidimeis: what is the type of information that
required in the discovery process and how it should be repre3daspecially, how to describe the original
signal so that the information required for performing the taskaisimized and unnecessary (noisy) aspects are
discarded in the created representations? The demand abowetrsi@tf®r hierarchical systems, where the aim
is to incrementally refine the representations at alllsewé processing by extracting detectable structure and
possible converting representational forms based on information embeddexkistthetures.

To begin with possible representational options for pattern disgothree coarse classes for signal
representations can be describedCahtinuous representations.g., MFCC-vectors, where distances between
units (vectors and vector elements) can be computed with sonmedehetric in a continuous space. 2)
Discrete element representatioresg., sequences of VQ-labels, where each unit represents an oofcaomee
sort of categorical decision and lower level information usedertiissification process is discardedHgprid
representationswhere discrete elements are combined with additional iafitom e.g., spectral distances
between the elementary units are defined and can be utilized on demand.

In case of speech, continuous representations always precetsedislement representations, since
classification to some discrete world requires comparison of tdpepres of the signal at different times, which
again requires a well-defined space in which the comparison ca@erfmed. On the other hand, it is a
predominant supposition that at least one symbolic level abphef the processing hierarchy is required for
meaningful modeling, since our cognitive level thinking is oftensidered as a symbolic process (see, e.g.,
[8,9]). The nature of these human-like internal symbolic reptadens has a conceptual link to definitions of
discrete categories (e.g., categorical perception) anesstelassical probabilities, automata theory) that are
often utilized in cognitive modeling. As Dietrich & Markman [12h their paper discussing cognitive
representations, put itA'system has discrete representations if and only if it camimlimate its inputs. This
discrimination process is something that human-like cognitiviegbeare surely able to do in order to make
decisions. Also when we are dealing with our special cognitile knguage, we are often dealing with
discrete elements (phonemes, syllables, words, morphemearetespecially symbols (meaning conveyed by
the message). This assumption about symbolic nature of languagh éstablished from several perspectives,
including cognitive psychology [8] and general linguistics [10].

If we consider human thought as a symbolic process, it has impartesequences for the
representations of speech we are seeking for. Since “loW B@ustic signals are statistical in nature, and if at
the other end the “thought” that formulates or receives ihaakis a symbolic collection of meanings and
memories, it is evident that a conversion has to occur at gmoim¢ in the process from probabilistic
descriptions to discrete categories. In the end the inputsirided as a collection of high-level symbolic
representations that are then used to adjust the behavior i@&ctiging agent. This type of discrete form, or
invariance, of outputs from perceptual processing can be alsmemtsas extremely efficient for interaction
between different cognitive and perceptual functions [11].

In linguistics, the invariance (conversion from variable inputtfixed set of categories) seems to
appear first at the phonemic level. It seems that actudbrt dependent speech sounds are too variable to be
used as building blocks for language, since all natural langubges & rather limited set of basic elements that
differentiate meaning and that can be explicitly formulated@saemic alphabet. Varying sounds are mapped
into these invariant categories, phonemes, which behave systiyatind contain all the necessary
information in order to form larger stable representations.phomeme level is often seen as a prerequisite for

Deliverable D2.2 7/51
© 2008 ACORNS Consortium



FP6-2002-IST-C Spec. targeted research p roject
ACORNS

word learning [2], and it is indeed difficult to think of modeling efg., exemplar based learning without the
systems ability to generalize from a single pronunciation dependentia@shple to all possible appearances
of such word. Learning a link between invariant level units (phoneamekall their possible realization variants
(allophones) would naturally solve this problem with ease.

The problem of invariance is also something that is supportefindings in ACORNS. Pattern
discovery experiments with, e.g., multigrams (section 2.1), Nigr@ection 2.6.2), DP-N-grams (section 2.2),
and Computational mechanics (section 2.3), all trying to buildetesenodels using quantized speech signals,
lead all to a common problem: the discrete element sequendesl telapecific keywordare too variablefor
finding strong common recurring structure between keywords spokerffexreni contexts and by different
speakers. This makes generalization and comparison of pattiidtdand most importantly, makes building
of internal word models inefficient due to number of possible coatioins of discrete units for each word.
Combinatorial explosion resulting from variation in VQ and SLV®elessequences implies that it may be
impossible to build good generalizing models using a strict sequappeoach where long fixed stretches of
adjacent discrete elements based on spectral propertiesraielered as meaningful models or prototypes for
words.

Instead of going for fixed sequential models, approaches using rfuzmabilistic-like internal
representations, e.g., NMF or concept matrices (section 2.5), dilreitonature, are robust to variance at
phonetic level and therefore lead to good recognition results witlbedinvocabulary whenever there is
sufficient training data available to cover the differentiataons of the keyword realizations. However,
probabilistic representations of words in concept matrices or NMF basgsseahnot either escape the fact that
they cannot generalize from exemplars to all different ptessealizations, but they have to be trained with the
possible realizations of each keyword in advance. This is sometthdigcontradicts strongly with human
language learning capabilities, lmsmans can learn several novel words per day using single exetoldas
[17,18].

Overall, in the light of current knowledge about human processing tefrpatoccurring in the external
input , this all suggests that invariant levels can be andlaghi® striven for. If humans can learn discrete
invariances from probabilistic input, there is no reason whytarpaearning algorithm could not do the same
(although it might require modeling of the entire embodied hunkaendgent). It will be interesting to see,
whether pattern discovery methods in ACORNS can be harnesseddtesuth strong structures through
probabilistic analysis.

1.6.2 Temporal aspects of representations

In addition to the properties of single elements in the sequehdeames produced and possibly refined from
the original signal, the temporal domain is also extremely itapbin speech. Especially important question is
how can we extract meaningful information from a product obraticuous process like articulation without
losing essential aspects of language en route?

In ACORNS WP2, the issue of temporal representation has beeres: on two approaches: fixed
frame descriptions and segmental descriptions. Both of these approableestemporal aspect into relations of
sequential discrete units. In the former a signal is windowsdg a pre-defined step size (e.g., 10 ms) and
signal features are extracted from each window. In the lapigroach a signal is first segmented using a blind
segmentation algorithm [3] into phone-like units, and then a number @&fseyations are created for each
segment.

The advantage of the segmental representation is that iecgppboximated as synchronous to phonetic
aspects of the speech signal since each segment can be apmdxias a phone [3]. Moreover, the
segmentation algorithm creates these segmental boundapiesitat where there are significant changes in the
spectrum. These boundaries stand as landmarks for locations wétete @escription of the spectrum is not
informative, whereas locations between large spectral chamgésternally more coherent in speech and more
provide reliable spectral information. On the other hand, infoamatbout maximal spectral change at phone
boundaries can be used to provide efficient spectral changeefeagggmental representation also enables
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compression of the data compared to fixed frame repressrgaii each segment is described with a handful of
representations. This aspect becomes emphasized in signalstidreres plenty of silence or stationary noise
instead of continuous speech, as the stationary background willeat¢ continuous data input to higher levels
of processing unless there are changes in the signal conterdtalfteack of the current segmental approach is
that it relies on the segmentation algorithm that again,sréli@dly on sudden spectral changes without the
ability to use real learned linguistic knowledge in its decisions.

Fixed frame representations, on the other hand, can be utilizgdvidle continuous small time-scale
resolution flow of features. An advantage of this approadis systematical behavior and linearity in time, as
the temporal relationships between frames are always ekpligfined in the sequences of frames. A fixed
frame approach provides reliable detection of fine-grainedlsiétaihe signal (limited only by size and step of
the window), as the extraction of representations is not depeodemty other process that tries to detect what
is meaningful and what is not. A small window step enables highrai@dor higher levels and is especially
suitable for data-hungry algorithms for pattern discovery. Alsaavback, the fixed frame approach does not
guarantee anything about the content of the frames, producingalaments of “garbage”-frames, which can
either represent meaningless events, or that are extracteddcations in the signal that cannot be efficiently
described with the chosen set of features.

The word learning experiments performed with the so-called coneaices (section 2.5) and NMF
indicate that the segmental representations are too coaisedyrfor high-accuracy performance. While
approximately 98% of correct keyword recognitions can be obtainad ssgmental representations with the
Y1 corpus, it still falls behind 10 ms step fixed-frameadouracy. Insertions and deletions in the segmentation
process may lead to missing of some important details anafiagssichrony in tracking of co-occurences of
speech sounds stored in statistics of word models, as each wordscon$jsof three to ten segments on
average.

On the other hand, experiments of Driesen & Rasénen in an NMFleamdng task have shown that
the segmental information can become useful if noise ipdated to the signal before and/or after the
guantization of speech signals. Temporal integration of infoomativer larger units helps to avoid local
distortions in the vector quantized representations, and blindesggtion of speech can be utilized to perform
this integration inside phone-like temporal blocks. Combining of bo#grained fixed frame representations
and temporally integrated segmental level representationd/iis Word-recognition has significant effect on
recognition accuracy especially at high levels of noise (paper in psdgres

In current line of pattern discovery development in WP2, the segimesgiresentations are used for
guantization of the speech signals. The cluster spacstiffgated using only segmental frames, but afterwards
new signals are quantized with 10 ms fixed frames in ordebt&in high temporal resolution label sequences,
where each label is a typical spectral representation of a fikennit. This type of combined fixed-frame and
segmental processing is discussed in more detail in section 2.4.

Next we will move to discuss different approaches to pattescovery studied in the ACORNS project.
As we will see, the properties of different methods impodkerdnt types of constraints to the type of
representations they are efficiently able to deal with.
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2. ACORNS activities in pattern discovery

This chapter introduces a group of pattern discovery methods that awvtemsively studied in the ACORNS
project. First we will discuss the use mlltigramsfor learning of word models (section 2.1). Then we will
move toDP-ngrams(section 2.2) andComputational Mechanicésection 2.3). Section 2.4 will introduce a
novel, cognitively inspired, incremental speech quantization meathtbeld self-learning vector quantization
(SLVQ) that is used in section 2.5 in combination with yet anothiterpadiscovery method callezbncept
matrices Finally, section 2.6 reviews briefly two other pattern discpveethods that were investigated and
that gave important insight into the signal representatiagexrdang bottom-up pattern discovery from speech
(representations were discussed in section 1.6). These metheagaental dynamic programmi(gDP) and
more traditionahgrams

2.1 Multigrams

In the multigram algorithm [16], a sequence of input symbols tipagsents a speech signal is explained by a
finite set of underlying basic units, so-called multigrarnat tstochastically emit symbol sequences. The
stochastic behaviour of each of these multigrams is modelledHigden Markov Model. The goal is then to
find a set of models (multigrams) that

e Provide a good fit on the data: the symbolic input sequence needsiplamed with a sufficiently

high likelihood by the converged set of models

» Are likely to be an adequate set for explaining language
The latter condition is necessary as a counterweight fotetieency to make the set as big and detailed as
possible, which stems from the first condition. Unfortunately, ed®the fitness of a multigram set in terms of
the first condition can readily be calculated (facilitatecohy choice to model the multigrams as HMM's), this
is not the case for the second condition. There, we apply sstieof parsimony, stating that more elements in
the converged set is not always better.

2.1.1 The algorithm

When applying this method to language acquisition, the first stép convert speech to symbols. In our
experiments we have initially chosen to use phones (modelleth byMM-based acoustic model). This is a
simplification, since a real infant has no such knowledge towitirt The input then consisted of a somewhat
inaccurate phone recognition of the speech signal (error rate ca. 25 %). Tikégalphabet we used contained
43 phones, including noise (indicated by the symbol #).

The initial set we start from is then derived from an exheadisting of all possible subsequences of
the original input sequence. Each of these subsequences carbeasilyverted to an HMM that is most likely
to emit that particular subsequence. In our experiments, thisovesas follows: each phone X was converted
to a corresponding state, Svith emission probabilities defined as p(¥|S 0.5, p(#|%) = 0 and p(other
symbol|S) = 0.5/41. For each transition between states, a dummy stages Defined that can be visited before
going to the next state. Because of this, it is possible to nsouge insertions. The emission probabilities for
this dummy state are: p(#|D) = 0 and p(X|D) = 1/42. Aside fromdhimmy state to model a single insertion,
we also add a transition for each state that skips the reet shodeling a single deletion. The transition
probabilities for each state to go to its following dummy stiééenext normal state or the state after that, are
respectively initialized at 0.1, 0.8, and 0.1.
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1

Figure 2.1 The HMM that was derived from the symbolic sequeefs IH K S”.

The set of models we have at this moment is very largkttrerefore not likely to be a good solution. It will be
necessary to remove a number of elements. A sensible way hisde to remove the patterns that occur the
least. This can be straightforwardly done by determining fcin element in the set the probability that it occurs
in the speech signal and thresholding this with a certairevdlbe probability that a pattern occurs can be
calculated as the relative number of occurrences of thatrmpattehe symbolic sequence derived from the
signal, on the condition that we make a correction for thgthe of the pattern. Such a correction can be
obtained with the following reasoning: if P is the probability of a oesabsequence being seen in the symbolic
input without errors and Q is the probability of a certaitigpa appearing in the speech signal, then we can say
that approximately P=QA with L being the number of symbols in the pattern and A the appraximat
probability of a symbol being right.

After that, the remaining models are again fitted to the idpté. A new probability is calculated for
each pattern (this time the correction is not needed) anchiuhiggram set is once again pruned with the same
threshold as before. This process is repeated until the set remaiamthe s

2.1.2 Results

The results on TIDIGITS looked very promising. If we deterniime most likely symbol sequence of each of
the remaining patterns, we get: WAHN, TUW, THRIY, FAOR,FAYV,SIHEEHV AHN,EYT, N
AY N, OW, ZIHR OW, L and ER IY.

It is very clear to see that these phonetic patterns pomedsto the actual words in the input. The
presence of “ER I” can be explained by the tendency to recoghizdr“lY” as “T UW ER IY”. The presence
of “L” can be explained by the fact that it emerges as a alagarbage model, since “L” doesn't appear in any
of the digits.

Mind that this is the result obtained when performing multigramsa single sequence of symbols.
When applying multigrams on phone lattices, obtained from an automplatine recognizer, a lot more
uncertainty is retained. As a consequence, the converged set beadmtantially bigger, although the correct
patterns are all there and have a higher probability than the spurious ones.

2.1.3 Applicability of the approach for unsupervise d learning

As will also be shown in section 2.6.2, the amount of variabititg stream of VQ-labels (or presumably any
other speech representation with a high data rate andje dadebook) is enormous. The number of initial
multigram candidates is too large. This severely limits d@pplicability of the multigram algorithm in the
context of language acquisition without prior knowledge.

Our only hope to overcome the difficulties would be to make theileaprocess hierarchical, in which
shorter (e.g. phone-sized) units with consequently less variagotiscovered first. Word-level patterns would
then be learned from the output of this layer.

Because of its serious problems with self-discovered inputsijtitRtdependency on preset parameters
(e.g. the probability threshold) and its lack of flexibilitygleremoved patterns cannot be relearned), research
into the multigram algorithm has been put on hold, in favor of other, more pngmigithods.
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2.2 DP N-grams

The acoustic DP-ngram algorithm reported in this section modification of the preceding DP-ngram
algorithm [5,6]. The original DP-ngram model was developed mk&haand Kruskal ([6]) to find two similar
portions of gene sequences. Nowell and Moore ([5]) then modifiedrthdel to find repeated patterns within a
single phone transcription sequence through self-similarity. Expgnoh these methods, the author has
developed a variant that is able to segment speech, difemtiythe acoustic signal; automatically segmenting
important lexical fragments by discovering ‘similar’ repegtpatterns. Speech is never the same twice and
therefore it is impossible to find exact repetitions of impoaiecg. phones, words or sentences).
The use of DP allows this algorithm to accommodate terhglistortion through dynamic time warping
(DTW). The algorithm finds partial matches, portions thatsam@lar but not necessarily identical, taking into
account noise, speed and different pronunciations of the speech.
Traditional template based speech recognition algorithms usingddRl compare two sequences, the input
speech vectors and a word template, penalising insertions, delatidnsubstitutions with negative scores.
Instead, this algorithm makes use of quality scores, positidenagative, to reward matches and prevent
anything else; resulting in longer, more meaningful sub-sequeig#al test results show that there is
significant potential with this approach, as it segmen@ninunsupervised manner, therefore not relying on a
predefined lexicon or acoustic phone models.
What the acoustic DP-ngram model does:
» Finds similar repeating patterns directly from the acoustic signal
0 Works on the assumption that common words and phrases are acousincgdly, finding low
distortion alignments between spectral representation of @iffeegions of time in words and
phrases
e Uses Dynamic Programming techniques to find partial matches
o Partial matches allows the algorithm to discover alignmeh& &re longer and more
meaningful
e Clusters similar alignments
o Alignments with the same underlying meaning will be grouped togetther centroid of each
group is the ideal representation, which will constantly evalveé become more accurate as
more data is processed
e Output can be used to create a symbolic representation of audio stream
o Compresses the audio stream which can be used to feed bacthéntlgorithm to find
hierarchical repeating structure over a longer time range

2.2.1 Acoustic DP-ngram Method

Figure 2.2 shows the simplified architecture of the acol¥amgram method. There are four main stages to the

basic process:
1. Two utterances are fed to the DP-ngram algorithm as two sets offeatiors.

2. A frame-to-frame distance matrix is calculated.
3. Accumulative quality scores are calculated for successiveefsaeps.

4. Local alignments are then discovered within the quality matrix.
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Figure 2.2: Acoustic DP-ngram architecture.

2.2.1.1 Feature Vectors

The test data being used is utterances of speech that hawvegeaifically recorded by the ACORNS project
during the first year. The ACORNS MFCC front-end has been usgarameterise the raw speech signal. The
default settings have been used to output a series of 3éwdlémature vectors. The front-end is based on Mel-
Frequency Coefficients (MFCC), which reflects the frequencgiteity of the auditory system, to give 12
MFCC coefficients. A measure of the raw energy is added alithgl2 differential {) and 12 2 differential
(AQ) coefficients. The front-end also allows the option for cepstrean normalisation (CMN) and cepstral
mean and variance normalisation.

2.2.1.2 Distance Matrix

A local-match distance matrix is then calculated by measthiagosine distance between each pair of frames
(14, 172) from the two sequences, which is defined by:

d(vy,v,) = (@] x v/ (1w, |17 X ||v,11) (2.1)
Where,

T = Transpose

Figure 2.3 is a plot of the frame-frame similarity footwtterances. The distance measure is on a scale of 0-1,
where 1 is an exact match.
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Frame-frame Similarity Matrix

Utterance :
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Utterance 2

Figure 2.3: Frame-frame similarity matrix between two utter@sc

2.2.1.3 Quality Scores

Traditional DP template based recognition systems use negatives to penalise insertions, deletions and mis-
matches to find the shortest distance. This method uses posities stoeward matches and negative scores to
discourage anything else, allowing us to find longer and more meaningful atighim

The following recurrence is used to find all quality valggs:

‘?[—u + (5(‘-‘"{:@) * [|di—ld'—1 - 1|) * q[—l,j]’

q; = max T * (5@’ bf') x Odi—u—i - 1|) X qi.._."—ij’

(2.2)
P + (s[a[,bj) Xd; g5 4% ql._id._j),
0,
Where,
s(a;,@) = —1.1 Score for alignment ending with an insertion
s(0,b;) = —1.1 Score for alignment ending with a deletion
S{ﬂ-hb } = +1.1 Score for alignment ending with a substitution

ds; Cosine distance between franiag)

In order to maximize on quality, substitution scores must be positid insertions/deletions must be negative.
The recurrence also stops past dissimilarities causioigableffects by setting all negative scores to zero,
therefore starting a fresh new homologous relationship betweahdlgnments. Figure 2.4 shows the plot of
the quality scores after carrying out the recurrence2(&).
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Quality Score Matrix
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Figure 2.4: Quality score matrix for two utterances.

Applying a substitution score of 1 causes the quality scores toag@ilinear function. The current settings use
a substitution score greater than 1 (1.1), thus allowing the qgatites to grow exponentially, giving longer
alignments more importance.

Altering the negative insertion/deletion scores greatdess than -1 allows the model to increase or
decrease the spread of quality scores, therefore allowingotawer the tolerance for distortion. By setting
insertion/deletion scores to values less than -1, the motldingicloser matching repetitions, whereas a value
greater than -1 allows the model to find repeated patterns that are dmdgess accurate.

2.2.1.4 Finding Local Alignments

Backtracking pointer§bt) are maintained at each step of the recursion:

(i— 17, (deletion)
bt o — (1,7 — 1), (insertion)
) =) (i—1,5-1), (substitution)
(0,0) (initial pointer) (2.3)

When the quality scores have been calculated with the renudsfined by equation 2.2, it is possible to
backtrack from the highest score to obtain the local aligrsriardgrder of importance. A threshold is set so that
only alignments of a desired quality are to be retrieved.

Figure 2.5 displays the steps taken to find the local alignments in olidgoartance:
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Backtrack fromQmaxuntil ¢fj = O

v

Set ‘used’ quality scores zero

These steps are required in order to stop lots
l of minor variations of older alignments.

Set neighboring quality scores to zerp

Figure 2.5: Flowchart of backtracking process to find locagjaiments.

Figure 2.6 presents the optimal local alignment that was discovered by tingr&®R-model for two utterances:

utt; “Finally Ewan was there”
utt, “But Ewandoes”

Quality Score Matrix with Local Alignment

12

20 b 10

Utterance 1

80
d4

10 ™ 2 4 = 6 7 8 o 1o
Utterance 2

Figure 2.6: Quality score matrix with optimal local alignmepibt.

The discovered repeated pattern is [y uw ahStdrt and stop times are collected which allows the model to
retrieve the alignment from the original audio signal in full fidelityew required.

2.2.2 Keyword Discovery

The milestone for the end of the first year of the ACORIXSect is that LA should have learned 10 keywords.
A keyword discovery (KWD) method has been added to the acoustiggiaih algorithm that continues the
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theme of a general statistical learning mechanism. The ttx@P-ngram algorithm exploits the co-occurrence
of similar acoustic patterns within different utterandasts turn, the KWD method exploits the co-occurrence
of semantic features to build internal representationsyafidiels. Both of these processes combine to achieve a
system that is able to discover important word-like units from aermmsial environment.

KWD is a simple approach that creates a class for each keyimowrhich all discovered exemplar units
representing each keyword are stored. With this list of episoginesgs we can perform a clustering process to
derive an ideal representation of each keyword.

For a single iteration of the DP-ngram algorithm, the curréatancel Utt,,,.) will be compared with

another utterance in memokiitt,, ). KWD hypothesises whether the segments found within the two utésran

are potential keywords, by simply comparing the associated Sertegg. There are three possible paths for a
single iteration:
1. If the tag ofUtt.,, has never been seen before - create a new keyword classoemdhst whole

utterance as an exemplar of it. Do not carry out the DP-ngraogess and proceed to the next utterance

in memory(Utt,4+4).

2. If both utterances share the same tag - proceed with thegii process and append discovered local

alignments to that keyword class. Proceed to the next utterance oryrigtfot, 4 ).

3. If both utterances contain different tags - do not carry out DBamgprocess and proceed to the next

utterance in memor§Utt,,+1].

By creating an exemplar list for each keyword class weahle to carry out a clustering process that will allow
us to create a model of the ideal representation. Currentlglusiering process implemented simply calculates
the ‘centroid’ exemplar, finding the local alignment with the shodissance from all the other local alignments
within the same class. The ‘centroid’ is updated eveng & new local alignment is added, therefore the system
is creating internal representations that are continuously egadvid becoming more accurate with experience.

For recognition tasks the system can be set to either useetiteoid’ exemplar or all the stored local
alignments for each keyword class. Using all the storechrakgts gives more accurate results, but the
processing required for this method increases exponentially exjterience until it is not a viable method
anymore. Using the ‘centroid’ is less accurate as it does not modealrihace of the input. Future work will be
carried to try and build a single ideal representation of each keytemsithat models the variance.

Another important point to mention is that for the year 1 da&liaere is only one tag associated with
each utterance which makes this a binary decision for the KWD procesandé®ifrom the year 2 database are
more complex and contain multiple keywords, but KWD will still mithe similar fashion with the addition of
an ‘uncertain’ class; this is where segments are temposddred before a decision has been made on their
correct keyword class.

2.2.2.1 DP-ngram - Batch Process

For a set of utterances the acoustic DP-ngram method congamgsincoming utterancelf;) with all past
utteranced U;=1- ;1)) to find local alignments. The search space for this process is thedduia figure 2.7.
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Completed Search Space for Batch Process (100 Utheices)
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Figure 2.7: Plot of the completed search space for the DPm@ma batch process for 100 utterances.

As a batch process the DP-ngram method can only run on a limiteldenwhutterances, with processing
complexity increasing towards infinity. This approach does notitsatl to an online language and recognition
process. It was necessary to design an implementation ofahstiacDP-ngram method that could potentially
handle an infinite number of utterances.

2.2.2.2 Incremental DP-ngram

Running the acoustic DP-ngram method as a batch process on the SJEIRgNsh corpus (4000 utterances) is
not viable with current processing and memory capabilities. Tdrerefn incremental version of the acoustic
DP-ngram method has been designed. Also, running the algorithm aseandntal process allows for a more
cognitively plausible system [13].

The model is made incremental by restricting the number ofypesances to be compared with the
incoming utterandg; } with an utterance WindO\ﬂ/{@-:Umﬁﬂdwq.;i_ﬂ}. This creates a search space as shown

in figure 2.8 a) & b).
Completed Search Space for Incremental DP-ngram (tVindow = 20)
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Figure 2.8: a) Plot of search space for the incremental DRumgafter 35 utterances with a window length of 28rnaces.
b) Shows a plot of the completed search space Hi@utterances.
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DecreasindU/ttiWindow allows the system to run faster at the expense of redtlengearch space, therefore
running the risk of potentially missing important repetitionsvds necessary to find the miniméfatWindow
length that will allow the system to find enough important reipaestin order to build accurate internal
representations of the keywords.

2.2.3 Experiments

Accuracy of experiments within the ACORNS project is basedAis tesponse to its carer. The response the
carer is looking for is if LA can predict the keyword tagasated with the current incoming utterance by only
using the speech signal. The acoustic DP-ngram implementatempés to solve this task using a method
similar to traditional DP template based recognition. The m@Etog process is carried out by comparing

exemplars, of discovered keywords, against the current incomiaganie using the DP-ngram method to

calculate quality scores. Thus, the alignment that produces gheshiquality score, by finding the longest

alignment, is taken to be the match, with which we can predict its assbeisual tag.

A number of different experiments have been carried out:

1. Finding the optimal utterance window length for incremental DP-ngram

For this experiment, varying values of the utterance window length (from 1 to 169usex to obtain keyword
recognition accuracy results across the same data set.

2. Comparing DP-ngram as a batch and incremental process

The optimal window length chosen for the incremental implementais compared against the batch
implementation of the DP-ngram algorithm.

3. Keyword Discovery - Centroid vs Complete Exemplar List

The KWD process stores a list of exemplars representioly keyword class. For the recognition task we can
either use all the exemplars in each keyword list or aesiexggmplar that best represents the list, the ‘centroid’.
This experiment will compare these two methods for representingahtepresentations of the keywords.

4. Speaker-dependency

The algorithm is tested on its ability to handle the vimmain speech from different speakers. Different feature
vectors from the front end are fed to the system. The feature vestulsue listed below:

V1 - Default HTK 39-element MFCCs (no normalisation)

V2 - ACORNS 37-element MFCCs (no normalisation)

V3 - ACORNS 37-element MFCCs with Cepstral Mean Normalisation

V4 - ACORNS 37-element MFCCs with Cepstral Mean and Variance

Normalisation

Using normalization methods will reduce the information within féegure vectors, removing some of the
speaker variation. Therefore, accuracy results should kerder a data set of multiple speakers with
normalization.

5. Comparing DP-ngram against the NMF approach

The NMF approach was the first and only end-to-end approachwitti ACORNS project and is used as a
baseline for ACORNS experiments. The NMF results are baseitieco ACORNS Y1 Dutch corpus with 4
different speakers. The data set contains 10 keywords and the utterarfeglstarthe system at random.
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2.2.3.1 Test Data

The test data being used for experiments 1 and 2 is a sub-setAC@RNS Y1 UK corpus — 100 different
utterances from a single speaker. Each utterance contains threeldf keywords and each keyword is presented
10 times.

Experiment 3 uses 200 utterances from the ACORNS Y1 UK corpus, hidesall four speakers (2 male and
2 female) presented in a random order. There are still 10 keyywordent but the number of times they occur
within the data set is random.

Experiment 4 uses the same setup as the data set for exp&imdrthe utterances are from the ACORNS Y1
Dutch corpus. Table 1 shows the test data being used for all four expstime

Table 1: Test data for DP-ngram experiments 1-4.

Experiment Corpus Utterances Speakers Keywords Occurrares
1 UK Y1 100 Im 10 10
2 UK Y1 100 Im 10 10
3 UK Y1 200 Im 10 20
4 UK Y1 200 2m-2f 10 Random
5 NL Y1 200 2m-2f 10 Random

2.2.3.2 Keyword Recognition Results

1. Finding the optimal utterance window length for incremental DP-ngram

The DP-ngram algorithm was carried out on 100 utterancésvailing utterance window lengths. The plot in
figure 2.9 shows the total accuracy result for each windowtdenged. The x-axis displays the utterance
window lengths used (1-100) and the y-axis displays the total accuracy (%).

The results are as expected. Longer window lengths achieve aooueate results. This is because longer
window lengths achieve a larger search space and therefaenrtme chance of capturing repeating events.
Shorter window lengths are still able to build internal reptesiens, but over a longer period. Accuracy results
reach a maximum with an utterance window length of 21 utteramckthan stabilize at around 58% (+1%).
This shows us the minimum window length needed to build accurate interreesiations of the words within
the test set. The window length used for all proceeding experiments i22ihoes.
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Total Keyword Detection Accuracy for varying

window lengths (1-100) over 100 utterances
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Figure 2.9: Plot of the total keyword accuracy using varyitiggrance window lengths of 1-100. Each trial hasnbearried
out on a test set of 100 utterances from a sirugealeer.

2. Comparing DP-ngram as a batch and incremental process

The plot in figure 2.9 displayed the total accuracy resultierdifferent utterance window lengths and does not
show the gradual word acquisition process. Figure 2.10 comparesitth@@iection accuracy of the system (y-
axis) as a function of the number of utterances observed (x-&<sliracy is recorded as the percentage of
correct replies for the last ten observations. The red plot shows tha@ctarrrandomly guessing the keyword.

Key Word Detection Accuracy
Incremental vs Batch Process
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Figure 2.10: Keyword detection accuracy for the DP-ngram athamirunning as a batch and incremental procesaillRes
are plotted as a function of the past 10 utteranbssrved.
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It can be seen from the plot in figure 2.10 that the system béfgnaith no word representations. At the
beginning, the system hypothesises new word units from which itbegin to bootstrap its internal
representations. As an incremental process, with the optimal witetgyth, the system is able to capture
enough repeating patterns and even begins to outperform the batcls @ivee90 utterances. This is due to
additional alignments discovered by the batch process that are temposdaitirdi a word representation, but |
believe the batch process would ‘catch up’ in time.

Another important result to take into account is that only compahiaglast observed utterance is
enough to build word representations. Although this is very dfficithe problem is that there is a greater
possibility that some words will never be discovered if they are not presadisicent utterances within the data
set.

3. Keyword Discovery - Centroid vs Complete Exemplar List

Currently the recognition process uses all the discoveredpgaenior each keyword class. This process causes
the computational complexity to increase exponentially. Itge abt suitable for an incremental process with
the potential to run on an infinite data set.

Another method employed was to calculate the ‘centroid’ for &agtvord class and use this single
exemplar unit for recognition. Figure 2.11 shows the accuracyfascton of utterances observed for both
methods.

Keyword Detection Accuracy
Centroid vs Complete Exemplar List
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— All Exemplars
Centroid
Randam
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20F
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20 40 B0 80 100 120 140 180 180 200

Utterances

Figure 2.11: Comparison of keyword detection accuracy usindro@s or complete exemplar list for recognition.

The results show that the ‘centroid’ method is quickly outperdriand that the accuracy gap increases with
experience. After 120 utterances performance seems to gradedlitye. This is because the ‘centroid’ method

cannot handle the variation in the acoustic speech data. blsithg discovered units for recognition allows the

system to reach accuracy results of 90% at around 140 utteravivere it then seems to stabilize at around
88%.

4. Speaker-dependency
This experiment has been carried out to test the speaker-dependé¢neyDP-ngram method. The addition of
multiple speakers will add greater variation to the acowssgical, distorting patterns of the same underlying
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unit. Over the 200 utterances observed, accuracy of thmahtepresentations increases but at a much slower
rate than the single speaker experiments.

Keyword Detection - Speaker-Dependency Experiments
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Figure 2.12:a) Accuracy of the system using different featteetors as a function of utterances observed. BITo
accuracy after 200 utterances.

The assumption that using normalization methods would achieve gneatedetection accuracy, by reducing
speaker variation, does not hold true. On second thought it is notsswgpas the system will be collecting
exemplar units for each speaker.

This brings up another issue; the optimal utterance windowthefog the incremental DP-ngram
process was calculated for a single speaker. Increasingedéinehsspace will allow the model to find more
repeating patterns from the same speaker. With this logiaulitdl e hypothesized that the optimal search space
should be four times the size used for one speaker and thak take four times as many observations to
achieve the same accuracy results.

5. Comparing DP-ngram against the NMF approach

The NMF approach is currently the baseline for word discoveryriexgets within the ACORNS project.
Figure 2.13 plots the keyword detection accuracy results fortvibemethods as a function of observed
utterances. The test set consists of Dutch utterancesfénandifferent speakers (2 male and 2 female) in a
random order.

Accuracy of the internal representations rise at a much festerfor the NMF method compared to the DP-
ngram method, although there is a sharp rise up to 40% after 170 utterances.
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Keyword Detection
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Figure 2.13: Comparison of keyword detection accuracy for NNME ®P-ngram methods over 200 utterances.

2.2.4 Conclusions

Preliminary results indicate that the environment is richughofor word acquisition tasks. The pattern
discovery and word learning algorithm implemented within the LAnowy architecture has proven to be a
successful approach for building stable internal representatibngord-like units. The model approaches
cognitive plausibility by employing statistical processes thie# general across multiple modalities. The
incremental approach also shows that the model is still adkatn correct word representations with a very
limited working memory model.

Additionally to the acquisition of words and word-like units, thetem is able to use the discovered
tokens for speech recognition. An important property of this methoddiffi@rentiates it from conventional
ASR systems, is that it does not rely on a pre-defined vocabthangfore reducing language-dependency and
out-of-dictionary errors.

Another advantage of this system, compared to systems such as NIt jtissteasier to give temporal
information of the whereabouts of important repeating structure whitlhe used to code the acoustic signal as
a lossless compression method.

2.2.5 Discussion & Future Work

A key question driving this research is whether modelling humagulage acquisition can help create a more
robust speech recognition system. Therefore further development pfajhesed architecture will continue to
be limited to cognitively plausible approaches and should exsifvidar developmental properties as early
human language learners. In its current state, the systeawigully operational and intended to be used as a
platform for further development and experiments.

The experimental results are promising. However, it is dlar the model suffers from speaker-
dependency issues. The problem can be split into two areas, ficbmirecessing of the incoming acoustic
signal and the representation of discovered lexical units in memory.

Development is being carried out on various clustering tgokesi that build constantly evolving
internal representations of internal lexical classes atiam to model speech variation. Additionally, a
secondary update process, implemented as a re-occurring ‘sledpieg/ is being investigated. This phase is
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going to allow the memory organisation to re-structure itselfobiing at events over a longer history as a
batch process.

The processing of prosodic cues, such as speech rhythm and pitchiontond@l be incorporated
within the algorithm in an attempt to increase accuracy famniher exploit the richness of the learners
surrounding environment. Adults, when speaking to infants, will highligittls of importance through infant
directed speech (IDS). During IDS adults place more pitctanegi on words that they want the infant to attend
to. Development of an additional perception module that uses pit@mearas a simple attention mechanism
has been initiated; the module gives a greater weight to instances avitbtterance with more pitch variance in
an attempt to discover units of greater importance.

Further experiments have been planned to see if the model exiiitar patterns of learning
behaviour as young multiple language learners. Experimentdeavitlarried out with the multiple languages
available in the ACORNS database (English, Finnish and Dutch).

2.3 Computational mechanics (CMM)

2.3.1 Causal states

Computational mechanics is a research programme with the aisingf automata theory to describe patterns
and the complex, stochastic processes that generate thenal @etitiese descriptions is the conceptatisal
states[19, 20]. The causal states are equivalence classes definedhevpossiblehistories (sequences of
observations from negative infinity until the current timeof a given stationary, discrete-time stochastic
process. Two histories belong in the same causal state if and tmy give the exact same beliefs about the
future, i.e., if they imply the same probability distributiorepall futures(sequences of observations frofd
and on to infinity). The causal states are thus a partitioning of the setsilblchistories.

One can show that the causal state representatiomigimal sufficient statistidor the observation
sequence; it retains precisely all information from pasemasions relevant for predicting the future, and
nothing more. Moreover, appending a symbol to a history string gimesvaistory string that also belongs in
some causal state. This way it is possible to define tiramsibetween the states. Interestingly, the states and
their transitions together constitute a Markov process—evéreibriginal process is not Markovian. Unlike
HMMs, the current state can, in this description, be uniquely ifihtfrom the available sequence of
observations.

2.3.2 The CSSR algorithm

Causal states are a theoretical construct based onnfmll&dge of the underlying process. Fortunately, in
practice an approximation of the causal states can be leaomedire or more empirical data sequences using
the so-calleccausal state splitting reconstruction algorit(i@SSR) by Shalizi, Klinkner, and Crutchfield [21,
22]. Given enough data, this procedure converges on the true causal Btaivever, the algorithm only
operates on sequences of discrete symbols from a finite alphabet.

Unlike the theory, practical algorithms have to make do withoties of finite length. CSSR, in
particular, only considers tHg,., most recent symbols at any given point in the data, knowrsafiaof the
history string, wheré .« is a user-set memory length parameter. Despite thisdim#uffix length, CSSR can
actually learn certain processes with a non-fixed, potentially iafin#mory, such as the even process of Weiss.
However, asymptotic convergence requires that the number of ctatea is finite and that,., is not set too
low.

In brief, the CSSR algorithm consists of three main stepssinga the data, homogenization, and
determinization. These are outlined below (see also [21, 22]).
» To parse the data the algorithm simply counts the number of ences of all N-grams in the data with
a length shorter than or equallig,+1. These can be arranged into a tree, so CSSR belongsdagh
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of so-calledcontext treeor suffix treemethods. This class also includes variable length Markov models
like those discussed in [23], and compression algorithms such as [24].

e During homogenization CSSR iteratively looks at longer and loswgjixes, up until length. ., and
collects these together into states based on what distributigngifie for the next symbol. The
assignment is based on a statistical test, for examplesample chi-squared, comparing the
distributions. The test is carried out at a lexeh second user parameter.

There is a bias for placing suffixes in the same statheaisparent suffix(the suffix obtained by
removing the oldest symbol from a given suffix), to prevent unnapesplits. The result of
homogenization is known gwecausal statessince they can predict optimally one step into the
future.

e Since our beliefs about the future change in a determimisiycwith each new symbol we observe, the
transitions between the causal states must be determinigén the next symbol. Consequently,
precausal states where suffixes end up in more than one statepdending some positive-probability
follower symbol cannot be true causal states, and are therpfitr® $e deterministic. This may cause
other, previously deterministic states to become non-deteriojrisitt the procedure must eventually
terminate. The deterministic transitions then achievetlesdhe resulting set of states to predict the
entire future optimally, assuming the precausal states were tppaditioned.

Before and after determinization, CSSR also identifiestamgsient stateswhich are states that typically only
are visited a finite number of times even if the output automgtrun for an infinitely long time. These are not
considered true causal states and are therefore removed.

Since the parse tree may be expanded fully to the dgpthl, the worst-case requirements for data and
computational power are exponential lipax. On the other hand, since the data is read sequentially once,
computational complexity is linear in the data sequence length.

The output of CSSR is a so-callateterministic finite automatonor DFA, which is a state
representation similar to HMMs. However, unlike HMM traininghathe EM-algorithm, the states and their
structure is recovered automatically. CSSR thus performs uwisgrk pattern discovery, not just pattern
recognition.

— A t ’
PO)= P(L)=5

Figure 2.14: The even process, a so-called strictly sofic pgeagith two causal states learnable by CSSR. Tlyeubu
generated by the process always has an even nahbentiguous ones.

2.3.3 First year experiments with CSSR in ACORNS

The aim of the first year experiments with CSSR in ACORNS o test the suitability of the algorithm for
speech recognition and language acquisition. Since CSSR appeardiaet tbeen tested much in this context,
the first experiments were to apply the procedure to a sing@ech-related dataset in order to study the
properties of the learned representations. Specifically, O8&Rapplied to a symbolic representation of the
recording protocol used in generating the first-year ACORNS diBlwespeech data corpus. In this
representation, each word was assigned a unique symbol. Words/atiahtas inflections were given different
symbols if their spelling differed. The protocol was then condetdea single data stream by concatenating all
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1,000 spoken lines with phrases separated by an additional symbibyisg inter-utterance silence. This
yielded a data sequence of 4,295 symbols drawn from a 23-symbol alphabet.

r
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Figure 2.15: Reconstructed automaton with Y1 Swedish dbja£4, a=0.002). The existence of two separate end states
indicates a likely problem with the original CSSRplementation obtained at [25], necessitating mp&mentation of the
algorithm for ACORNS.

Results from these first experiments were encouraging. Detgtdimited amount of data, CSSR
learned a near-perfect automaton representation of a stgtistioahastic process to generate the sentences in
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the observed data. Each state typically represented daficpgord or position within one of the carrier
sentences. However, getting the desired conclusion required gbgiraigorithm parameters just right; this
problem diminished in importance if additional training data wasammhd generated from the Y1 bag of
sentences.

Following the first experiments above, a second goal was tesagsebehavior of CSSR on more realistic data,
including complications such as noise. To this end, another datasgenasited, similar in character to the
symbolic representation of the ACORNS recordings but alsturieg low-probability (P=0.05) symbol
substitution noise. The data consisted of one million symbols freimpale model of speech as a sequence of
randomly occurring words. Every word comprises a sequence of ‘phega®iols) taken from a pre-generated
random ‘wordlist’ of ten short symbol strings, each 4-8 symbols longt Hifferent phones were used. Note
that this stochastic process can also be considered as & ohaee different sentences repeated at random,
similar to the material used in the first experiments, if eanibsVis instead taken to represent a word.

In stark contrast to the result on noise free data, theitlgohere failed to converge on a limited set of
causal states. Instead, the number of reconstructed states nowtgeply as larger and larger values for the
memory length parametér,., were considered, with no end in sight. The computing power recgmts also
increased prohibitively quickly. The same behavior persistedifollar language models with reduced word
lengths, shorter word lists, and smaller alphabet sizes, as long as rojsesent.

CSSR Performance on Noisy D:

Number of inferred states

Figure 2.16: Unchecked growth in the number of reconstructatkestfor a noisy test dataset with one million sgtab
from a size eight alphabet.

Similar divergence with increasing,.x has also been observed by a group studying the applicaifilfpSR
for natural language processing tasks such as Named Entibgiiteon, on a data corpus derived from Spanish
text [26].

Deliverable D2.2 28/51
© 2008 ACORNS Consortium



FP6-2002-IST-C Spec. targeted research p roject
ACORNS

2.3.4 Causal states and noise

After the sensitivity to noise was uncovered, CSSR efiart8CORNS have focused on understanding this
behavior and exploring ways around it. Theoretical work withii2VMBs established that many HMMs, also
very simple ones, cannot be represented by a finite numbeusdicstates, and are not learnable using CSSR.
There are therefore strong indications that the explosive Belieathe number of states identified seen in the
experiments corresponds to a genuinely large number of causal states.

The essence of the problem appears to be that, the furtherhlgaCISER algorithm looks at the data,
the more information comes to light that affects future b@nasb memory length is infinite. As the algorithm
is intended to capture all information relevant for preaiictthese differences count in CSSR even if their
influence is small enough that a human would label them as tioésalgorithm's definition of “pattern” versus
“noise” is not the same as our own. Consequently, the algorithm discavvery large number of distinct
possible predictions for the future, each of which has to be represeriteawn causal state.

While it is useful to have some knowledge about the charaasrist the noise in the process being
studied, it seems that CSSR takes this too far. Aside from theusbpioblem of storing such a large number of
states in memory, there is a clear risk of overfittinghasinformation in the data is divided between all these
states (although many of the causal states are typically joitiar, the base form of CSSR is not designed to
take this into account). Results in [26] also show that, whereas the numbeeofrstedased rapidly i, the
best system performance was actually attained with a sewll number of states at...=3, the shortest
memory length used.

It can be argued that learning and generalization must be aposssss, where the goal is to identify
what information in the data to discard, so that only the salems$ are kept. The causal states, in particular, are
designed to retain precisely all information that is relef@nprediction. Since this can be unfeasibly much to
learn, a natural question is if it is possible to discardtiaaail, mostly unimportant information, and only keep
those parts that significantly influence on our predictions, inra@ebtain a more compact representation.
After all, the results in [26] hint that a smaller, lossy espntation can achieve better performance for realistic
sample sizes.

2.3.5 CSSR with resolution

Following the reasoning above, WP2 is developing an extension of @G&&R the algorithm is modified to
include a concept afesolution The central idea is to create a state representatiorewhgrtwo casual states
are not necessarily distinguished from each other if they gjmilar (but not identical) beliefs about the future.
This representation should be smaller than that offered by ahsak states, without sacrificing too much
predictive power.

The extension would work in two ways, starting with homogeioma Like CSSR, history string
suffixes should there be assigned to states using statisfisathesis tests, but these may now test if two next-
step distributions are similar (if the difference in somérimés likely to be less than some user-set resolution
parametep), instead of checking if they are exactly the same or nas. Sitould produce fewer states prior to
determinization that still predict the next symbol well. We tentatigell these statgwecausal clusters
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CSSR Performance on Noisy Data
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Figure 2.17:Recent result illustrating the number of recuriemisal and precausal states as a functitp,gffor the same
learning task as the previous figure.

Looking into the behavior of CSSR in an application, it seekes thhe number of precausal states largely
stabilizes already at low,, but that determinization then fractures these states intéesraaltl smaller pieces
asLmax grows; the precausal states for a noisy problem do not determinize in @ siayplit is unlikely that this
will change much by simply creating precausal clustersadstd second, complementary change would then
be to introduce the idea of resolution to the determinization stagdlas we

One possibility currently under consideration would be to perfanomplete determinizatiorwhere
the state at+1, considered as a random function of the stated the observation &tl, is not required to be
fully deterministic when the algorithm is finished. Instead, ddt@mation may stop whenever all transition
functions satisfiH(S+1(S,X))<Hmax Where the maximum permissible entrdiys, is an additional parameter.

While the output after such a procedure can be a non-determiaisticnaton, the amount of
randomness in the transitions is limited, which should work toceecwow much information is lost.
Furthermore, since most inference algorithms and other tgpisatly apply equally well also to non-
deterministic processes like HMMs, there is no obvious reasoreduire an output automaton with
deterministic transitions if only an approximation of the eausates is desired. Indeed, there are other
algorithms based on CSSR, such as CCSA [27], that do not perform anyidétation at all, a behavior that
can be replicated here by choosing a high enough permissible entropy.

2.3.6 Plans for the final year

WP?2 is currently preparing a C++ implementation of CSSR wiith without resolution, to be released soon.
This implementation will be used for experiments to explore tfeete of incorporation resolution into the
CSSR process. The test data for these investigationsnalilide a symbol (speech) stream generated by the
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same BNF grammar used create the Y2 ACORNS speech dat&liase CSSR performs best on symbol
dictionaries of small size, this would likely be applied fohanemic representation of the speech. The work on
CSSR with resolution will result in a publication.

For the final year, the work on CMM/CSSR should also be iatedrinto the ACORNS framework.
One proposal is to apply CSSR with resolution to paraltelsts of phones and prosodic information. The
learned automata may then be used with the Viterbi algotithraconstruct a prosodic stream from phones in
cases where it is absent or weakened, such as ADS speedatec®hstructed prosodic information might aid
tasks such as segmentation. Other learning tasks and wangingfthe learned representations may also be
considered.

Apart from endowing CSSR with a notion of resolution, a paratel &if research may be to integrate
established N-gram techniques such as smoothing (pseudocounts) aroff baddels into CSSR and
algorithms derived from it, for enhanced performance.

There are also related Markov model learners where staeddentified by strings of explicit
observations [28, 29], or that otherwise have been developed wigowes to solve similar learning tasks as
CMM/CSSR, as discussed in [30]. These may be considered botheasatares to and for purposes of
comparison with the techniques currently being investigated.

2.4 Self-learning vector quantization (SLVQ)

2.4.1 Overview of the SLVQ

Motivation for developing a novel algorithm for speech quantizatidginated from the need of cognitively
plausible classification mechanism that can incrementalin lacategorize sounds in an unsupervised manner.
The idea of using neural networks for bottom-up speech sound iclatssif was discarded from the beginning
due to the difficulties of interpreting and adjusting thméhavior. Therefore a novel algorithm was developed
for spectral classification purposes. We shall call this aklerithm self-learning vector quantization (SLVQ),
since it performs quantization based on incremental learning from the data isupemised manner.

The self-learning vector quantization algorithm takes onteifeaector at a time as input and compares
it to the existing cluster structures. If no suitable masdoiind, a new cluster is created for the input. Radii of
the clusters are defined adaptively by the amount of clusters”nrasorresponding parts of the cluster space,
high density of space leading to higher resolution (smallerecluatdii). The algorithm resembles k-means
clustering in many aspects, but with a handful of important differences:

1) The number of clusters not specifiednanually in advance. The spectral content of input determines
the number of clusters that will form. However, other manua&ilyparameters exist that have impact on
the amount of clusters.

2) The algorithm worksncrementally The classification process starts already from the second inpu
vector. There is no need to store massive amounts of vector data.

3) The algorithnkeeps track only of the cluster centroitiew input vectors merging to a cluster only
affect the cluster centroid and are then discarded immediatedpaate entities.

4) Due to points 2) and 3), the algorithrmiemory efficient and computationally cheap
5) Due to points 2) and 3), the algoritlimes not obtain a global minimum in quantization ewbthe

input. However, this has also some positive aspects on non-uniforsilipdied data such as speech
(see further below).
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6) Due to points 2) and 3), the algorithm can create nesteckifor novel input if necessary without
extensive computation (expanding the codebook) while the old clustarsbe either adjusted
accordingly or kept fixed.

2.4.2 The SLVQ-algorithm

Important aspect in the training of SLVQ space for speeobgrétion purposes is the type of input used for
guantization. In experiments performed so far the training of Ititetec space uses MFCC features extracted
from phone-like speech segments, where in practice a segmigfinied as an internally spectrally coherent
unit. Segmentation is performed with a blind segmentation #gorfRasanen, 2007; Rasanen, submitted for
publication). The use of segmental information enhances themafion value of spectral vectors because the
algorithm is able to extract spectral features from locatibas are well aligned with phones. Velocity and
acceleration information is taken from transition points betvpd@me-like units, whereas the static spectrum is
extracted from the middle parts of the segment. This reducegatiability in the vectors since spectrally
complex transitions are not included in static spectra. Howewagyi also ignore small detail information from
these transition points. In any case, the use of segmentahatfon reduces the amount of data required for the
clustering process significantly and helps to avoid groups of cdugttat describe variations of ambiguous
transitions from one phone to another in great detail. SinceQSlads originally developed for use in
association with this type of input, the use of segmental input is coujtlethes description of the algorithm for
the remainder of this report, although the possible input datasypeno way limited to segmental features in
the algorithm.

During development of first versions of incremental clusteringuined out to be evident that
guantization accuracy is very inefficient with clusters of égadius unless the input data is also uniformly
distributed in spectral space, which is not true for FFT or NMIF€presentations of speech frames. More
resolution is required at those sections of feature spacedhtdin large amounts of input data. Therefore
cluster radiuses are defined adaptively: the radius ob@isterl depends on how densely populated the vector
space is in the neighborhood of the cluster. Density of the $fanethe viewpoint of cluster Xs measured
with radius weight facton; which is defined as:

Zdilfi n;

__Zni

w (2.4)

]

wheren; is the number of vectors merged to clusteandk is a constant that determines how the measure
behaves as a function of distance (a linear distance wkightL has been found effective in experiments
performed so far). Distanag; between centroids andj is computed using a chosen metric, so thatdthe
increases as the similarity decreases. Cross-correlatibf~GfC vectors was used in the development and
experiments with the algorithm (note that cross-correlatioreasas with the similarity so its value has to be
inverted in order to be compatible with notation used in this paper).

All cluster radiuse$ can be then computed by first combining weight factors of @dtets into a single
vectorw and then operating it with function MY that maps the values woflinearly into range tfn, tmad, the
largest value inv getting value of.and smallest value a¥ getting value of.

t = M(w) (2.5)

The steps of the clustering process can be written down as following:
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1. Take a new input vector v, and conpute its distance d ; to all existing
clusters.
2. if Ud, >t, wheret, is radius of cluster X,
Create a new cluster with centroid v,and radius t, Increment s by s..

elseif Ld 6 <t,
n’erge v to X, where c = arg, mn d  , by havi ng x, = (x.+v,)/(n+1),
where Xx_is the cluster centroid of X. and n_is the number of vectors
al ready nmerged to the cluster c. | ncrenent s by s..

3. if s>s, where s is sleep counter and s, sl eep threshold
3.1 update all cluster radiuses using egs (1) and (2).
3.2 merge all cluster pairs X, and X, that that satisfy d ,6 <t or d
< t, by having by havingx (x+x)/(n+n) Go to 3.1 until all

clusters satisfy [Od , >t
3.3 reset s.
4, Go to step 1.

Most central parameters ages, tmin, andtma. Parametet, defines the default radius (or merging threshold) for
a new cluster before any adaptation takes place. Satiiegy small default radius for clusters will firssudt in

a cloud of small clusters that are later merged to ftarger clusters when space densities are updated.
Therefore, a small default radius maximizes the quantizatiamramc but makes the process computationally
expensive. Larger radiuses lead to a smaller number of leliggters, which leads to increased resolution only
if these clusters become large enough. A drawback here is thater chay become created to a location that is
between two important input categories that should be distinglifsbm each other, subsuming input from
both of these categories to itself. Since the algorithm doesunntly support cluster splitting, it may be so
that the large cluster will still gather tokens from badkegories even after their radius is reduced, even though
also new clusters will form in the neighborhood that gather some of theadlpeditrse variants.

The value ofs determines how much data is collected before reorganizatitineofluster space is
performed. It is called aleep thresholdsince reorganization of the space resembles neural reorgamizat
occurring in human brain while sleeping when external inputs areresgmua. Again, larger values lead to
increased accuracy since probability that structures of ipet iare well represented in the gathered data
increases. Use of larger values simultaneously increases memorgmegntis and computational complexity.

Finally, parameters,, andt,.cdefine the radius range of clusters, radiuses being computedthsing
equations (2.4) and (2.5). In other words, this ultimately defines d@émam resolution that becomes allocated
to the densest part of the space and also the minimum resdhaiolbbecomes allocated to the sparsest part of
the space.

2.4.3 Performance of SLVQ

The algorithm has been tested in word learning experimentsAG@RNS Y1 and Y2 corpora in association
with the concept matrix algorithm. The SLVQ algorithm perforrakatively well compared to k-means
guantization with Y1 material, both quantization methods tepdd 100% word recognition rates with the
concept matrix approach (section 2.5). Confidence margins tondebest word-hypotheses are at
approximately the same level with both quantization approaches. For the Yiahatedirect comparison with
k-means quantization has been performed yet.

One of the nice properties of SLVQ is that it performs weell in classifying silent portions of speech
under a single label despite the fact that nearly half ofigimalstimeline (Y1 corpora) is silence. This seems to
be due to the adaptive cluster threshold: because the (Mfe@ye vectors from silence frames are very
distinct from any other speech content due to large (negyathees in coefficients, andc,, and therefore that
part of the cluster space (dominated by levaied g) is relatively sparse, the cluster weight fastpbecomes
small and usually only one major cluster centroid is formedaifence. This is somewhat different from the
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means approach, where several clusters are often assigmeddeling silence if there is a sufficient amount of
small variation in silence frames and silence is not limited by, & gjlence/speech detection algorithm.

A problem with SLVQ, as with other known clustering methods, istti@tnumber of clusters is still
controlled directly or indirectly by the user. The quality of a codebook for a sppuifpbose depends on its size,
and therefore SLVQ also requires adjustment and experin@ntaith the parameters (see previous sub-
section) in order to obtain suitable results. However, the bathafithe algorithm is extremely non-linear in
relation to the parameter values, and the number of obtained clmséens to converge to a very similar range
of 60-160 clusters in a large range of parameter values (Eisgisith, Y2 corpus, +9000 utterances). Reasons
behind this effect are partially unclear and require more studying.

2.5 State transition (concept) matrices

2.5.1 General view

In order to create statistical models for the words embeddedaintiged time-series, concept matrices were
developed in WP2 for robust transition based analysis. Instetddiional automata based approaches (see
problems with N-gram type of approaches, sections 2.1, 2.2, 2.6.2, and &\Ngn 2.3; also cf., Hidden
Markov Models), the concept matrix approach does not make the @ssuthat subsequent discrete elements
in the time-series are statistically independent of eactr ¢that is, no Markov property assumption), but
actually builds statistical model for dependencies at differemporal ranges. This helps to overcome the
problem of input variability and distortion, as the input can be cormp#reinternal representations in
probabilistic terms over larger temporal windows and the besichimg, previously learned, internal
representation is chosen from the long-term memory as an etiptafa the input. With a limited vocabulary,
the system can learn quickly to recognize words that are sufficiemilfaisio training exemplars.

The concept-matrix approach shares some similarities with rgatime matrix factorization
(NMF), most importantly in that it also tracks recurringadéte units that are separated by a number of non-
defined units in between. However, the way that structures frose tthependencies are discovered differs in
many aspects. Transitional probabilities from discrete elesn® others at a specific temporal distance are
stored in concept related statistical models that assocmgestries statistics with multimodal information
(tags). The statistical model can be normalized in a wdyctimaulates several sources of structural information
in order to have maximal information value when contrasted against otleeptan

2.5.2 Concept matrix algorithm

The concept matrix algorithm is a general-purpose pattern-discalggmithm for discrete time-series and other
data types that can be expressed as discrete sequencesn@gggs)i Therefore the core of the algorithm is
presented here as a generalized case, even though it is usgabdéch processing and especially for word
learning in ACORNS.

Input to the system consists of a time series of discleteeats or spatial information sampled to form
1D-sequences, and in the training phase, tags specifying s@nt associated with the sequences. In some
cases one information modality may provide a tag for another modetie basic elements of the sequences are
calledlabels In the simplest case they may refer to items in a vepiantization codebook, or they can be
produced by any kind of discretization of time-series or images more complex case they may refer to some
higher-level representation of information, e.g., events or iwssibly reflecting clear qualitative properties.
The other information source (possibly another modality source) is empeesoy a set of so-calledncept tags
C.

Tags are integer values that represent invariant outpwteather process that are being associated to
the time-series input (e.g., a categorization process performexhather modality like visual or haptic
perception in case of speech recognition, or some other group of mpadefiied events that should be
associated with the time-series).
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The mechanism may work also in the opposite direction; an acewstit may serve as a tag to learn
visual patterns. One modality may form tags to other modalities to hdkwetiming. More generally, the method
allows construction of statistical associations between diffamodalities. This is one of the key issues on the
way to model and understand the formation and learningeahingqby agents and humans).

When a concept is activated and a sequence represented, tharalgtaits to collect frequency data of
the occurrences of label pairs in the sequence at a didtartus data is stored in a histogram table or a matrix
(T). The original labels can be used as pointefs when the number of occurrences of the corresponding label
pair is needed. The histogram collected iis then used to produce another represent&tion

The backbone of the algorithm is a matfix of sizeNg x Ny, whereN, is size of the codebook, that
resembles transition probability matrices but does not conta&ithdefined probabilities but cumulative
probability sums instead (that isp #1). The matrix keeps record of normalized transition probadsilitiom
label a[t-1] to labela[t] in input sequenca when an external information source, called concejst activated,
wherel,c,t 0 Z, andl is a member of sét= {l,, I, I3,..., |} and c is a member of se&t= {1, 2, 3,...Ng}. In
other wordsN, is the total number of concepts introduced to the system. If we d&fin}||, there are a total of
Np= N* N, instances oP matrices, one for each concept at a specific lag. In addition, there is a Tattnat is
otherwise similar toP,. except that it keeps record of the transition frequencistead of normalized
probabilities from labed[t-1] to labela[t] in the presence of conceqt

Since values oP are not classical probabilities in the range [0, 1] due tloree-stage normalization
process, values of P will be referred as activation vane® will be referred as activation matrix. Activation
values stored iR will be computed by using the frequency information stored in

2.5.2.1 Training

For simplicity of the notation, elements of matriégsandT,.are denoted in the form&l,c) and T, a|l,c)
, Where the first two variables anda; define matrix element indices of the labels (transition fepto g or co-
occurrence of;and g, whereas defines the lag ancldefines the concept.

The input consists of training sequencgs= {s,%,...,S,} and sequence related concepts=
{V1,Vo,..., i}, where eacty; = {c1,c,,..,G}, VLIcC. All transitions in the sequensgoccurring at lagé are updated
in the transition frequency matrics., wherec is a member of the, associated witts. This process is
repeated for all S in the training material. The following pseudo-itiodé&ates this process:

Table 2: A pseudo-code example illustrating the collectibtransition frequencies.
for i = 1:length{S}
s = S(i);
v = V(i)
for lag = 1:length(l)
for t = L:length(s)
for ¢ = 1:length(v)
T(s[t-lag],s[t] | lag,c) = T(s[t-lag],s[t] | lag,c) +1;

end
end
end
end

After all transitions occurring in the training materiak aadded to the transition frequency matridesthe
matrices are normalized to transition probability matriBé®y normalizing the transition probability from each

label to all other Iabelsz Pr(a,a ) =1) by having:
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T(ai!aj 14,C,)

P'(a,a; [14,¢) = N, (2.6)

> T(a.all,.c,)

x=1

whereN, is the codebook size, that is, the number of unique elements, iimthedries. Next the probability
that a specific transition occurs during the presence of iastead of all other transitions is added cumulatively
to theP'.:

T(a,a |l,,c
P'(a.a; |15,¢) =P'(a.a [14,0) + Nq( 03 114,S)
> > T(a.a, 1.6,

x=1y=1

(2.7)

This enhances the value of those transitions that are eergnon in presence of the concept. It should be noted
that the matrix is now no longer a well-defined transition prdibabnatrix in a sense that the next state
probabilities do not sum up to one. Therefore value® @ire from now on referred as (concept specific)
activation values and outcomes of the recognition process are callegtcactotions.

Finally, the probability that a transition occurs during the presefh a concept, instead of any other
concepts is incorporated in the final activation marby having:

P"(a,a; |14,C 1
P(a.a |15.¢,) = (88 To.G) N (2.8)

N
> Paallyc)

z=1

In other words, the cumulative probability of a transition fi@no g in case of the tagis divided by the sum
of probabilities of the same transition occurring during allsimds tagsc. If a transition becomes equally
probable for all concepts, therefore containing no informatainey it would have a probability of 1/N
Therefore each element in all matrices has, Blbtracted from its original value to have zero activation fo
fully random case and negative value for transitions that occur meredifting other concepts.

2.5.2.2 Recognition

Activation level of a concepm; at timet given input sequencecan be expressed as:

A1) =D P(Lt-1,], 411 1., (2.9)

d=1

when only backward history of the input sequence is included #lso possible to have a bidirectional
recognition process by including R{g[t+]|l4,c) activation values to the sum in equation (2.9) if the next
labels up to largest lag mdx(in the sequence are known in advance. This enhances localizatibe of
recognized event, as the peak value of the activation dggemes centered to a point where there is most
statistical support for the specific concept, distributed sgtrioally around that point in terms of transitional
probabilities.

Equation (2.9) provides a local activation estimate for eaokeapt candidate but in many applications
it is useful to examine the activation output in a largerptmal window since the events that are being
recognized spread over several subsequent time frames. Oralipp$sido this is to first low-pass or median
filter the activation curves in a larger temporal window. Mkach of these concept-related temporal activation
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curves is searched for a subsequence of ldndth[Lin, Lmad having a maximum cumulative sum of activation
values. After these subsequences are found for each conceptarhéetubsequenceavith highest cumulative
sum defines the concept hypotheasis

The Ly, Sets a minimum temporal limit for the information thatrisliided in the recognition process
and should be at least as long as the shortest possible eventdoeimigized. Similarly, kaxdefines a temporal
upper limit for information integration and should be at leastoag as the longest possible event being
recognized. However, having even larger values f@x nay be beneficial in several situation, as the context of
an event contains often cues to the event itself and thdistaéimbedded in transition probability matrices take
this information into account.

As the reader may have already noticed, it is also podsibien the entire algorithm in parallel for
several synchronously quantized input streams in order to incorpsmadeal sources of information. This
transforms frequency and activation matrices into fdj(g;,a; |I,c) andF,(a;,a; |l,c), where¢ denotes the

number of the input stream being processed. Training is performddrbi to the single stream condition in
order to build separate concept matrices for each concegtlatagy and for each stream. In the testing phase
probability output from all streams is combined to have a probability of@eptmat timet of:

I (N
Ac,t) :ZﬁZ P,(dt=1,1.91] Id,ci)]* w, (2.10)

w=1\d=1

where a,, is a weighting factor defined for each input stream.

2.5.3 ART — Association Response Table

One of the latest developments at TKK is to apply statesitran probability matrices (or so called concept
matrices) in order to discover similar structures in thentiged input stream as has been learned before in
association with a visual (tagged) input. In the following wee @ short description of the principle and the
first, preliminary results obtained.

Every keyword has its own recognizer (see section 2.5.2.1 foingaof the models) running in parallel
with the others. Previously learned statistical structures, analteepresentations, stored in each recognizer are
being activated with the current index sequence occurring implue. The output activity of the recognizer is
high when the input sequence fits well its internal model. The activiatmomputed at every index and is called
association response. The collection of all these responsates a table callefissociation Response Table
(ART).

Figure 2.18 gives an example of the ART representation of tirdshi sentenceHan antaa likaisen
lehmari.

The present sentence includes three keywords and all prodstceng association with the learned model.
Because wordsdnhtad and ‘likainen’ share two first syllables of wordtdlitintti”, the talitintti-recognizer
reacts also briefly. Note that the recognizers are trainedalfodifferent inflectional forms of the words
occurring in the training data instead of base forms. This casede in, e.g., activation in the end of word
“likainen” (baseform) which is pronounced “likaiSein this context, where underlined part ‘seri is shared
between several nouns and adjectives trained in the sametiorial form. The keyword probability frame (at
the bottom) indicates clearly that with a high probability #retence has four strong activations. However, after
taking temporal overlap of activations into account with propeibititn, only the correct keywords remain
activated.
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Figure 2.18: ART-representation of the sentent#h antaa likaisen lehmé&n X-axes: time indices in steps of 10ms, y-
axes: outputs of fifty keyword recognizers trainedhe system. As can be seen, the keywoad&d “ likainen’ and
“lehm@ are all reacting strongly to the utterance. Algard “talitintti” gains brief activation due to phonetic similarity
with the end of the first and the beginning of seeond word.

The activation curves have remarkable similarity to, e.givaton processes occurring in well-known
models of speech perception, e.g., TRACE [1] and Merge [7]. Inctss the temporal order of activation
processing is not taken into account and activated units do nbit iatlier units before overall activity of all
recognizers is computed. This means that recognition consisiteiwfal representation (or lexical) competition
where bottom-up (feed-forward) connections define the activatitimeofoncepts stored in long-term memory.
Ideally this leads to simultaneous activation of several witraisshare some syllables present in the input, no
matter in what part of the words that syllable is locatedhe next processing step, temporal integration of
activations leads to inhibition of all but that word model tieatives most activation in a larger temporal scale.
Preliminary results indicate that temporal integration of 25Geesns to give best results in terms of keyword
recognition rate

100 % correct recognition has been achieved with this method by using WKFyUs (four speakers in
random order, total 4000 utterances) and WP2 incremental SLVQ snalitained every 10 ms. The results
with Y2-corpus are also very promising. Preliminary experimgmigate over 94 % correct recognition rate
with multiple speakers. It also seems that the algorithoapable to produce very accurate word segmentation
as long as the subsequent words are all known to the system.riatipneto syllable-size units could be also
possible, but the material used in the experiments is totetifdr obtaining enough syllable pairs occurring in
different keywords. Figure 2.19 displays characteristic learcimges for the process for UK-Y1 corpus with
multiple speakers and Y2 FIN corpus with a single speaker.
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Figure 2.19: Learning curve for Y1 UK corpus with 11 differekgywords by 4 speakers (blue) and Y2 FIN corpubk %@
different keywords and single speaker (red). Resark shown up to first 1000 training utterances.

2.5.4 Discussion and future work

The concept matrix approach is still a relatively new disgowand the literature does not seem to have
comparable approaches to this type of associative struaasglription of time-series. It is distinct from
classical automata and HMM thinking where a continuous pduéing searched for through all elements in the
series. The implementation is also different from neural nésyaalthough both capture a sort of fuzzy
statistical description for regularities in the input. The cohosirix method is not a black box but a relatively
easily analyzable system where internal structures are elypdicitilable to direct observation.

The results with the Y1 and preliminary experiments with the 0fpuws have been very promising.
However, the same major drawback still exists that hinaléisther reviewed approaches to pattern discovery
and what concept matrices were partially intended to overcomm@ability of the input means that this
variability has to be captured in the statistics of eastdwnodel before recognition can be performed reliably.
This restricts instance-based learning, since the algorghumable to generalize from a single prototype to all
possible variations. As this variability problem originates fitbim quantization where produced labels change
due to spectral changes in speech, overcoming this problem woulderequie sort of restructuring of the
guantization outputs based on some criteria, e.g., linguistic tewekxtual information. Approaches for this
type of clustering, or re-organizing, of bottom-up created codebaeksuarently being explored in WP2 and
the first findings are somewhat promising.

It should be also noted that the concept matrix approach requires iest matrix is created for each
new keyword occurring in the input. Therefore, while the transiti@hyais in combination with SLVQ may be
justified as a cognitively plausible symbolic interpretat@nan associative process with subsequent neural
activations and Hebbian learning, as an implementation on digital Von Neumaputeasit requires relatively
large amounts of memory. With, e.g., codebook of 150 labels, vocalmil&30 concepts stored with 8 byte
floating-points, modeling of only single step transitions woulgaaly take 150500*8 = 90 megabytes.
However, sparseness of the matrices and pruning of statisicahation can be utilized in order to compress
the representations without loss in recognition accuracy.

Due to its recent discovery, the concept matrix approadtilisunder intensive development and
testing. Therefore the experimental results that were preskatedare few and still preliminary. One topic in
the future research will be to find ways to further accelerate the leapged sf the models so that the required
amount of training data becomes less. In addition to changes afgtréhm itself, it may also require further
studying of the properties of representations used in the pattern dispoveess.
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2.6 Other experiments and findings

2.6.1 Segmental dynamic programming (SDP)

In order to detect recurring units from sequences of segmertials lgprovided by SLVQ and blind
segmentation, a segmental based utterance alignment method VeasceXdpshares many properties with DP-
ngrams (section 2.2) but it uses distances between spectraidef segment-like units instead of distances
between pure spectral vectors at signal level. The idedondetect and align the same word occurring in two
different utterances, or to collect smaller recurring contluina of phone-like units from speech material and
use this for recoding of the original signal.

2.6.1.1 The algorithm

Pre-processing:

1

2.
3.
4.

Speech material is segmented into phone-like units

SLVQ cluster space is created from these segments.

Speech signals are quantized into series of phone-like unit labels.

Spectral distances between labels are computed using clusterctaritnonation.

Segmental dynamic programming:

5.

A distance matriD is computed for a pair of utterances A and B having the same rod#lrtag. Each
elementD(a;,b;) represents the spectral distance from the centroid of phanadikain utterance A to
the centroid of unit;dn utterance B.

Distance matrixD is filtered with a non-linear filter to enhance salienéeemporally continuous
alignments (figure 2.20).

Distance matrixD is sliced into diagonal bands of widithh and each band is searched for optimal
(minimum distance) path using DTW (similarly to approach in)[1#he slice and the corresponding
path yielding minimal overall distance is chosen as the akgniffigure 2.21; note that effective length
of a slice has to be compensated in overall path distance compusiatiencorners of the matrix have
naturally shorter diagonals).

The sub-path of minimum length,kand maximum length,,., having smallest cumulative distance is
selected and corresponding sub-sequenges® $ from utterances A and B are extracted.
Sequences,and $ are stored in a sequence library.
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Figure 2.20: A distance matrix between two utterances aftegrfitty. The same keyword occurring in both utteeanzan
be clearly seen as a continuous good match alendiiyonal direction. Green lines indicate slicarimtaries.

Figure 2.21: Segmental distance matrix of two utterances analit@ined best possible path aligning these twa) (rethe
best matrix slice (green boundaries).

2.6.1.2 Findings

The algorithm was briefly tested on detecting both word-like wits sub-word units. As the word-like units
were collected to a list specified by multimodal tags, theydcbel used for word recognition. Attempts to re-
align these word-like units in order to build a number of protodipinodels for each keyword did not work out
very well, since mutual distances of sequences were dominateddsy of CVCV-type structure in which well
matching segments (high energy, well defined spectrum) vedl@ved by poorly-matching segments (low
energy). Without the use of temporal knowledge about segmems®rer detailed information about acoustic
landmarks, the alignment, and therefore building a prototypicatrspp@nd/or spectral representation based on
this alignment, led to poor recognition rates. By computing a meaande from novel input to all entries in
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each keyword library led to more promising results but was found tocoimputationally (and cognitively)
implausible.

One of the major flaws of the approach was that the segmenédiresolution caused problems in the
alignment because of the possible insertions and deletions iredifiealizations of the same words. Also, as
the number of labels for each segment was increased from one, thévwalignments become significantly more
accurate. In all cases, a possibility for misaligning twierahces with a similar keyword, but e.g., different
speaker seemed to be relatively high as the algorithm picked up small portsomdarity from several parts of
the utterances. Also the variability of the labels in d#férutterances caused combinatorial explosion (also
discussed in sections 2.1, 2.2, and 2.6.2) of recurring units of differegths even when the speech material
(Y1 UK corpus) was relatively simple and contained a very limited amount fdshgllables between different
keywords. The alignment process was also found to be computatiexainsive even though segmental
sequences are very compact as such. Slicing of the matrix actiatet# the optimal path through each slice is
computationally expensive, and the number of possible utterance p#irsewy., 4000 utterances and 11
keywords is already almost 1.5 million if only keywords sharingshmme tag are aligned. This also raised
guestions about cognitive plausibility, since the algorithm néedsave all those several hundreds of entire
utterances (as segmental sequences) stored in the mempajrfaiise comparison. Many of these issues have
been addressed in the DP-ngram approach in section 2.2 of this paper.

Development of this method was discontinued in ¢aely autumn 2009 due to superior
performance of the concept matrix approach. Thssdwt indicate, however, that the method would
have been found to be conclusively poor for thedaarsub-word unit learning task, but more likettha
the quality and detail of segmental representatamuslinguistic simplicity of the ACORNS Y1 corpus
were found to be insufficiently rich for buildinglrable and extensive library of sub-word units for
representation of the speech signal.

2.6.2 One more N-gram experiment

In September 2008 the TKK team performed one more N-gram mgmdrbased on a “brute force” method
where the VQ-indices of the first 300 sentences of the UK-Y1 corpus wherbesk&ocidentical N-grams with
2<N<9. Among others the following aspects were studied:

1° Size of the N-gram library when the number of sentences increased fromo 1300 in steps of 50
sentences.

2° Histogram of the N-grams in the library.

3° Modeling of the keywords based on the N-gram library.

4° Usability of the keyword models in recognition.

In short, the simulations did not reveal any fundamentally newhitssirelated to the usage of the N-grams in
keyword recognition. Almost linear increase in the number &rdifit N-grams in the library at each step of 50
sentences indicates that the VQ-index data with alphabet siZ#ad$ quite noisy which makes the derivation
of a compact library very difficult or even impossible. Toigcome reflects the general results obtained by the
CMM-method where the number of causal states continues tasecdre to the large variation in the VQ-
index sequences.
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Figure 2.22: Number of different N-grams of different length (Mund in the 150 ... 300 first sentences of the UK-Y1
corpus (VQ-indices obtained by k-means method).

The analyzed material consisted of over 34,000 VQ indices obtaingu lkymeans method. The total number
of different N-grams of length 2 ... 9 which occurred at leastdwalso called primitives) was 11,597. The
noisiness of the sequences is indicated by the fact that only few &@léntjcams were found.

One important view obtained with this analysis is that whew sequences flow in, the number of
different N-grams grows constantly. There is alwaysgelaumber of N-grams which have occurred only once
or two times. There will probably never be data enough to consuifatient statistical models for all these N-
grams. There is a constant conflict between the need for newadd the increasing number of different N-
grams.

The created N-gram library contains also knowledge about in vgkittences and at which positions in
the sentences each N-gram is located. This allows, e.g., stuafyimgse N-grams located only in the sentences
of the same keyword (same tag). We call these n-gpamesprimitives They form a special set of N-grams able
to effectively discriminate between different keywords.

The simulation gave some hope that it is possible to model $heokds based on their elements
(primitives) and the way they are organized, and to deriggstem able to recognize many keywords in the
same sentence. The recognition tests gave promising result, iwhheir turn activated the design of a novel
concept matrix based architecture presently under active research antedtation (see; 2.5.2).

The results of the simulation helped to formulate also thengiredry view on the problem of multiple
keywords presented in section 1.6.
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3. General conclusions

Several different approaches for pattern discovery in speaeh been undertaken in ACORNS. They were

briefly reviewed in this report. These activities are sunwmadrin the following table:

Table 3: ACORNS pattern discovery activities.

Multigram DP-ngram CMM/CSSR SLVQ+Segm. STM
Activities, Presently In progress. In progress. In progress. Word recognitid
experiments inactive. combination with
SLVQ.
Positive Good Promising results.| Learns states | Provides Learns statistical
observations performance | Alignment already| and incrementally structures that can
on TIDIGITS | at signal level. deterministic | learning be used for pattern
using HMM structure. quantization. discovery in
acoustic speech.
model.
Problems High number | Speaker dependentBasic method | Codebook size | Cannot generalize
found of word representations. | not robust depends on from exemplars.
candidates against noise: | parameters.
with VQ data. does not Segmental signal
Sensitivity to converge to descriptions
preset finite set of form too sparse
parameters. states with real| statistics due to
Not flexible. speech input. | spectral
variability.
Future On hold state. | Improved front- | Experiments | Development Refinement of the
plans end and repre- with resolution.| and experiments| method.
sentations. continue Transformation of
Sleeping mode. alongside STM. | signal
Attention representations
mechanism. using statistical
information
embedded in STM.
Other Hierarchical Studies on Comparison Computationally
observations & | learning learning in multi- | with related extremely fast but
notes process with | lingual en- techniques. requires much
phone-like vironment coming memory.

units needed.

The pattern discovery studies made in ACORNS reflects @ia methods and tools in the field. We could

classify these in two groups, one utilizesnnected discrete elemeras the basic representation, the other

statistical dependencies or associatidde&tween pairs of elements found at different distances. &teagfoup
of methods tries to model the sequence with fixed subsequence®dmmhelements) and their statistics,

meanwhile the other methods try to describestheactural propertieof the sequence (or sub-segments of it) by

general statistical methods.
We could summarize these two lines by the following table:
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Table 4: The two classes of pattern discovery methods studied in ACORNS

Method Connected Discrete Elements Structural Description by Statistical
(CDE) Associations (SA)

Name Multigrams NMF (base vectors)

N-grams STM (transition matrices)
DP-ngrams
CMM/CSSR

Theory Markov Chain, Automata-theory Relative Frequencies

Word Model Relatively exact and rigid. Flexible. Leads to lossy compression.
Often lossless coding allows exact | Exact reconstruction not possible.
reconstruction.

Problems Each keyword model needs a large Transition matrices need quite much
amount of different sub-sequences| memory if common units for the
that are difficult to compress and | words are not extracted and modeled
represent in a compact form. separately. Fuzzy structural
Sometimes memory and statistics | descriptions.
explosion.

Pruning needed.
Positive Provides common units for all word| Noise robust. Learns all statistically
Observations | models. meaningful structures.
Systematic.

Other Notes Both approachesin their present forms have to learn to cope with the noise
inherited from the quantization process due to spectral variabilipeiech in
order to create flexible and noise tolerant word models.

SomeCDE methods may provide a connection to SA by coding the input
sequence to another, higher-level representation for further pioges
Common Problem: How to detect and codbe most relevant structuresit
of the diverse set of input variations to create higher-igenéralized,
invariant representations

In addition to the pattern discovery algorithms themselvesjarroornerstone in pattern discovery from speech
input seems to be the representation of the speech signaliféoent levels of processing, and is therefore a
worthy topic for discussion. It seems that quantization of spsigetals based on (linear) distances between
spectral frames is unable to combine sufficient resolution tiingiissh different phones and simultaneous
robustness to variability inside phone classes. Speaker andxtdapendent variability combined with
different speaking rates (different number of frames for aimgients in different situations) and possibly some
other distortion sources (e.g., background noise) leads to quantized seghangery rarely if ever re-occur in
an exactly similar form, not even at a phone level, not to mention syllablerdrievels.

Due to the noise and variability in the label sequences,einseo be inefficient to apply exact
sequential models where each word is represented by a fixeddetéeministic series of elements. When the
same sequential structure occurs very rarely in the sgace form, this hinders the matching between previous
occurrences and new input. Different phonetic variations ofree seord are often coded as separate sequences
or sets of sub-sequences, and later recognition of these vapyimg bf the word requires that they are
incorporated in the word models despite the fact that somerofritey occur relatively rarely compared to the
more common realizations. This also makes pruning of the mdi#tsilt, as these variations are extremely
difficult to separate from non-meaningful noise items.

Models based on more fuzzy statistical description of co-occuseot different events (labels) at
different temporal delays cope better with large amounts eftinas, deletions and substitutions in the input
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sequences — as long as important details are not blurred itatistical representation. This is because they
attempt to determine the most likely explanation (assoaigf@ a novel input by integrating information from
larger temporal windows into internal representations, inste&eiof) dependent on well- defined transitions
between adjacent labels. For example, the concept matrinddgassociations over any reasonable number of
elements in the sequence and in this way they are ableldoifopiortant statistical bridges over corrupted and
noisy sections. Therefore, they provide a much more generaliatistisal picture of the sequence than a
Markov model can produce since the latter is limited by Ntegkov property. Moreoverspeech is not
markovian on any of its representational levels that rafrgen low-level signal samples up to words in
sentences. The reason why Markov models are so widely applied to spiethhisy considerably simplify the
treatment of statistics. The problems caused by the Markov pydjpeitation is partially solved by equipping
the model with higher layers, e.g., language model, able to h#ardjer contexts. However, also these
processes are limited by the Markov property.

The latest results obtained with the concept matrix method €learly how important it is to model
efficiently and accurately the strong statistical depeneerfcausal relations) in speech over wider contexts
(time spans). The usage of the Markov property is a relatively strongtlonitwhich leads to a remarkable loss
of useful structural information.

It is also of great importance that a common problem faa@lroaches reviewed in this report is the
non-existent ability to generalize from a handful of word tokens to all pessidizations of the same word due
to the variability in input discussed above. Without a link betwadkepossible realizations of a same event, e.g.,
originating from a specific articulatory gesture, exemphkmsed learning is impossible and different variations of
each keyword have to be trained separately into each word mo@eldrdttraining only different variations of
each speech sound category to a general system that thewrirengiie signal representations to a more
invariant level. Ideally, signal quantization or representatidrensformation leading to phoneme-like
categories would make the task of linguistic pattern disgaverch easier, as the non-informative variability of
the input would reduce significantly and the problem would turn intwentraditional natural language
processing task.

While the mapping from each variant to a separate uniquealexpresentation is something that has
received behavioral evidence for babies under age of 8 months [36&,183}e invariant representational level
is needed to enable the fast growth of the lexicon, so-called spoirtl, withnessed in babies during the second
year of their lives. Findings in experimental psychology suggeémst children are somehow able to acquire
these native phonemic categories before efficient and rapidrigasf words begins (see, e.g., [2] for a review),
but this still remains as an unsolved problem in computatiomalefimg although some promising results
utilizing multimodal information have been achieved (e.g., [15])Idtdm are capable of tracking systematical
behavior of speech sounds to a level where meaningful diffeseacebe distinguished It is likely that temporal
context of speech sounds and multimodal information plays importahtirpahis discovery of refined
linguistically meaningful units, and the pattern discoveryhomgs developed so far in ACORNS are actually
also modeling these aspects of speech. Therefore the changenimdestrategy due to changes in internal
signal representations is something that hopefully can be addresthe future with the help of the ongoing
pattern discovery approaches. More invariant representati@h meay also open new possibilities for the
methods like CMM and multigrams currently suffering from the varighilitthe signal level.
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