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PART A 

Description of the ACORNS computational model -  

A system demonstrating the capacity for acquiring 
language and communication 

 

Louis ten Bosch, Hugo Van hamme, Kris Demuynck, Lou  Boves, ACORNS team 

 

  

 

In this document (part A of D5.1) we provide an overview of the ACORNS computational 

model as an experimental platform. The aim of this part A is to provide a brief but explicit 

description of the learning platform. Part A is followed by the second part of D5.1 (part B) 

which discusses the word detection experiments. 

 

The experimental platform 
 

Introduction 

 

ACORNS aims to investigate acquisition of language and communication skills by a young 

infant. To that end, a computational model is designed, built and tested. The computational 

model consists of two participating agents (a carer and a learner, abbreviated CA and LA, 

respectively) that communicate with each other. The learner (LA) models the acquisition of 

language by detecting word-like entities on the basis of multimodal stimuli that are provided 

by the carer (CA) in the dialogue between learner and carer. The CA simulates the person (or 

persons) who is looking after the infant. The manner in which the CA-LA interaction takes 

place is a simplified version of true human-human interaction (see part B). This simplification 

is evidently reflected in the computational model.  

 

In the current version of the model that is used for the experiments, one of the main actions by 

CA is providing multimodal combinations of sound files and meta-tags to LA. The ordering in 

which CA presents the stimuli is determined outside of CA and is actually one of the design 

factors in the experiment. In the current experiments, the conceptual way in which CA deals 

with replies from LA is the same for all replies: CA provides correct/incorrect feedback to LA 

(which LA in turn is free to use if desired). CA also keeps track of the responses by LA, just 

as in real-life when a carer notes the reactions from a young infant. 

 

In the dialogue, LA and CA are the genuine interacting parties. Apart from the modules 

modelling LA and CA, there is a third module DM that manages the CA-LA interaction by 

passing the messages between CA and LA. There is no intelligence in this passing 

mechanism, that is, the passing mechanism does not provide any contents into the CA-LA 

interaction. It is passive with one exception: in the very beginning of each series of CA-LA 

interactions, it signals CA and LA that the interaction may start. When the interaction exactly 
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starts is up to LA and CA. The message passing mechanism is flexible and, e.g., would not 

object if CA and LA would speak simultaneously or in the case of long periods of silence.  

The knowledge about what is to be expected in carer-infant interaction is modelled in CA. For 

example, LA may take a rest to reset its memory representations (‘sleep’). In such a sleep 

period, CA won’t try to interact with LA. 

 

In real life, when dealing with interaction between two adults or an adult and a more mature 

child, this knowledge about interaction would be distributed between all participants. In no 

case is this knowledge located outside of the participants. 

 

In the beginning of the communication between LA and CA, that is, the start of the language 

acquisition, LA starts with an empty memory without any lexical representations and without 

any knowledge about phoneme-like entities. During the interaction between LA and CA, LA 

gradually detects more and different words (as acoustic forms) and their grounding. 

Grounding in this context indicates their ‘meaning’, the object that words refer to in the direct 

environment of the young learner, such as, e.g., ball, diaper, Daddy. This association is 

provided by the multimodal stimuli presented by CA. During interaction, CA and LA 

exchange multimodal messages, consisting of speech fragments, which may be accompanied 

with an abstract visual tag.  

 

When presented an utterance such as “look at the ball” or “what a nice ball” in combination 

with an abstract tag ‘ball’, LA attempts to relate the abstract tag ‘ball’ (which does not 

represent the word ‘ball’ but instead refers to the object ball in a virtual scene) with an actual 

acoustic form that is common in both utterances. 

 

The tag is representing abstract information that would otherwise be present with other 

modalities. In a real child-carer interaction, a round object could be presented through the 

visual channel in parallel with the audio information. In designing this computational model, 

however, we avoid the engineering implementation of recognisers in the visual or tactile 

modalities, and concentrate on the linguistic speech-based part of the word discovery process. 

It is therefore assumed that non-audio information can be represented by meta-tags, presented 

along with the audio. In other words, these tags idealise the input from other modalities and 

translate to the presence or absence of certain references in the audio stream. 

 

The learner model LA 

 

LA consists of four basic ingredients: 

 

1. A memory (that is further divided into a sensory store, a short term memory (executive 

memory) and a long term memory). This includes a mechanism for storing and 

retrieving representations. 

 

2. A perception module, transforming signals from the environment into primary sensory 

data to be processed further. 

 

3. A method to derive more abstract from less abstract representations. In the current 

implementation of LA, virtually all representations are modelled by vectors and 

matrices (this is just a design choice at this stage of the project – other means such as 



FP6-2002-IST-C                                                            Spec. targeted research project  
ACORNS 

 

 
Deliverable D5.1, Page 6 of 37  
© 2007 ACORNS Consortium 

 

graphs, multigrams or dynamically expanding HMMs are also possible and are being 

investigated). In the current implementation, bottom-up and top-down processes are 

based on matrix manipulations. Abstraction (bottom-up) is represented by matrix 

factorisation, while the top-down process is exemplified by matrix multiplication. 

Computationally, matrix factorisation is performed by non-negative matrix 

factorisation (e.g., Hoyer, 2004; Van hamme, 2007). 

 

4. A learning drive: a target function specifying the basic need to learn. The target 

function consists of two terms: a term related to LA’s internal need to learn, and one 

related to its external need to learn (part B explains more details). 

 

When LA perceives input, the speech input is processed by the feature extraction module. The 

outcome is stored into the sensory store (figure 1), from where it is directly copied to short-

term memory (STM). In STM, a match takes place between the sensory information on the 

one hand and the stored representations on the other, and the best matching representation is 

searched for.  The resulting representation is generated and sent to the carer in an abstract 

manner, e.g., in the form of a tag associated with a ‘confidence’ measure, comparable to the 

way in which a real baby uses a head turn to indicate its detection of a stimulus. 

 

In LA, the information from the audio channel and from the non-audio channel is integrated 

by combining the corresponding representations (two vectors, one from audio and one from 

the meta-tag) into one augmented vector. In this way, cross-model information is made 

available in a natural way to the learning algorithm. 

 

In the current experiments, LA uses STM as executive memory and there is no clear 

distinction between STM and LTM. But the current implementation of LA makes use of a 

very long term memory (VTLM) in which all observed utterances and tags are stored without 

any decay. Decay is relatively easy to introduce into LA and will be available in stage-2 

experiments. 

 

The carer model CA 

 

Compared to the structure of LA, the structure of CA is not elaborate. Nevertheless, as in all 

learning situations, the behaviour of CA has an effect on the learning performed by LA. The 

main task of CA is to provide multimodal utterances to LA. The moment at which CA speaks 

to LA is determined by CA. The utterances used during training and their ordering are 

determined outside the carer, in this case by the experimenter. From an available pool of 

multimodal utterances, CA uses a list of utterances in the CA-LA interaction. The interaction 

stops when one of the parties, CA or LA, does not want to continue, or if all existing 

multimodal inputs have been presented to LA. 

 

After a reply from the learner, CA provides feedback about the correctness of the reply. In the 

current implementation the feedback is limited to a yes/no (approval/disproval) variable. 

Finally, CA keeps track of the responses from LA, just as a real carer notes the responses 

from a young infant. 
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The dialogue manager DM 

 

An entire dialogue between CA and LA consists of a potentially large number of CA-LA 

dialogue turns. When LA receives multimodal input from CA, a reply is sent to CA. In the 

next turn, CA provides LA with a feedback (indicated as ‘ground truth’ in figure 1) about the 

correct detection of the target word, after which LA is free to use this feedback information. If 

LA is ready, CA proceeds with the dialogue by presenting the next multimodal stimulus. 

During CA-LA interaction, the dialogue manager (DM) performs two tasks: (a) message 

passing, and (b) logging. There is no intervention from DM into CA-LA interaction.  

 

 

 

 
 

Figure 1. An overview of the overall interaction between the learner model LA (within the 

heavy-line box) and the carer environment CA. 

  

Message passing 

 

The communication between CA and LA is via messages. As noted above, the manager only 

organises and facilitates the messaging process in the dialogue and does not introduce 

linguistic or semantic knowledge into the dialogue. 

 

Conceptually the dialogue between CA-LA is organised on the basis of events. These events 

are sent from CA to LA and vice versa. We now present a brief overview of the most relevant 

event types. 
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Whenever CA or LA receives an incoming event, it responds with an outgoing event. Events 

can have ‘genuine’ content or be a ‘nop’ (no operation) event. Events are implemented as 

structures with fields specifying characteristic properties of the events. In the current 

implementation, an event is a structure containing at least the following three fields:  id, time, 

and call back time. The 'id' is a string identifying the type of event (see below for a list of all 

possible events and a description of their use). The 'time' field is the virtual time, i.e., wall-

clock time in the virtual world in which CA and LA live. The call back time is the (virtual) 

time LA or CA wants (or wanted) to be called back. 

 

When the call back time of one of the parties is reached, a nop event will be sent to that party.  

Next to the three required fields there can be zero or more required or optional event specific 

additional fields – this depends on what information LA and CA agree to convey for 

particular events. 

 

A 'nop' (no-operation) event is used in the following cases: 

 

a. when a party doesn't want to respond on an incoming event, it answers with a 'nop' 

event, 

b. when the 'call back time' of a party is reached, the discourse agent will send a'nop' 

event to that party to query for their reaction, 

c. a 'nop' is returned in response to system administration events ('load','shutdown', ...) to 

signal that no error occurred. 

 

Events can be divided into administrative events and dialogue events. Administrative events 

smooth the handling of the communication between LA and CA without interfering with the 

contents of the dialogue. For example, LA/CA can return an 'error' event if the incoming event 

caused some fatal problem(s). The interaction will be stopped after such an error. An 'error' 

event must have a 'msg' field describing the nature of the problem (a character string). Log-

events can be used by LA/CA to write something into the log-file. These events are required 

to have a single 'msg' field. The power-up event is the very first event LA/CA will receive to 

start-up the internal process. The shutdown event is the last event LA/CA will receive and 

indicates that all services should be shut down. 

 

The save event stores the internal memory status and the state of the dialogue. This allows 

continuation of a training run from an earlier point in time. The load event loads a previously 

saved state and these events organise the file handling (with a field 'fname'). If the fname-field 

in the event is present, LA/CA loads the state previously saved by a 'save' event with the same 

'fname'. If the field is not present, LA/CA starts from the very beginning and loads the initial 

state (which is dependent on the configuration parameters given in the 'power-up' event). 

 

Besides purely administrative events there are genuine dialogue events as well. 

The  audiovisual (av_data) event sends audio plus ‘video’ data from CA to LA.  The event 

may contain the following additional fields: 

 

a. duration (required) the length of the audio sample in seconds 

b. data (required) the audio data 

c. meta (optional) meta-information, i.e., addition multi-modal input 
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d. sample freq (required) sampling frequency of the audio signal 

 

The reply event sends a reply from LA to CA. This event may contain the following 

additional fields: 

 

a. answer (required) the recognised representation 

b. assessment (optional) some internal measure (zero or positive) that  

 quantifies the internal 'happiness' of LA (higher is better) 

 

The feedback event sends feedback from CA to LA. It may contain the following additional 

field: 

a. value (required) the value of the feedback function, i.e., a number in the  

 range [0,1] 

 

 

 

The assessment values are not directly comparable to a posteriori probabilities. The current 

learner can give assessment values larger than 1. The assessment measures to which extent the 

word is present. If the word is spoken twice in the utterance, the assessment value is 

theoretically equal to 2. 

 

Thorisson three layer dialogue framework 

 

In 2002, Thorisson proposed a framework for describing and investigating human-human 

(HH) dialogues. In HH-dialogues partners may interact on three levels. The lowest level 

contains the backchannels that are used to indicate the listener’s presence and attention – they 

mainly serve to smooth the turn-taking in the dialogue. The highest level contains the well-

thought conscious responses such as a deliberate answer to a question. The middle level 

contains the short phrases, such as the short content-based interaction of turns that are often 

heard in telephone conversations. All levels serve communication, albeit on three different 

levels. 

 

The aim in ACORNS WP5  is to ultimately design a LA-CA interaction in which Thorisson’s 

idea is reflected in the way the messages are sent and received. In the current ACORNS 

model, a multi-level messaging exchange is already possible: the message passing is flexible 

enough to cope with various types of messages, and to deal with messages on different time 

scales. 

 

Practical issues 

 

The software is available on the ACORNS wiki and can be run by all partners. A Matlab 

license and access to the ACORNS databases is required. 
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D5.1 Part B: 

Bootstrapping the lexicon – a model for first language 
acquisition 

 

Louis ten Bosch
1
, Hugo Van hamme

2
, ACORNS-team 

 
1
 Dept. Language and Speech, Radboud University Nijmegen, The Netherlands 

2 
ESAT, Katholieke Universiteit Leuven, Belgium 

 

 

 

 

1 Introduction 

 

In order to be able to effectively communicate, young infants must learn to understand speech 

spoken in their environment. They must learn that auditory stimuli such as stretches of speech 

are not just arbitrary sounds, but instead are sequences of reoccurring patterns associated with 

word-like elements. This word-discovery learning process is interesting since infants start 

without any lexical knowledge and the speech signal usually does not contain any clear 

acoustic cues about boundaries between words. So babies must ‘crack’ the speech code before 

being able to perform lexical acquisition, a complex task in which attention, cognitive 

constraints, and social-pragmatic factors all play an important role. Language acquisition 

mechanisms has been topic for discussion since a long time (see e.g.. Snow & Ferguson, 

1977). 

 

Cracking the speech code can be considered a pattern discovery problem, of which a solution 

has far-reaching advantageous consequences for the young infant. Not only the baby starts 

getting grip on the communication with its environment, also the discovery of word-like 

entities is the first step towards more complex linguistic analyses (cf. Saffran and Wilson, 

2003). 

 

The word discovery problem has been studied for decades, and several models and 

frameworks have been proposed. Recent studies have shown that the cognitive capability of 

word discovery might be supported by purely computational strategies (Saffran et al., 1996a; 

Aslin et al., 1998; Johnson and Jusczyk, 2001; Thiessen and Saffran, 2003; Kuhl 2004). By 

using computational mechanisms, young infants are able to find recurring patterns in the 

speech signal. Moreover, they appear to be able to use deviations in the statistical patterns as 

cues for segmentation. Infants of 7.5 months of age can use statistical regularities (such as the 

greater co-occurrence of syllables within words than between words) to successfully parse a 

continuous stream of speech (Saffran et al., 1996a; Aslin et al., 1998). Also prosodic 

information (i.e., longer duration, increased amplitude, and higher pitch on certain syllables) 

can guide word segmentation (e.g. Thiessen and Saffran, 2003). 

 

The discovery of words requires the young infant to be able to perceive the speech signal, to 

store and retrieve representations, and to compute statistical patterns. By which mechanism 
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the brain does encode statistical patterns, and how does it detect changes in these patterns? 

The exact way in which changes in the input are detected is not known, but the fact that brain 

activity depends on changes in the stimulus has been convincingly shown for the visual 

domain. Neuroimaging studies have examined changes in the pattern of neural activity after a 

period of intensive training on a novel linguistic task (Friederici et al., 2002; Golestani and 

Zatorre, 2004), thereby showing the ability to spot previously unobserved patterns in 

(linguistic) data. Other studies explore the neural basis of language learning by examining 

changes in brain activity that occur that occur during learning (e.g. Hashimoto and Sakai, 

2004).  

 

A number of studies have provided indications about the increase of the number of items in 

the passive lexicon with age. The learning curve starts at 7 months at the latest: EEG scans 

show that at 7 months, children are able to detect words in utterances, also if they do not know 

the meaning of these words (Kooijman, 2007). In Kooijman’s word segmentation experiments 

for Dutch, word stress appeared to play an important role as cue for this word spotting, in line 

with findings by Vroomen & De Gelder (1995), Johnson & Jusczyk (2001) and others. 

 

It is estimated that young infants know on average about 100-150 words (or expressions) on 

average when they are 1 year and 4 months old. Especially between age 1 and 2 the size of the 

lexicon increases rapidly (word spurt). On average 8 to 10 words per day are acquired from 

birth to adulthood, but during the word spurt this number may increase by a factor of 3. 

During the second year of life, the rate at which children acquire
 
new words accelerates 

dramatically. It has been hypothesised that this spurt is due to specialised cognitive 

mechanisms that leverage
 
the few words learned in the initial slow phase for faster vocabulary

 

growth later. The growth of the perceptual lexicon can indirectly be measured by head-turn 

experiments and is discussed in many language acquisition and behavioural studies. 

 

Interestingly, McMurray (2007) demonstrates that the assumption about the ‘efficient reuse of 

representations’ are unnecessary to explain the vocabulary explosion. The word spurt 

phenomenon is guaranteed in any system that builds representations for
 
multiple words 

simultaneously, but such that few words can
 
be acquired quickly (easily) and a greater number 

of words take longer. This distribution of difficulty is explained by several factors such as 

word morphology and syntax. The word spurt is computationally shown by a model, in a 

simple short word is represented by a small jar, while more complex words are represented by 

a larger jar. Every time a particular word token is presented to the model, the corresponding 

jar is filled with a coin. Using the assumption that words occur with a Zipfian distribution and 

that words are actually learned as soon as the corresponding jar is full, a word spurt could be 

observed after an initial period of slow learning. This acceleration period was found to be very 

stable under varying word frequency distributions and jar size distributions. 

 

In this paper, we will discuss a computational model for language acquisition with emphasis 

on the aspect of word discovery. In the next section, the relation with computational models 

of human speech processing is described briefly. Section 3 discusses the computational 

framework. Results are presented in section 4. Section 5 concludes with discussion and a 

conclusion. 
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2 Relation with psycholinguistic models of speech processing 

 

Evidently, word discovery and language acquisition has an essential link to general (human) 

speech processing mechanisms. It is therefore interesting to investigate to what extent various 

psycholinguistic models of speech processing can provide a basis for a model of word 

discovery. Psycholinguistic theories and models (e.g. TRACE, McLelland & Elman, 1986; 

Shortlist, Norris, 1994; Luce et al., 1998; Goldinger, 1998; Scharenborg et al., 2005; Pisoni & 

Levi, 2007; Gaskell, 2007) have primarily been designed to simulate the speech processing as 

performed by humans, and are mostly put to a test on speech produced in controlled 

conditions, often by subjects participating in speech perception experiments. 

 

The models developed in the eighties and nineties, of which TRACE and Shortlist are well-

known relevant examples, are able to model the word decoding process given unknown input 

and a predefined lexicon. These models take symbolic representations of the speech as their 

input. As the input unrolls over time, it increases the activation of possibly multiple lexical 

candidates that locally match the input. These activated lexical candidates enter a competition 

in which a matching candidate receives more activation, while a less well matching candidate 

becomes inhibited. Finally, the hypothesized word sequence is the one that best accounts for 

the entire input. These models showed that in order to find words, the speech signal needs not 

to be ‘segmented’ into word-like entities a priori. The SpeM model (Scharenborg et al., 2005) 

shows that important aspects of human speech processing (such as word segmentation) can 

also be modelled on the basis of real speech as input, in combination with a competition 

between lexical entities in the form of a parallel search for best matching sequences. In SpeM, 

activation is not modelled on the word level, but dealt with on the level of entire word 

sequence hypotheses by using additive (log-likelihood-based) scores along each hypothesised 

path in the lexical search space. This idea can be found in a follow-up model for Shortlist, 

called Shortlist B (Norris & McQueen, submitted). 

 

Virtually all models mentioned here need a predefined lexicon (in which the lexical items are 

represented by an abstract form in combination with a symbolic phonetic representation). This 

lexicon is used to span the search space within which word sequences are sought. The fact that 

a lexicon must be specified means that these models are not directly applicable for the 

modelling of word discovery (nor for language acquisition). The success of these models 

across many other tasks shows that word activation, competition and the dynamic search for 

pattern sequences are essential ingredients for a model aiming at the simulation of human 

speech decoding (cf. Pitt et al, 2002, for a discussion about these topics). 

 

The framework that we propose in this paper builds on Boves et al. (2007) and combines the 

concepts of a multi-layered memory structure, competition between word hypotheses, and 

dynamic word sequence decoding. Simultaneously, it builds the lexicon in a dynamic way, 

starting with no words at the beginning of a training run. During training, new multimodal 

stimuli are presented to the model, and, depending on the internal need to do so, new lexical 

representations are hypothesized if existing representations fail to explain the input in 

sufficient detail. The experimental results obtained with this model will be discussed in the 

context of the findings as described in the literature on language acquisition. 
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3 Computational framework 

3.1 Interaction between learner and carer  

 

The computational framework involves two active participants (‘agents’) and simulates a 

learning agent (LA) that is involved in a dialogue with a caring agent (CA). The learning takes 

place within an interactive setting. The learner discovers words and word-like entities on the 

basis of the stimuli presented by the carer during the interaction. The entire framework 

actually consists of three sub models: the two active models (learner and carer) participating 

in the dialogue, and a passive ‘dialogue facilitating model’ (DM) which rules the interaction. 

The discourse model supervises the interaction between learner (LA) and carer (CA), by 

applying general world knowledge about dialogues, such as the turn taking mechanism. 

 

LA starts with an empty memory, and during the interaction between LA and CA, LA 

gradually detects more and different words and their grounding. During interaction, CA and 

LA exchange multimodal messages, consisting of speech fragments, which may be 

accompanied with an (abstract visual) tag. The concept of word is not built-in a priori, but 

instead arises as an emergent property during learning.   

 

When presented an utterance such as “look at the ball” and “what a nice ball” in combination 

with an abstract tag ‘ball’, LA attempts to relate the abstract tag ‘ball’ with an actual acoustic 

form that is common in both utterances. The tag is representing abstract information that 

would otherwise be available along other modalities. In a real child-carer interaction, a round 

object could be presented through the visual channel in parallel with the audio information. In 

designing this computational model, however, we want to avoid the engineering 

implementation of recognizers in the visual or tactile modalities, and concentrate on the 

linguistic speech-based part of the word discovery process. It is therefore assumed that non-

audio information can be represented by meta-tags, presented along with the audio. These tags 

idealise the input from other modalities and translate to the presence or absence of vocabulary 

items in the audio stream. This approach is essentially different from the approach followed 

by Roy & Pentland (2002), who used image processing software and real images as input, and 

assumed the implausible availability of phone-like units to describe the audio signal directly 

from the start of the learning process. 

 

A pictorial overview of the interaction between the learner and the carer is shown in figure 1a. 

The learner is depicted within the grey box, while the carer is indicated as the environment 

outside the box. An entire dialogue consists of a large number of interaction cycles, each cycle 

consisting of several turns. Per cycle, the learner receives multimodal input from the carer 

after which a reply is returned to the carer. In the next turn, the carer provides the learner with 

a feedback about the correct detection of the target word, after which it is up to the learner to 

use this feedback information. 

 

3.2 The learner model (LA) 

 

The learner consists of four basic ingredients: 
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• A memory (that is further divided into a sensory store, a short term memory and a long 

term memory). This includes a mechanism for storing and retrieving representations 

(figure 1a) 

• A perception module, transforming signals from the environment into sensory data to 

be processed further 

• A method to derive more abstract from less abstract representations. In the current 

model, this method is implemented by using matrix manipulations. Abstraction 

(bottom-up) is represented by matrix factorisation, while the inverse top-down process 

is represented by matrix multiplication. 

• A learning drive: a target function specifying the basic need to learn. The target 

function consists of two terms: a term related to LA’s internal need to learn, and one 

related to its external need to learn (see below). 

 

When LA perceives input, the speech input is processed by the feature extraction module. The 

outcome is stored into the sensory store, from where it is copied to short-term memory 

(STM). In STM, a match takes place between the sensory information on the one hand and the 

stored representations on the other, and the best matching representation is looked for.  The 

resulting representation is output and replied (sent back) to the carer in an abstract way (in the 

form of a tag associated with a ‘confidence’ measure, comparable to the manner in which a 

real baby uses a head turn to indicate its detection of a stimulus).  

 

3.3 The carer model (CA) 

 

The carer CA provides multimodal utterances to LA. The moment at which the carer speaks to 

the learner is determined by the messaging protocol. The utterances used during training and 

their ordering are determined by the carer. After a stimulus is presented to the learner, the 

learner performs a computation in which the goal is to formulate a reply. This will take some 

time. After a reply from the learner has been sent back to the carer, the carer provides 

feedback about the correctness of the reply. In the current implementation, the feedback is a 

yes/no (approval/disproval) variable. In the current set of experiments this feedback is not 

used by the learning system, which indicates that learning is possible without corrective 

feedback. 

 

 

3.4 Learning drive 

 

Infants require care, attention and energy in the form of food. A baby’s drive to learn words is 

ultimately rooted in the desire to get to grips with its environment in order to have the basic 

needs for survival fulfilled and receive food, care and attention from the carers. For the 

current computational model, this boils down to the drive to make the carer understand and 

appreciate the learner’s replies, which in turn boils down for the computational model to 

‘understand’ as much as possible from the presented stimuli. The ‘overall’ need to learn is 

therefore based on two terms. The first term is related to the ‘internal’ need to understand the 

multimodal stimuli, that is, the ability to decode them in terms of known representations. The 

second term is connected to the communication between carer and learner and related to the 

desire to increase the perceived appreciation by the carer. 
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It is crucial to realise that the drive to understand the stimuli is bounded by the richness of the 

input – so learner and carer play a combined role in the learner’s acquisition process. 

 

Internal (intrinsic) factors: 

• Intrinsic drive to understand the stimuli by reducing uncertainty and maximising 

predictability 

• In the model: Quality of the parse and the fraction of the input explained by the stored 

representations 

 

External (extrinsic) factors: 

• Appreciation by the carer as perceived by the learner 

• In the model: minimising error rates during the dialogue 

 

Optimizing the appreciation of the carer is ultimately related to the optimisation of the 

accuracy of the replies given by LA during interaction between LA and CA. The optimisation 

of the accuracy can mathematically be expressed in terms of constraints on the minimisation 

between predicted reply (predicted by the learner model, in the current version based on non-

negative matrix factorisation) and observed ground truth. This is done by combining acoustic 

and ‘semantic’ information into one single vector and applying non-negative matrix 

factorisation (NMF, Hoyer, 2004) on the augmented vectors (Stouten et al, accepted). The 

minimisation of the NMF cost function leads to the overall closest match between prediction 

and observation, and so to an overall minimisation of the recognition errors made by LA. 

Here, ‘closest match’ has a specific mathematical interpretation that depends on the precise 

cost function. 

 

In the current implementation, the internal LA ‘desire’ to parse the stimuli can directly be 

related to the minimisation of the target function in NMF. The optimisation of the ‘quality of 

the parse’ can therefore be interpreted as a by-product of the optimisation of the externally-

driven learning drive. This can be deduced from the NMF expressions. NMF attempts to 

factorize data matrix X into two smaller matrices W and H (X, W, H non-negative 

component-wise). In the case of minimisation of the Euclidean distance (that is, the Frobenius 

norm of the difference matrix) of the difference between X and WH, the cost function that is 

minimised reads 

 

F(X, WH) = ½ Σij (Xij-[WH]ij)
2
 

 

while in case of the Kullback-Leibler divergence, this cost function reads  

 

F(X, WH) = Σij (X .* log(X./WH) – X + WH)ij 

 

 

The structure of the expressions at the right-hand side indicates that in both cases the error 

between prediction and observation is an accumulated sum over all tokens that are processed 

during training. Splitting the 2-way sum in two separate one-way sums (over i and j, 

respectively), the terms (Xj-[WH]j)
2
 and (X .* log(X./WH) – X + WH)j can be interpreted as 

the internal target function that is to be minimized on a token-by-token basis. In these token-
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related expressions, X,  WH and H are now column vectors rather than matrices; W itself is a 

matrix. 

 

The second expression, related to the Kullback-Leibler distance between reference (X) and 

hypothesis (WH), can be regarded as the log-likelihood of the model (WH) predicting the 

observation (X). This, in turn, can be interpreted as a measure for the quality of the parse of 

the utterance associated to X, in terms of the words that are associated with the columns in 

matrix W. 

 

The relation between the internal and external drive is loose, albeit in a mathematically well-

defined manner. The applied mapping from the utterance to a column vector only loosely 

preserves the sequence structure in the utterance, in the sense that input patterns in which the 

acoustic objects are organised in a different order can lead to a column vector that is quite 

close to the original one. For instance, cyclic permutations will lead to minimal differences. 

Therefore, the interpretation of the parse is loose in exactly the same manner.  

 

As a result, the learner attempts to explain from the presented stimuli as much as possible, 

given the constraints that are inherent in the set of presented inputs. Due to the combination of 

acoustic information and semantic information (Stouten et al., 2007), the resulting model 

stress is a measure for the fraction of the stimulus that can be explained by the learner. This 

also means that the eagerness to learn may result in a word spurt, of which the upper bound is 

determined by the richness of information available in the multimodal data presented to the 

learner. 

 

3.5 Internal representations 

 

Currently, internal representations are all vectors and matrices. At a high conceptual level, the 

process of abstraction is modelled as matrix factorisation. Factorisation of matrices is done by 

NMF. 

 

NMF appears to be a very powerful tool for discovering structure in speech data. However, in 

the implementation we have been using so far we always need to transform blocks of data (i.e. 

blocks of [labelled] utterances). For this reason the results of the experiments are dependent 

on the way the training utterances are blocked. The order in which utterances occur in a block 

is immaterial, but across blocks, ordering is relevant. See also figure 1b. 

 

3.6 Evaluation 

 

We do not want to use word error rate ort concept error rate as the sole measure of learning 

performance. Instead, we also would like to investigate the internal representations, to see if 

these can speed up future learning. Therefore we will focus on the effective reuse of 

representations during learning. It appears that LA effectively reuses existing patterns during 

testing, as is clear in e.g. the multilingual experiment to be discussed below. 

 

LA does not yet reuse (parts of) representations to build new representations during training. 

For example, one might expect the construction of the representation for a new compound 
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huisdeur to be facilitated by the existence of two representations for huis and deur [assuming 

of course these two are already trained]. One step more difficult for LA is to more rapidly 

build representations for ‘taart’ if it already knows that ‘paard’ and ‘baard’ are different 

words.  

 

In the experiments discussed below, the meta-tag associated with an utterance is always 

available during learning and it is always unambiguous. New experiments will investigate 

omitting the label in some proportion of the input utterances, and leave it up to LA to 

determine what to do. 

 

LA makes use of three different memories: the sensory store, the STM (for storage and as 

executive buffer) and a long-term memory VTLM, in which all utterances and labels observed 

so far are stored. One would assume that part of the representations is static, sitting in long 

term memory. Activations caused by an incoming utterance are by definition short-lived, and 

much more likely to live (and die) in working memory. Right now, LA replies by providing a 

label in combination with an assessment value indicating how certain it is about the label. In 

the beginning of a training session, when LA does not have anything in memory, LA responds 

with nothing than ‘huh?’. For each utterance, the activations are used for the formulation of 

the reply. In the current versions of LA, the activations are stored and kept in memory 

(VTLM). 

 
 

 

Figure 1a. A picture of the overall interaction between learner model (within grey-line box) 

and the environment (carer, outside the box). 
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Figure 1b. This figure shows a representation of the memory of the learner model LA. On the 

lowest level, data are represented in the most episodic form. Representations at this level 

include actual paths in the feature space spanned by the feature extraction module, as well as 

utterance-level vector characterizations of a fixed (large) dimension. The higher the level, the 

more abstract the corresponding representation becomes. The picture shows the general idea 

of having multiple different levels of abstraction. In the current computational model of LA, 

two levels are used, an episodic one, and an abstract one (basis vectors in a vector space 

representing words, in combination with activation strengths). The bottom-up process of 

abstraction is computationally translated into matrix factorisations, while the reverse bottom-

up process is represented by matrix multiplications. Matrix multiplication will generate 

prototypical utterance-level representations, not actual paths. These top-down and bottom-up 

processes can interact in a natural way since they make use of the very same paradigm of 

algebraic matrix manipulation. 

 

 

 

4 Experiments 

 

For experiments to be ecologically realistic a majority of all utterances in the first stage of the 

learning should come from one speaker (which then serves as the primary CA). In a normal 

family setting most of the remaining utterances would come from one other person. In 

addition, LA should hear a certain proportion on adult directed speech, which it should ideally 

ignore. The databases are and will be constructed in such a way that experiments investigating 

this mechanism can be carried out. 

 

LA starts learning from the speech of the primary CA. Depending on the internal 

representations of the result of learning from the primary CA, learning to deal with speech 
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from other speakers might be accelerated (beyond some point in the development of LA). 

Apart from the learning curve itself, it is interesting to investigate the construction and 

activation of internal representations as a function of learning parameters and lexical variation 

of the multimodal input material.. The theory about episodic representations suggests that 

different representation may be formed for different speakers. Representations that conflate 

episodes pertaining to several speakers to adhere to the same semantic object may only form 

on higher levels in the hierarchy.  

 

The experiments performed so far for the NL, FIN and SWE languages show that LA is able 

to do the following: 

• -learn a limited set of concepts and classify a new stimulus in terms of one of these 

concepts 

• -identify speaking style (instrumentally defined by the specs of the database), however 

not perfect 

• rapidly adjust to a new speaker 

• reuse already stored representations in testing 

• reliably identify the speaker, almost perfectly, when speakers and speaking styles are 

presented in random order (but LA may use other coincidental artefacts in the database 

that might discriminate the speakers via recording condition, such as volume or 

spectral tilt. Unlikely but possible, and currently under investigation) 

 

In the sequel, we will investigate the behaviour of LA in more detail. 

 

4.1 Materials 

 

Within the ACORNS project, three databases are available, one Dutch database (NL), a 

Finnish database (FIN), and a Swedish database (SW). A fourth database (UK) is under 

construction. Per language, each database contains utterances from 2 male and 2 female 

speakers. Each speaker utters 1000 sentences in two speech modes (adult-directed, ADS, and 

infant-directed, IDS). The set of 1000 sentences contains 10 repetitions of combinations of 10 

target words and 10 carrier sentences. (The content of the three databases differs in details that 

are not relevant for this discussion). 

 

Within a database, not all target words are uniformly distributed. While all 4 speakers share 

the same target words, the proper name they use to address the learner is different per speaker. 

For example, the NL database (8000 utterances) contains 800 tokens of target words such as 

luier (diaper), auto (car), but only 200 tokens of each of the four proper names mirjam, isabel, 

damian, otto. 

 

The database serves as a pool of stimuli that are used in all experiments that are discussed 

below. The ordering of the stimuli may differ from experiment to experiment. Ecologically 

relevant cases are: 

 

• Random presentation 

• Presentation speaker by speaker, random within speaker 

• Presentation word-by-word, random within word (to investigate the creation of new 

representations at learner’s side) 
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• Mixed effects, such as IDS/ADS distinctions  

 

4.2 Short description of the experiments 

 

A list of experiments is given below. The outcomes are discussed in the result section below. 

 

Exp id  cochlea
1
 brief description of the experiment 

001  NL  test run, left out of discussion here 

002  NL  NL data, random presentation 

003  NL  NL data, blocked per speaker (Els, Henk, Margot, Peter) 

004  NL  SWE data, blocked per speaker (Anna, Bjorn, Nancy, Olov) 

005  NL  NL (Els, Henk), followed by SWE (Anna, Bjorn) 

006  NL  NL, as 002, but blocked by word 

007  NL  test run, left out here 

008  NL  as 006, varying amounts of training, followed by same test 

009  NL  FIN, randomly ordered data presentation 

010  NL  as 002, NL, but also focussing in IDS versus ADS 

 
 

4.3 Experimental set-up 

 

Per experiment, the entire training set is processed incrementally. The ordering in which the 

utterances are presented may differ and is one of the experimental parameters. Each new 

utterance is recognised from the acoustic input only and on the basis the stored representations 

of LA learned so far and excluding the current input. The internal model is updated on the 

basis of the multimodal information already observed during the training session. In the 

experiments reported here, the history-update window is infinitely long, that is, LA can reuse 

all previously observed utterances and tags. 

 

4.4 Results 

 

The result of each experiment is depicted in figures in which the horizontal x-axis represents 

the number of utterances presented during training. The vertical (y) axis presents the accuracy 

of LA’s replies. The accuracy is defined as the number of correct responses (defined by 

comparing LA’s reply with the ground truth in the multimodal stimulus by CA), divided by 

the total number of replies. The figures present two graphs, one representing the accuracy 

when measured from the beginning of the training run (indicated by the smooth curves in 

blue), the other one representing the accuracy over the most recent 50 utterances (spiky curve, 

in red). The latter representation is fair and appropriate if one would like to investigate the 

actual training process, while the former presents the accuracy comparable to an ASR-like 

measurement on the entire database. 

 
 

 

                                                 
1
 The model uses a codebook of spectral shapes. These were trained on Dutch (NL) data. 
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Figure 2. Result of experiment 002 (Dutch, random ordering). The figure shows the concept 

accuracy (in percentage) as a function of the number of tokens in two ways (a) by showing the 

accuracy measured from the beginning of the training run (this moment is marked 0 on the 

horizontal axis). This plot is smoothly curved (in blue). (b) by showing the accuracy over the 

most recent fifty utterances (spiky curve, in red). Until x=4500, the internal vocabulary is not 

complete yet and lacks one single word.  
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Figure 3. Results of experiment 003 (Dutch, speaker-blocked). The axes are defined as in the 

previous figure. This experiment can be compared with experiment 002, the difference being 

that the multimodal data are now presented speaker-by-speaker. A drop in performance of 

about 20-30 percent is clearly visible every time when a new speaker starts (around #tokens = 

0, 2000, 4000, 6000). Within about 1000 tokens (that is, approximately 100 tokens per word) 

the performance is back on its previous high level. The decrease in performance is due to two 

factors (a) each speaker introduces a new proper name, such that the vocabulary is not 

complete until at least 100 examples of the new word (and speaker) were offered (b) different 

speakers have different voice and speech characteristics which require an adaptation by the 

learning model. 
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Figure 4. Result of experiment 004 (Swedish, speaker-blocked). This figure presents the 

performance for Swedish. The data is presented speaker-by-speaker. The outcome can be 

directly compared to experiment 003 (Dutch). The eventual performance is about the same as 

for Dutch. The result of this experiment is remarkable for another reason: the ‘cochlea’ (i.e. 

codebook) used in this experiment is trained on Dutch utterances. This suggests that the 

codebook (used to encode the waveforms into an internal sensorial representation) is not very 

language sensitive.  
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Figure 5. Results of experiment 005 (multilingual, speaker-blocked). This figure presents 

results of a multilingual experiment, in which first two Dutch speakers are presented, after 

which two Swedish speakers follow.  The speakers are Els (female), Henk (male), Anna 

(female) and Bjorn (male). Speaker changes drop the performance about 30 percent. A 

second language takes about the same learning time as the first language. The eventual model 

is able to both recognize Dutch and Swedish target words. Notice also that the total 

vocabulary involved is now doubled (the languages have separate tags). After 4000 

utterances, the recognition rate drops to zero because none of the Swedish words is included 

in the vocabulary at that point in time. 
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Figure. 6. Results of experiment 006 (Dutch, word-blocked). This experiment is comparable to 

exp 002 (NL, random order) and 003 (NL, speaker-blocked). In this experiment, the data are 

presented word-blocked. While random order and speaker-blocked presentation gave average 

performance results close to 80 percent, word-block presentation shows a much poorer 

overall performance. This is a result of the specific manner in which the learner now decides 

to update its internal representations. 

 

 

Experiment 008 actually consists of a number of experiments. Each of these experiments is 

based on a full-blown training run. The single difference between these experiments is the 

exact amount of training tokens of auto (English car) at the beginning of each training run. 

One of the experiments, represented by the column ‘75’ of table I, uses a training set in which 

first 75 tokens of auto appear, followed by all utterances with other target words (blocked by 

word). The final trail of 100 training utterances contains the target word auto again. So the list 

of utterances is (here N = 75) 

 

• N utterances with auto, followed by 

• utterances containing the other target words, followed by 

• 100 utterances with auto. 
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All tokens of the target words are acoustically different. The first column in the table shows 

the recognition results for the 100 finally produced tokens auto in this particular case N=75. It 

appears that from the 100 tokens auto, none of these was correctly recognised. 

The following column with head ‘100’ presents the recognition results for the same set of 100 

tokens of auto, but in the case where in the beginning of the training run 100 tokens have been 

presented (N = 100). In this case the recognition of auto is much improved: auto is recognized 

in 78 of the 100 test cases. The remaining columns show the behaviour for varying values of 

N, and thereby the effect of ‘early training’ on ‘late test’ for a couple of initial training sizes. 

 

There is no evident process of forgetting: Forgetting could be shown by using a list of 

utterances with the structure 

 

• a fixed number of utterances with auto, followed by 

• a variable number of utterances containing the other target words, followed by 

• a fixed number of  (test) utterances with auto. 

 

Forgetting is not explicitly modelled. Aspects similar to forgetting might result from 

competition between stored representations and a larger weight for those representations that 

receive more evidence from recently observed stimuli. Such effects are not explicitly 

modelled, but it cannot be excluded that these effects may play a role in certain cases. 

 

 

 

 

 

Table I. This table shows the behaviour for varying sizes of training parts for auto, and 

thereby the effect of ‘early training’ on ‘late test’ for a couple of initial training sizes. There is 

no process of evident forgetting. For a description see the main text. 
 

#tokens 

auto in 

beginning 

training 

set 

75 100 125 150 250 350,450,550 

100 test 

tokens 

recognised 

as: 

      

Auto - 78 88 93 98 99 

Bad 7 2 1 1 - - 

Boek 9 2 1 - - - 

Damian 1 - - - - - 

Isabel 7 2 1 1 1 - 

Luier 6 2 3 1 - - 

Mama 4 - - - - - 

Otto 35 11 5 4 1 1 

Papa 17 3 1 - - - 

Schoen 3 - - - - - 

Telefoon 11 - - - - - 

       

 100 100 100 100 100 100 
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Figure 9
2
. Results of experiment 009 (Finnish, random order). This experiment shows the 

result on the Finnish database. Data are presented in random order. This experiment can be 

compared with experiment 002 (Dutch data, random); the results for NL and FIN are nearly 

the same. 

                                                 
2
 Figures 7 and 8 are omitted in this document, to maintain consistency with other ACORNS documents. 
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Figure 10.  Results of experiment 010 (Dutch, random order, LA trying to distinguish adult- 

and infant-directed speech). In contrast with experiment 002, the model must now detect 

words in combination with the speech style (IDS or ADS). If the speech style could not be 

detected at all, the IDS/ADS assignment would be random and the performance would 

theoretically drop to 50 percent. The actual performance of almost 80 percent shows a clear 

sensitivity of the model for speech style, on top of its ability to recognise the target words. 

This performance result must be based on abstraction since the number of tokens per style per 

word is too large for the model to represent individual tokens. The visual tags in this 

experiment are combinations of the genuine word tag (as used in e.g. exp 002) with the 

speaking style tag (IDS or ADS). 
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Figure 11. This experiment (011) shows the effect of a bilingual experiment. First, two NL 

speakers are presented (female, male), followed by two Finnish speakers (female, male). Each 

speaker utters 2000 utterances. This experiment is very similar to exp 005 (figure 5), but one 

crucial difference: all original meta-tags in the NL and FIN database have now been replaced 

by a common set of tags that semantically make more sense: the new tags refer to the same 

extra-linguistic set of objects in a virtual scene, independent of language. Compared to 

experiment005, the leaner is able to reuse existing representations trained on the NL part for 

the Finnish utterances (this effect is visible between 4000 and 5000 utterances). 

 

5 Discussion 

 

The computational model presented here shows that learning the relation between speech 

fragments and higher-order concepts can be established using a pattern discovery technique. 

The performance of the learner depends on a number of factors: the ordering of the data 

presented, the blocking per speaker and per word, changes of language. The effect of the 

ordering of the data, in particular of new speakers, is clearly visible in figure 3 (NL, speaker-

blocked), when the performance is compared to the results is compared to random ordering 

(NL, random). 

 

Although a preliminary result, the model shows that a second language is acquired with the 

same pace as a first language (exp 005, cf. fig. 5). We have investigated the behaviour of the 
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model just after the tokens of the second language are presented to the model. In this phase, 

during which the model did not yet adapt to the new language, the model clearly maps Finnish 

tokens unto Dutch representations as long it does not have created genuine Finnish 

representations. Once these are created, the performance goes up quickly (as is evidenced 

within the third quarter along the horizontal axis of figure 5). The multilingual experiment 

shows that already stored representations will be reused when necessary. When new data are 

presented, the learner can decide to create a new representation associated to a new concept. 

This is what happens in the second half of experiment 005, during which representations 

trained on Dutch are ‘reused’ to decode Swedish utterances. Only later in the training, when 

Swedish representations have been built, Dutch representations are not longer reused to 

decode Swedish utterances. 

 

When monolingual data are presented in word-blocked ordering (experiment 006, figure 6), 

the model has overall more difficulty with the data compared to random-ordering (experiment 

002, figure 2). Although the performance within one word-block rapidly increases to close to 

95 percent, the overall performance (measured from the beginning) is substantially lower than 

in random mode. The assumption that will be investigated in subsequent work is that the main 

mechanisms of importance here are the criteria for triggering updates of the internal 

representations and the model of the non-relevant acoustics (carrier sentences). This means 

that for this particular computational model of word discovery, an equally evenly distributed 

presentation of tokens is favourable. (This does not say that the frequency of the target words 

must be uniform. As already observed, this is not the case in the databases.) 

 

In the experiments presented, the input data are processed incrementally without forgetting, 

that is: each new datum is recognised with the current instantiation of available stored 

representations, and these stored representations get updated on the basis of knowledge about 

all previously observed utterances, without forgetting. It would be cognitively more plausible 

to improve the model in this aspect by introducing memory-dependent decays such that the 

retrieval from data in the past gets increasingly more difficult. Such a decay does not 

necessarily mean that these data will be entirely forgotten: relevant information could be 

accumulated in some other form and stored accordingly. Experiments with decay will be 

performed in follow-up experiments. 

 

A common and interesting property of the word discovery approaches discussed above is the 

absence of segmentation. The learning model does not use segmentation in order to 

hypothesize the target words in an utterance. Instead, the learning model makes use of 

structure in another way. Each utterance is mapped into a utterance-dependent vector 

representation (a vector with a dimension independent of the utterance length or content). This 

mapping is structure-preserving in a very specific manner: The structure of an utterance (that 

is, the interpretation of an utterance as concatenation of lexical items) is transformed into the 

structure of a vector space (decomposability of a unknown vector as a weighted sum of given 

basis vectors). The experiments show that for speech decoding the actual segmentation of the 

input speech data is not required (nor in training, nor during decoding, nor as a necessary 

result of the decoding). 

 

Since the model aims at word discovery with the findings about human language acquisition 

in a guiding role, its cognitive plausibility is one of the criteria along which the model can be 

judged. In the literature on language learning and word acquisition, a number of 

characteristics of language acquisition by young children are highlighted.  Firstly, the number 
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of words that young infants understand increases over time, with a specific word spurt 

between the age 1 and 2. This word spurt is generally attributed to cognitive factors: based on 

already trained representations of simple words, the learning of more difficult words gets 

increasingly faster. The McMurray model (2007) stipulates that the word spurt is a necessary 

effect of a combinatorial artefact. The model shows that the word spurt phenomenon is 

guaranteed in any system that builds representations for
 
multiple words simultaneously, and in 

which few words can
 
be acquired quickly and a greater number of words take longer. Under 

various conditions (saying that words occur with a Zipfian distribution; and that each word 

needs a word-dependent number of tokens in order to be stored into some representation) a 

word spurt can be observed after an initial period of slow learning. Figure 12 shows an 

example of this. It is obtained by running a Matlab implementation of the McMurray model 

and shows the number of stored representations versus number of word tokens observed over 

time (solid curve) for a particular chosen word frequency distribution and a word complexity 

distribution. The dashed curve represents the derivative of the solid curve, that is, the actual 

growth rate over time. The word spurt is the represented by the peak in this latter curve. 

 

It is to be investigated to what extent word spurt can be modelled by the current 

computational model, and whether the existence of this word spurt phenomenon is stable 

across various model parameters that can be cognitively explained. 

 

The computational model presented here sheds more light on the relevance of various factors 

that are known to play a role in (models of) human speech processing. One of these factors 

deals with how words get activated (and to what extent), the second with the way how 

competition may act during the word search.  In the current model, the activation of lexical 

items is separated from the actual competition. This is similar to what Shortlist does. Shortlist 

is a two-stage model in which activation of words by incoming speech input is separated from 

competition between the activated words. In contrast with Shortlist however, the current 

model plays out (as in TRACE) the entire lexicon, while in Shortlist the network in which 

competition plays a role is constructed from only those words supported by the input.  

 

In the current model, competition is not explicitly implemented. It automatically emerges 

from the parallel search among multiple candidates. This is in line with earlier findings e.g. 

obtained with TRACE. TRACE showed that competition is not a necessary consequence of 

multiple processing in parallel. TRACE was implemented as a connectionist model using 

interactive activation techniques. Incoming input increased the activation of lexical candidates 

that it matched. 

 

A crucial difference between this model and TRACE is the absence of inhibition. The more 

activation a candidate received in TRACE, the stronger the inhibition it could then exercise 

upon its rivals. Words which received ever more activation emitted ever stronger inhibition, 

and eventually the winning string of words should end up with higher activation than all 

competitor strings. In the current model, there is no such effect: the activation of a winner will 

not completely eliminate its closest competitors. However, there is a stronger inhibition 

process than for instance in the computation of posterior probabilities, where the 

normalization to unity implies that if a candidate model receives a larger probability, its 

competitors must scale their probabilities down. In NMF, close competitors can completely 

inhibit each other. When two models have a common subvector which is activated, it can be 

explained by any combination of the two vectors. If in another subvector both models differ, 

the relative activation of each of the models will be determined by the data in this subvector. 
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But if one of the models already overestimates the values in this subvector, activation of the 

second one is not necessary (a better fit would require a negative activation, which is not 

allowed) and it is hence inhibited. Hence, a weak but active mechanism of inhibition is in 

place. 

 

The current model does not specifically focus on simulation of word activation patterns when 

the acoustic evidence unfolds over time. 

 

 

 

 

 
Fig 12. Word spurt (lexical explosion). Simulation according to the model proposed by 

McMurray (2007). The word spurt is indicated by the dashed line. It shows the increase of 

number of representations as a function of observed tokens. 

 

 

Regarding the learning method, the model shows that non-negative matrix factorization 

allows the discovery of recurring acoustic patterns with an associated abstract tag. Uni-modal 

and cross-modal learning facilitates the separation of utterances into models of words or 

multiple words that best jointly explain the utterances. Unlike other unsupervised pattern 

discovery methods, a segmentation of the input in terms of the discovered units is not 

available and not required. During recognition, boundaries between word hypotheses are not 

aligned with the input, much like a human listener does not need to recognise all words to get 

the message or to recognize all phonemes to get the word. The absence of segmentation 

makes the detection of word onset, word order and word repetitions not trivial.  
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In the language acquisition literature, a few more characteristics of language learning are 

discussed of which the modelling will be a challenge for all models that are ultimately based 

on statistics. One of these characteristics is that babies need just a few examples to learn a 

new word. Apparently, a reliable representation can be built on the basis of a few tokens only. 

The current model is in principle able to do that, but to what extent this is dependent on other 

factors remains to be investigated. 

 

The second characteristic of first language acquisition that we mention is a phenomenon 

referred to  

as fast mapping. Fast mapping means that children learn that ‘new’ words refer to ‘so far 

unobserved’ objects. Apparently the formation of form-meaning pairs is a process that might 

be controlled by some primitive rules (in combination with statistically motivated updates of 

representations). 

 

The third characteristic deals with the ability to perceive sound characteristics that do not 

support the distinctions of phonemes in the mother language. This ability gradually disappears 

from the age of 6 months. We believe that experiments involving minimal word pairs will 

reveal details about phone (and sub word) discovery as necessary step towards distinguishing 

ever more words. 

The activation and deactivation of words with partial acoustic overlap with other words is 

another interesting characteristic of human speech processing. For example, for the stimulus 

‘inquiry’, words like ‘choir’ may act among the candidates that are temporarily activated but 

get deactivated as time progresses. This phenomenon can be studied in detail by using specific 

groups of target words and to trace how word decoding results evolve during training. For 

example, by means of this and other experiments, SpeM has been proved to successfully 

model these aspects of human speech processing. 

 

Another discussion issue is the exact meaning of the meta tag that associate the audio 

information. In the current database, this tag is theoretically an abstract representation of the 

object in the outside real world that the utterance relates to. In practice, it is a word that 

reflects this object in a linguistically neutral uninflected form (e.g. ‘bok’ in Swedish, even if 

this word occurs inflected in the utterance). However, in the cross-linguistic study, tags from 

both languages must be mapped onto ‘supertags’ that refer to objects in a virtual scene and go 

beyond the uninflected lexical sets of each language separately. So, in order to find a genuine 

tag system that is useful for multilingual experiments, the multimodal input should contain 

these supertags. How this must be done and what the effects are for the model is topic of 

current research. 

 

Conclusion 

 

We presented a computational model of word discovery as the first step in language 

acquisition. The word representations emerge during training without being specified a priori 

beforehand. Word-like entities are discovered without the necessity to first detect 

segmentations of sub-word entities. 

 

Experiments show the behaviour of the model as a function of the ordering of the utterances 

during the training phase. The experiments provide clear indications about how the model can 

be improved for the next set of experiments on a database with a more complex linguistic 
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structure (such as a larger set of target words, more complex carrier sentences, and minimal 

word pairs). 

 

The cognitive plausibility of the model (especially with respect to the use of memory and the 

reuse of already stored representations) is currently investigated in more detail. 
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Website 

 

The following web site provides updated info on lexical development (communicative 

development inventories) of infants of various ages between M8 and M16: 

http://www.sci.sdsu.edu/cdi/cdiwelcome.htm 

This website also contains list of specific literature references for about 40 languages and 

language variants (including Dutch (Flemish), Swedish, Finnish). 
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